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Robust Sliced Inverse Regression Procedures

Ursula Gather, Torsten Hilker, and Claudia Becker

Abstract

Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimen-

sion reduction. Several properties of this relatively new method have been examined

already, but little attention has been paid to robustness aspects. We show that SIR

is very sensitive towards outliers in the data. Therefore a generalized estimation pro-

cedure which allows for robustness properties, especially for a high breakdown point,

is proposed.

AMS 1991 Subject Classi�cations: Primary 62F35; secondary 62H12.

Key words: Dimension reduction; Outliers; High breakdown procedures.

1 Introduction

Many statistical methods su�er from the so{called \curse of dimensionality". As an example,

consider classical nonparametric regression techniques which are used if a exible modelling

of a completely unknown functional relationship is the goal of the data analysis. It is well

known that such methods (mainly nearest neighbor techniques) work successfully if the

explanatory variable is low{dimensional. The theoretical concepts can be transferred to

the situation of a high{dimensional explanatory variable, but it is impossible to use the

resulting methods practically. The reason for this is that with samples of realistic size

the high{dimensional euclidean space cannot be �lled densely enough with observations.

Consequently, locally, there are not suÆciently many observations to keep both the bias,

and the variance of the classical nonparametric regression estimates small.

One possibility to overcome this problem is the construction of methods which are especially

designed for the situation of a high{dimensional explanatory variable such as Projection

Pursuit Regression (Friedman and Stuetzle, 1981) and MARS (Friedman, 1991).

Another way is o�ered by techniques for reducing the dimension of the regressor space �rst

before applying usual nonparametric regression techniques. Led by this idea, Li (1991)
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considers the following model for dimension reduction

y = g(�

0

1

x; . . . ;�

0

K

x; "); (1:1)

where y denotes a real-valued response variable, x is the d-dimensional random vector of

explanatory variables, and " is a random error. The link function g is assumed to be

completely unknown. The unknown directions �

1

; . . . ;�

K

are called e�ective dimension

reduction (edr) directions. They span the edr space B and have to be estimated from the

data. For this purpose Li (1991) suggests Sliced Inverse Regression (SIR), which uses the

fact that under certain conditions concerning the distribution of x, the centered inverse

regression curve E(xjy)�E(x) falls into a subspace spanned by ��

k

, k = 1; . . . ; K, where

� denotes the covariance matrix of x, cf. Li (1991, Theorem 3.1). Estimating the edr

directions based upon obervations (x

i

; y

i

), i = 1; . . . ; n, of (x; y) is then carried out in �ve

steps:

1. Standardization: z

i

=

b

�

�1=2

(x

i

�x), i = 1; . . . ; n, where

b

� and x denote the sample

covariance matrix and the sample mean of x

i

, i = 1; . . . ; n, respectively.

2. Slicing: Divide the range of y into H slices I

1

; . . . ; I

H

. Let n

h

be the number of

observations of y which fall into I

h

, h = 1; . . . ; H, and let p

h

= n

h

=n.

3. Sample mean-vector within each slice:
c
m

h

=

P

y

i

2I

h

z

i

=n

h

.

4. Principal Component Analysis (PCA): Let

b

V =

P

H

h=1

p

h

c
m

h

c
m

0

h

and compute the

eigenvalues

b

�

1

� � � � �

b

�

d

and corresponding eigenvectors
b
�

1

; . . . ;
b
�

d

of

b

V with
b
�

0

i

b
�

j

=

Æ

ij

where Æ

ij

denotes the Kronecker symbol.

5. Retransformation: The edr directions are estimated by

b

�

k

=

b

�

�1=2

b
�

k

, k = 1; . . . ; K.

The matrix � and � = E(x) can be used instead of

b

� and
�
x if they are known. Because

of the partition of the data into slices and the estimation of the inverse regression curve,

this estimation scheme is called Sliced Inverse Regression (SIR) (Li, 1991). The slices are

very often determined by choosing the number H of slices beforehand and by partitioning

the sample size n into slice sizes n

1

; . . . ; n

H

with

P

H

h=1

n

h

= n. Let y

(1)

� � � � � y

(n)

be the
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ordered observations of y. The n

1

smallest observations of y are used to form the �rst slice

I

1

, the next n

2

smallest observations are used for the second slice I

2

, and so on. For our

considerations we will adopt this procedure. Usually, slices with equal sizes are chosen.

