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Abstract

In a recent paper Paparoditis (2000) proposed a new goodness-of-�t test for time series

models based on spectral density estimation. The test statistic is based on the distance

between a kernel estimator of the ratio of the true and the hypothesized spectral density

and the expected value of the estimator under the null and provides a quanti�cation of

how well the parametric density �ts the sample spectral density. In this note we give a

detailed asymptotic analysis of the corresponding procedure under �xed alternatives.

Keywords and phrases: goodness-of-�t test, kernel estimator, periodogram, Whittle estimator.

1 Introduction and statement of the main result

Consider a real valued stationary stochastic process (X

t

)

t2Z

with spectral density f: We are

interested in the problem of testing the hypothesis that this density belongs to a certain para-

metric class F

�

(for example the class of densities corresponding to ARMA(p; q) processes),

that is

H

0

: f 2 F

�

vs. H

1

: f 62 F

�

:(1.1)

Much e�ort has been devoted to the problem of testing parametric hypotheses for stationary

processes in the time domain [see for example Ljung and Box (1978), Hong-Zhi and Bing

(1991), Fan and Li (1996), Hjellvik, Yao and Tj�stheim (1998) among many others], but much

less attention has been paid to the corresponding problem in the frequency domain. Recently

Paparoditis (2000) proposed a test which compares the periodogram

I(�) =

1

2�n

�

�

�

n

X

t=1

X

t

e

�it�

�

�

�

2

; � 2 [��; �](1.2)
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with an appropriate estimate of the spectral density in the class F

�

: To be precise let F denote

the class of all spectral densities which are Lipschitz continuous of order > 1=2 and positive on

the interval [��; �]: We assume that the spectral density of the data generating process f 2 F

has a corresponding Lipschitz constant 

f

> 1=2 and that the functions f(�; �) in the given

class of parametric functions

F

�

= ff(�; �) j f(�; �) 2 F und � 2 �g(1.3)

are twice continuously di�erentiable, where the set of parameters � is supposed to be compact

with a nonempty interior. The Whittle estimator

^

�

n

[see Whittle (1953)] of the parameter � is

de�ned as

^

�

n

= argmin

�

L(�; I)(1.4)

where

L(�; I) =

1

4�

Z

�

��

n

log f(�; �) +

I(�)

f(�; �)

o

d�(1.5)

denotes the Whittle Likelihood function. Roughly speaking it follows that at the Fourier fre-

quencies �

j

= 2�j=n (j = �N; : : : ; N = b(n � 1)=2c) the periodogram and the parametric

estimate f(�;

^

�

n

) estimate the same object if the null hypothesis (1.1) is valid. Therefore Pa-

paroditis (2000) proposed

S

n

=

Z

�

��

(

1

n

N

X

j=�N

K

h

(�� �

j

)

�

I(�

j

)

f(�

j

;

^

�

n

)

� 1

�

)

2

d�(1.6)

as a test statistic for the hypothesis (1.1) whereK denotes a Lipschitz continuous and symmetric

kernel of order 

K

> 1=2 with support [��; �] and K

h

(�) =

1

h

K(

�

h

) denotes the scaled kernel.

Assume that the process (X

t

)

t2Z

has a representation of the form

X

t

=

1

X

j=�1

 

j

"

t�j

;(1.7)

where

1

X

j=�1

jjj

1

2

j 

j

j <1(1.8)

( 

0

= 1) and ("

t

)

t2Z

is a sequence of independent Gaussian variables with with zero expectation

and variance �

2

> 0. Under the assumption that the null hypothesis (1.1) is valid it was shown

by Paparoditis (2000)

n

p

h(S

n

� �

h

)

D

�! N (0; �

2

)(1.9)

whenever n!1; h � cn

�Æ

for some constant c > 0 and Æ 2 (0; 1), where the asymptotic bias

and variance are given by �

h

= n

�1

h

�1

R

�

��

K

2

(x) dx and

�

2

=

1

�

Z

2�

�2�

h

Z

�

��

K(u)K(u+ x) du

i

2

dx;

respectively. If we assume further that the minimizing parameter

�

�

= arg min

�2�

L(�; f)
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exists and is unique, then it can be shown under additional technical assumptions that

S

n

p

�!

Z

�

��

D

2

(�) d�(1.10)

whenever f 2 FnF

�

, where

D(�) =

f(�)

f(�; �

�

)

� 1(1.11)

is a measure of deviation from the null hypothesis (1.1). Note that (1.9) and (1.10) imply the

consistency of the test which rejects the hypothesis (1.1) for large values of the statistic S

n

: The

purpose of the present note is to further re�ne this statement by considering the asymptotic

distributional behaviour of the statistic S

n

under �xed alternatives [for local alternatives see

Paparoditis (2000)]. To this end assume for the bandwidth h in the statistic (1.6)

h � n

�Æ

(1.12)

where Æ = minf

f

�1=2; (

K

�1=2)=(

K

+1)g and 

f

; 

K

> 1=2 denote the Lipschitz constants

corresponding to the spectral density f and the kernel K; respectively.

Theorem 1.1. If assumptions (1.7), (1.8) and (1.12) are satis�ed and f 2 FnF

�

; then (as

n!1)

p

n(S

n

� b

h

)

D

�! N (0; �

2

);(1.13)

where the asymptotic bias and variance are given by

b

h

=

Z

�

��

n

1

2�

Z

K(u)D(�� uh) du

o

2

d�;

�

2

=

Z

16�

h

(D(�) + 1)D(�) +

n

Z

r

1

f(�; �

�

)

f(�)D(�) d�

o

T

�

f

(�)f(�)

i

2

d�

respectively, and

�

f

(�) = �

h

Z

�

��

fr

2

1

f(�; �

�

)

� f(�) +r

2

log f(�; �

�

)g d�

i

�1

r

1

f(�; �

�

)

:

Remark 1.2. The proof of Theorem 1.1 is tedious and outlined in the following section. The

asymptotic distribution under a �xed alternative f can be used for an approximation of the

power function of the test which rejects the null hypothesis in (1.2) for large values of the test

statistic S

n

: Alternatively, results for local asymptotics [see Paparoditis (2000)] could be used

for such a power approximation. It has been demonstrated by Dette and Neumeyer (2000) in

the context of testing independence that asymptotics under �xed alternatives usually provides a

more accurate approximation of the power function than asymptotics under local alternatives.

In the present situation the asymptotic properties under �xed alternatives are based on the

classical central limit theorem (see the proof of Theorem 1.1 in Section 2) while the local

asymptotic properties derived by Paparoditis (2000) require a central limit theorem for random

quadratic forms. This observation provides a theoretical justi�cation that for most alternatives

Theorem 1.1 yields a more accurate approximation of the power than a corresponding statement

under local alternatives.
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We conclude this section with an example, namely testing randomness against the alternative

models AR(1) and MA(1), respectively.

Example 1.3 Consider the null hypothesis that (X

t

)

t2Z

is White Noise. Then we have � = �

2

,

and the spectral density is given by f(�; �) =

�

2�

.

(1) If the true model is AR(1), that is X

t

= �X

t�1

+ "

t

where j�j < 1, then we have f(�) =

�

2�

(1� 2� cos(�) + �

2

)

�1

and the asymptotic bias and variance in Theorem 1.1 are given by

b =

2��

2

(�

4

� �

2

� 2)

(1� �

2

)

3

; �

2

=

32�

2

�

2

(2 + 2�

2

+ 12�

4

� 7�

6

+ �

8

)

(1� �

2

)

7

:

(2) If the true model is MA(1), that isX

t

= a"

t�1

+"

t

, then we have f(�) =

�

2�

(1+2a cos(�)+a

2

)

and the asymptotic bias and variance are given by

b = 2�a

2

(2 + a

2

); �

2

=

32�

2

a

2

(2 + 6a

2

+ 22a

4

+ 29a

6

+ 24a

8

+ a

10

)

(1 + 2a

2

)

2

:

2 Proofs

Proof of Theorem 1.1. The proof of Theorem 1.1 is tedious and we only sketch the main

steps for the sake of brevity. For more details we refer to Spreckelsen (2002).