Remark 1.1 The matrix

b

V is given by

b

V =

b

�

�1=2

P

H

h=1

bp

h

(x

h

� x)(x

h

� x)

0

b

�

�1=2

with

x

h

=

P

i:y

i

2I

h

x

i

=n

h

, h = 1; . . . ; H. Therefore, the estimated edr directions are also eigen-

vectors of

e

V =

b

�

�1

H

X

h=1

bp

h

(x

h

� x)(x

h

� x)

0

: (1:2)

More details and comments on the estimation scheme can be found in Li (1991). SIR has

been discussed in several articles with emphasis on its asymptotic properties (Li, 1991; Hsing

and Carroll, 1992; K�otter, 1996; Zhu and Fang, 1996) and on the estimation of the dimension

K of the edr space (Li, 1991; Schott, 1994; Ferr�e, 1997). Since design conditions concerning

the distribution of x are essential for the application of SIR, cf. Li (1991, Condition 3.1),

this aspect is another main topic in the discussion, cf. Cook and Weisberg (1991), H�ardle

and Tsybakov (1991), Hall and Li (1993), Cook and Nachtsheim (1994). Carroll and Li

(1992) use SIR in a general nonlinear regression model with measurement error in the

predictor variables. Aragon and Saracco (1997) consider SIR in the situation of small

sample sizes. Bura (1997) uses a multivariate linear model for the inverse regression curve.

Two nonparametric methods for testing the hypothesis H

0

: K = 1 versus the alternative

H

1

: K > 1 are proposed by Sheather and McKean (1997). SIR is implemented in the

package XploRe (H�ardle, Klinke and Turlach, 1995). There are also more sophisticated

methods for estimating the edr direction which are based on second moments (Cook and

Weisberg, 1991) and on properties of so called principal Hessian directions (Li, 1992).

One aspect of SIR which has not been treated yet is the sensitivity of this method with

respect to outliers in the data. Although Li (1991, p. 319) mentions that \[. . .] it would

help the analysis if closer examination of the distribution of x can be made so that outliers

can be removed [. . .]", and also that for the standardization of x robust estimators \may be

preferable" (p. 320), an analysis of the robustness issue is still outstanding. The estimation

scheme SIR uses estimators which are known to be extremely nonrobust (sample mean and
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covariance, classical PCA). Hence, it can be that some bad points in the data completely ruin

the results of SIR. To some extent, this contradicts Li's opinion, that the whole problem only

concerns the design points \that are under our control", and that \even in the observational

study, we may screen out bad design points" (p. 320). We agree in that the whole problem

only concerns the design points (see below), but the model assumptions are such that we

cannot really control the design points since we are dealing with a correlation model, where

x is random, too. Moreover, we are in the situation of high{dimensional regressor points,

such that we cannot just screen out bad observations but have to solve the problem of

identifying outliers in high{dimensional data (see Rocke, 1996, Becker and Gather, 1997).

Therefore, a sensitivity analysis of SIR in outlier situations seems necessary, and we discuss

this in Section 2.

The third section contains our proposal for generalized procedures which allow the estima-

tion of edr directions even in the case when there are some heavily corrupted points in the

data. The proposed procedures are called Generalized SIR (GSIR). The main feature is

that the concept of SIR is maintained but that instead of the special estimators we allow

for other alternatives, too. We investigate conditions under which such GSIR procedures

are aÆne equivariant. As a worst case criterion for the robustness of a GSIR procedure we

transfer the concept of the �nite-sample breakdown point to the situation investigated here.

In the fourth section, we discuss properties of a particular robust GSIR procedure called

DAME which we get by using some special robust estimators in the di�erent steps of the

estimation scheme.

A simulation study which is described in the last section indicates that DAME is successful

in handling situations with some severe outliers in the data, while not loosing much eÆciency

when there are no outliers.

2 Sensitivity of SIR to outliers

Consider the situation that in a sample (x

1

; y

1

); . . . ; (x

n

; y

n

) of (x; y) of size n, one obser-

vation is replaced by an arbitrarily chosen point. Without loss of generality we assume that
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the observations are ordered such that y

1

; . . . ; y

n

1

and the corresponding observations of x

belong to the �rst slice, y

n

1

+1

; . . . ; y

n

1

+n

2

to the second slice and so on. Now we replace x

1

by
~
x

1;t

= t�+u with t 2 IR, t > 0, u;� 2 IR

d

, � 6= 0. Thus, we get a corrupted sample for

each value of t and if we let t tend to in�nity, the interpretation is that one observation of x

is pulled away into the direction of �. The corresponding observation y

1

of y is not altered.

In general we can observe that altering observations of y only has an indirect e�ect on the

results of SIR since those observations are only used to construct the slices (cf. Li, 1991).