We begin with a derivation of an appropriate representation of the Whittle estimator. To this

end let

I

"

(�) =

1

2�n

�

�

�

n

X

t=1

"

t

e

�t�

�

�

�

2

denote the periodogram of the innovation process ("

t

)

t2Z

in (1.7) and de�ne

V (�

i

) =

2�

�

2

I

"

(�

i

);

where �

i

= 2�i=n; i = �N; : : : ; N ;N = b(n � 1)=2c: Note that the random variables V (�

i

) =

V (��

i

) are exponentially distributed and independent, whenever i 6= 0 (because of the Gaussian

innovations). From Theorem 3 in Taniguchi (1975) and an appropriate approximation of the

integral by a sum we obtain the following representation

^

�

n

� �

�

=

1

n

N

X

i=�N

2��

f

(�

i

)f(�

i

)(V (�

i

)� 1) + o

p

(n

�

1

2

):(2.1)

Recalling the de�nition of the test statistic in (1.6) we obtain the decomposition

S

n

= (S

1n

+ 2S

2n

+ S

3n

) + (2S

4n

+ 2S

5n

+ S

6n

) + (2S

7n

+ 2S

8n

+ 2S

9n

+ S

10n

)(2.2)

where

S

1n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

�

I(�

i

)

f(�

i

)

� 1

��

I(�

j

)

f(�

j

)

� 1

�

d�
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S

2n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

�

I(�

i

)

f(�

i

)

� 1

�

I(�

j

)

f(�

j

)

(D(�

j

) + 1)d(�

j

) d�

S

3n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

I(�

i

)

f(�

i

)

(D(�

i

) + 1)d(�

i

)

I(�

j

)

f(�

j

)

(D(�

j

) + 1)d(�

j

) d�

S

4n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

�

I(�

i

)

f(�

i

)

� 1

��

I(�

j

)

f(�

j

)

� 1

�

D(�

j

) d�

S

5n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

I(�

i

)

f(�

i

)

(D(�

i

) + 1)d(�

i

)

�

I(�

j

)

f(�

j

)

� 1

�

D(�

j

) d�

S

6n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

�

I(�

i

)

f(�

i

)

� 1

�

D(�

i

)

�

I(�

j

)

f(�

j

)

� 1

�

D(�

j

) d�

S

7n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

�

I(�

i

)

f(�

i

)

� 1

�

D(�

j

) d�

S

8n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

I(�

i

)

f(�

i

)

(D(�

i

) + 1)d(�

i

)D(�

j

) d�

S

9n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)

�

I(�

i

)

f(�

i

)

� 1

�

D(�

i

)D(�

j

) d�

S

10n

=

1

n

2

N

X

i;j=�N

Z

�

��

K

h

(�� �

i

)K

h

(�� �

j

)D(�

i

)D(�

j

) d�

and where we have used the notation (1.11) and

d(�) =

f(�; �

�

)

f(�;

^

�

n

)

� 1;(2.3)

The terms S

1n

; S

2n

; S

3n

were treated by Paparoditis (2000) who showed that

S

1n

+ 2S

2n

+ S

3n

=

1

nh

Z

K

2

(u) du+ o

p

(n

�

1

2

) = o

p

(n

�1=2

):(2.4)

The terms S

4n

; S

5n

; S

6n

di�er from these quantities only by bounded factors and can be treated

similarly, which gives

2S

4n

+ 2S

5n

+ S

6n

=

2

nh

Z

K

2

(u) du

Z

D(�) d�(2.5)

+

1

nh

Z

K

2

(u) du

Z

D

2

(�)d�+ o

p

(n

�

1

2

) = o

p

(n

�

1

2

):

Finally, a straightforward calculation shows that

S

10n

=

Z

�

��

n

1

2�

Z

K(u)D(�� uh) du

o

2

d�+ o(n

�

1

2

)(2.6)
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and therefore the assertion can be proved by showing

2

p

n(S

7n

+ S

8n

+ S

9n

)

D

�! N (0; �

2

):(2.7)

To this end we use two lemmata, which will be proved at the end of this section.

Lemma 2.1. Under the assumptions of Theorem 1.1 we have

S

7n

+ S

9n

=

1

n

N

X

i=�N

2�(D(�

i

) + 1)D(�

i

)(V (�

i

)� 1) + o

p

(n

�

1

2

):(2.8)

Lemma 2.2. Under the assumptions of Theorem 1.1 we have

S

8n

=

1

n

N

X

i=�N

2��

T

�

f

(�

i

)f(�

i

)(V (�

i

)� 1) + o

p

(n

�

1

2

)(2.9)

where

� =

Z

r

1

f(�; �

�

)

f(�)D(�) d�:

With the aid of Lemma 2.1 and 2.2 we obtain

S

7n

+ S

8n

+ S

9n

=

1

n

N

X

i=�N

c

i

(V (�

i

)� 1) + o

p

(n

�

1

2

)(2.10)

where

c

i

= 2�[(D(�

i

) + 1)D(�

i

) + �

T

�

f

(�

i

)f(�

i

)]

and the random variables V (�

i

) = V (��

i

) are independent and exponentially distributed with

mean 1 for i 6= 0. The assertion (2.7) now follows from the central limit theorem and Theorem

1.1 is a consequence of the estimates (2.4) (2.5), (2.6) and the representation (2.2). 2

For the proof of Lemma 2.1 and 2.2 we need a further auxiliary result which re�nes Lemma 1

in Paparoditis (2000).

Lemma 2.3. Under the assumptions of Theorem 1.1 we have for the process fR(�)g

�2[��;�]

de�ned by

R(�) = I(�)� V (�)f(�) = I(�)�

2�

�

2

I

"

(�)

(i) ER(�) = o(n

�

1

2

) uniformly with respect to � 2 [��; �].

(ii) Cov(R(�

j

); R(�

m

)) =

(

O(n

�1

) if �

j

= ��

m

o(n

�1

) if �

j

6= ��

m

:

Proof of Lemma 2.3. Let  (z) =

P

1

j=�1

 

j

z

j

; then it follows from standard arguments [see

e.g. Brockwell and Davis (1991) ] that

R(�) = (2�n)

�1

 (e

�i�

)

n

X

s=1

"

s

e

�i�s

1

X

j=�1

 

j

e

i�j

h

n�j

X

t=1�j

"

t

e

i�t

�

n

X

t=1

"

t

e

i�t

i

+ (2�n)

�1

 (e

i�

)

n

X

s=1

"

s

e

i�s

1

X

j=�1

 

j

e

�i�j

h

n�j

X

t=1�j

"

t

e

�i�t

�

n

X

t=1

"

t

e

�i�t

i

+ jY

n

(�)j

2

(2.11)
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where

Y

n

(�) = (2�n)

�

1

2

1

X

j=�1

 

j

e

�i�j

n

n�j

X

t=1�j

"

t

e

�i�t

�

n

X

t=1

"

t

e

�i�t

o

:(2.12)

Now an analogous argument as given in Brockwell and Davis (1991) p. 347 shows that

EjY

n

(�)j

4

= O(n

�2

) uniformly with respect to � 2 [��; �]: The expectations of the �rst two

terms in (2.11) are estimated similarly and we restrict ourselves to the �rst term. Observing

(1.8) and Lebesgue's theorem it follows that

�

�

�

E

�

n

�1

 (e

�i�

)

n

X

s=1

"

s

e

�i�s

1

X

j=�1

 

j

e

i�j

h

n�j

X

t=1�j

"

t

e

i�t

�

n

X

t=1

"

t

e

i�t

i�

�

�

�

=

�

�

�

� n

�1

 (e

�i�

)�

2

1

X

j=�1

 

j

e

i�j

minfjjj; ng

�

�

�

� n

�

1

2

j (e

�i�

)j�

2

1

X

j=�1

j 

j

jmin

n

jjj

p

n

;

p

n

o

= o(n

�1=2

):

which proves the assertion (i) of Lemma 2.3. The second part is proved similarly and therefore

omitted [see Spreckelsen (2002) for more details]. 2

Proof of Lemma 2.1. Observing the representation

I(�) = j (e

�i�

)j

2

I

"

(�) +R(�) = V (�)f(�) +R(�)(2.13)

we obtain

S

7n

+ S

9n

=

1

n

2

N

X

i;j=�N

Z

K

h

(�� �

i

)K

h

(�� �

j

)(V (�

i

)� 1)(D(�

i

) + 1)D(�

j

) d� + R

n

(2.14)

where the remainder is de�ned by

R

n

=

1

n

2

N

X

i;j=�N

Z

K

h

(�� �

i

)K

h

(�� �

j

)

R(�

i

)

f(�

i

)

(D(�

i

) + 1)D(�

j

) d�:(2.15)

A straightforward calculation with an application of Lemma 2.3 shows

ER

2

n

=

2

n

4

N

X

i;j;l=�N

Z Z

K

h

(�� �

i

)K

h

(�� �

j

)K

h

(�

0

� �

i

)K

h

(�

0

� �

l

) d� d�

0

� (D(�

i

) + 1)

2

D(�

j

)D(�

l

)E

�

R(�

i

)

f(�

i

)

�

2

+

1

n

4

N

X

i;j;k;l=�N

i6=k;i6=�k

Z Z

K

h

(�� �

i

)K

h

(�� �

j

)K

h

(�

0

� �

k

)K

h

(�

0

� �

l

) d� d�

0

� (D(�

i

) + 1)(D(�

k

) + 1)D(�

j

)D(�

l

)E

�

R(�

i

)

f(�

i

)