How does the above contamination change the estimation of the edr directions? The follow-

ing theorem gives an answer. In order to measure the success of the estimation, we look at

the canonical correlations between �

0

1

x; . . . ;�

0

K

x on the one hand and

b

�

0

1;t

x; . . . ;

b

�

0

K;t

x on

the other hand, where

b

�

1;t

; . . . ;

b

�

K;t

are estimated with the corresponding corrupted sample

for each t > 0. For the concept of canonical correlations see Kshirsagar (1972). Here, they

are denoted by %

1;t

� � � � � %

K;t

where the index t expresses the dependence on the cor-

rupted sample. Moreover, let B = [�

1

; . . . ;�

K

] and let

b

B

t

= [

b

�

1;t

; . . . ;

b

�

K;t

] be the matrix

consisting of the estimated edr directions as column vectors.

Theorem 2.1 Let � = ��

1

, x

�

1

=

P

n

1

i=2

x

i

=(n

1

� 1) and x

�

=

P

n

i=2

x

i

=(n� 1). If there is

no c 2 IR with x

�

�x

�

1

= c� and if there exist " > 0 and an unbounded and strictly increasing

sequence ft

m

g

m2IN

in IR with det(

b

B

0

t

m

b

B

t

m

) � " for all m 2 IN, then lim

m!1

%

2

K;t

m

= 0.

The Theorem tells us that under some mild conditions the smallest canonical correlation

between the true and the estimated edr directions tends to zero if there is only one bad

point in the sample which is pulled away into the direction ��

1

. Consequently, one `large'

outlier can make it impossible to estimate all K edr directions reliably. The proof of this

Theorem is given in the Appendix.

A result similar to Theorem 2.1 can be derived when � is known and is not estimated from

the data:

Theorem 2.2 For known covariance matrix �,

lim

t!1

b

�

1;t

=

�

�1

�

p

�

0

�

�1

�

and lim

t!1

b

�

1;t

=1; (2:1)

and if �

0

�

k

= 0, k = 1; . . . ; K, then it holds that lim

t!1

%

2

K;t

= 0.
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The Theorem shows that the �rst estimated edr direction is extremely inuenced by only

one bad point which is pulled away into the direction of �.

In the same sense as above, this demonstrates the sensitivity of SIR to one `large' outlier.

The remarkable di�erence to the case of unknown � lies in the choice of �. Contrary

to the situation in Theorem 2.1, � is orthogonal to the true edr directions in Theorem

2.2. This di�erence is due to the fact that in the situation of unknown �, the estimate

of � (the sample covariance matrix) breaks down when one observation is pulled away to

in�nity. Especially, from (5.3) it follows that the appropriately oriented eigenvector of

b

�

t

corresponding to the largest eigenvalue tends to �, the eigenvalue itself tends to in�nity.

As a consequence, � is an eigenvector of lim

t!1

b

�

�1

t

corresponding to the smallest possible

eigenvalue 0. It follows that with increasing t all estimated edr directions corresponding to

positive eigenvalues become orthogonal to �.

3 Generalized SIR

It is obvious from the preceding section, that the sensitivity of SIR to outliers is due to the

fact that nonrobust estimators are used. Therefore, we propose to maintain the clever esti-

mation scheme of SIR but to replace all nonrobust estimators by alternatives with desirable

theoretical properties but keeping the method feasible. Thus, we use a location estimator T

1

and a positive de�nite estimator C

1

of scatter in the standardization step of the estimation

procedure. Moreover, a location estimator T

2

and a positive semide�nite estimator C

2

of

scatter are used in the steps 3. and 4. respectively. Here, C

2

is applied to a set M contain-

ing the estimated locations T

2

(slice h) from step 3., each with suitably chosen multiplicity

w

h

,h = 1; . . . ; H. We call this procedure Generalized SIR (GSIR). Given a sample (x; y)

n

of n observations of (x; y) we denote the covariance estimator computed in the fourth step

of GSIR by GSIR((x; y)

n

).
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3.1 AÆne Equivariance of GSIR

The property of aÆne equivariance is of course a desirable property of multivariate statistical

procedures. For GSIR this is de�ned as follows.

De�nition 3.1 A GSIR procedure is aÆne equivariant if for each nonsingular matrix A 2

IR

d�d

, for each v 2 IR

d

, for each a 2 IR, a 6= 0, for each b 2 IR and for each sample (x; y)

n

:

If
b
�

i

is an eigenvector of GSIR((x; y)

n

) with corresponding eigenvalue

b

�

i

, then

C

1=2

1;n

(Ax

n

+ v)(A

0

)

�1

C

�1=2

1;n

(x

n

)
b
�

i

(3:1)

is an eigenvector of GSIR((Ax+v; ay+b)

n

) with corresponding eigenvalue

b

�

i

, i = 1; . . . ; d.

It is not necessary that the estimators T

1

; C

1

; T

2

; C

2

are all aÆne equivariant in order to get

a GSIR procedure with this property.