R(�

k

)

f(�

k

)

�

= o(n

�1

)

7



which implies R

n

= o

p

(n

�1=2

) by Markov's inequality. Consequently it follows from (2.14) that

it is suÆcient to prove the representation of Lemma 2.1 for the term

U

n

=

1

n

2

N

X

i;j=�N

Z

K

h

(�� �

i

)K

h

(�� �

j

)(V (�

i

)� 1)(D(�

i

) + 1)D(�

j

) d�

= S

7n

+ S

9n

+ o

p

(n

�

1

2

):

To this end note that

E

h

U

n

�

1

n

N

X

i=�N

2�(D(�

i

) + 1)D(�

i

)(V (�

i

)� 1)

i

2

=

1

n

2

N

X

i=�N

b

2

i

(D(�

i

) + 1)

2

= o(n

�1

)

where the last estimate follows from the Lipschitz continuity of K and f; which implies for the

coeÆcients

b

i

=

Z

K

h

(�� �

i

)

h

1

n

N

X

j=�N

K

h

(�� �

j

)D(�

j

)�D(�)

i

d�

+

Z

K

h

(�� �

i

)D(�) d�� 2�D(�

i

) = o(1)(2.16)

the estimate b

2

i

= o(1) uniformly with respect to i 2 f�N; : : : ; Ng: This completes the proof of

Lemma 2.1. 2

Proof of Lemma 2.2. By a Taylor expansion there exists

~

�

n

2 � such that k

~

�

n

� �

�

k �

k

^

�

n

� �

�

k and we have

S

8n

=

1

n

2

N

X

i;j=�N

Z

K

h

(�� �

i

)K

h

(�� �

j

)

I(�

i

)

f(�

i

)

(D(�

i

) + 1)d(�

i

)D(�

j

) d�

= (

^

�

n

� �

�

)

T

1

n

2

N

X

i;j=�N

f(�

i

; �

�

)r

1

f(�

i

; �

�

)

(D(�

i

) + 1)

Z

K

h

(�� �

i

)K

h

(�� �

j

)D(�

j

) d�

+ (

^

�

n

� �

�

)

T

1

n

2

N

X

i;j=�N

f(�

i

; �

�

)r

1

f(�

i

; �

�

)

�

I(�

i

)

f(�

i

)

� 1

�

(D(�

i

) + 1)

�

Z

K

h

(�� �

i

)K

h

(�� �

j

)D(�

j

) d�

+ (

^

�

n

� �

�

)

T

1

2n

2

N

X

i;j=�N

Z

K

h

(�� �

i

)K

h

(�� �

j

)

I(�

i

)

f(�

i

)

(D(�

i

) + 1)D(�

j

)

� f(�

i

; �

�

)r

2

1

f(�

i

;

~

�

n

)

D(�

j

) d� (

^

�

n

� �

�

)

=

1

n

2

N

X

i;j=�N

Z

K

h

(�� �

i

)K

h

(�� �

j

)

I(�

i

)

f(�

i

)

(D(�

i

) + 1)d(�

i

)D(�

j

) d�+ o

p

(n

�1=2

);

where the last estimate follows by a straightforward calculation of the second moment of the

terms

1

n

2

P

ij

: : : in the second and third expression in the above decomposition observing that

8



the periodogram satis�es

Cov(I

X

(�

j

); I

X

(�

k

)) =

8

>

<

>

:

2f

2

(�

j

) +O(n

�

1

2

) if �

j

= �

k

= 0;

f

2

(�

j

) +O(n

�

1

2

) if �

j

= �

k

6= 0;

O(n

�1

) if �

j

6= ��

k

;

uniformly with respect to j and k 2 f�N; : : : ; Ng. The assertion of Lemma 2.2 is now obtained

by an approximation of the sum in the �rst term by an appropriate integral, that is

1

n

2

N

X

i;j=�N

f(�

i

; �

�

)r

1

f(�

i

; �

�

)

(D(�

i

) + 1)

Z

K

h

(�� �

i

)K

h

(�� �

j

)D(�

j

) d�

=

Z

f(�; �

�

)r

1

f(�; �

�

)

(D(�) + 1)D(�) d�+O(n

�

f

) + o(1) = �+ o(1):

2
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