Lemma 3.2 A GSIR procedure is aÆne equivariant, if C

1

is aÆne equivariant, if T

2

and

C

2

are orthogonal equivariant and if

n

h

= n

H�h+1

and w

h

= w

H�h+1

; h = 1; . . . ; bH=2c; (3:2)

where bxc denotes the largest integer smaller than or equal to x 2 IR.

Proof: First note that because of (3.2) the slices remain unaltered regardless of the values

of a and b.

Now let (z)

n

and (
~
z)

n

be the standardized samples belonging to (x)

n

and (Ax + v)

n

,

respectively. Since C

1

is aÆne equivariant we �nd (
~
z)

n

= P (z)

n

+ u, where P

0

P = I

d

.

Consequently, only orthogonal equivariance of T

2

and C

2

is required to achieve the aÆne

eqivariance of the GSIR procedure. 2

One easily sees that the choice of T

1

does not inuence the results of the estimation scheme

such that, apart from numerical considerations, T

1

can be chosen arbitrarily.

3.2 The �nite-sample breakdown point

In order to compare di�erent GSIR procedures with respect to their robustness properties we

need some appropriate criteria. One worst-case performance measure which is used in many
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di�erent situations like estimation of (multivariate) location and scatter or regression is the

�nite-sample breakdown point, cf. Donoho and Huber (1983). We transfer this criterion to

the situation of a GSIR procedure, where we want to capture the breakdown behavior with

respect to outliers (but not with respect to small changes in the data).

As the estimates of the edr directions are mainly determined by the covariance estimate

GSIR((x; y)

n

), it is near at hand to consider the possible explosion of the largest and the

implosion of the smallest eigenvalue of this matrix in order to de�ne the breakdown of GSIR.

In this way one would use the usual de�nition of breakdown of a covariance estimator (cf.

Lopuha�a and Rousseeuw, 1991). But this de�nition is not suitable here. Just note the fact

that in high{dimensional situations one may want to choose a number H of slices which is

smaller than the dimension d of the explanatory variable. This could be crucial since the

dimension K of the edr space is assumed to be small (K � d). But then the covariance

estimate GSIR((x; y)

n

) is based upon a maximum of H di�erent points in a d-dimensional

space such that the smallest eigenvalue of this matrix should become zero in this case.

Consequently, the implosion of the smallest eigenvalue of GSIR((x; y)

n

) is not a useful

indicator of breakdown here.

Also, the problem cannot be solved by looking only at the largest eigenvalue. Consider the

situation of Section 2 and note that

b

V = SIR((x; y)

n

) = I

d

�

H

X

h=1

b

�

�1=2

 

1

n

X

i:y

i

2I

h

(x

i

� x

h

)(x

i

� x

h

)

0

!

b

�

�1=2

for each sample (x; y)

n

. It follows that the eigenvalues of SIR((x; y)

n

) are bounded in [0; 1]

which is also true for every corrupted sample. On the other hand, Theorems 2.1 and 2.2 show

the extreme sensitivity of SIR to outliers. Consequently, it is not possible to characterize

the breakdown of GSIR by just looking at the largest eigenvalue of GSIR((x; y)

n

). We

therefore suggest the following de�nition.

De�nition 3.3 A corrupted sample (x; y)

n;m

is constructed from (x; y)

n

by replacing m ob-

servations of (x; y)

n

by arbitrary points (
~
x

i

; ~y

i

) 2 IR

d+1

, i = 1; . . . ; m. Let "

?

1

:= "

?

1

((x)

n

; C

1

)
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be the �nite-sample breakdown point of C

1

. De�ne "

?

2;+

:= "

?

2;+

((x; y)

n

; C

1

; T

2

; C

2

; H; ~n; ~w)

:= min

1�m�n

(

m

n

: sup

(x;y)

n;m

j�

1

(GSIR((x; y)

n;m

))� �

1

(GSIR((x; y)

n

))j =1

)

and "

?

2;�

:= "

?

2;�

((x; y)

n

; C

1

; T

2

; C

2

; H; ~n; ~w)

:= min

1�m�n

(

m

n

: sup

(x;y)

n;m

�

�

�

�

1

�

1

(GSIR((x; y)

n;m

))

�

1

�

1

(GSIR((x; y)

n

))

�

�

�

�

=1

)

:

The �nite-sample breakdown point of GSIR is de�ned as

"

?

((x; y)

n

; C

1

; T

2

; C

2

; H; ~n; ~w) := min

�

"

?

1

; "

?

2;+

; "

?

2;�

	

:

We give some comments on this de�nition:

Remark 3.4 1. The estimator C

1

is used for standardization of the data in the �rst step

of GSIR and for retransformation of the estimated directions in the last step. If for a

sequence ((x)

n;m;k

)

k2IN

of corrupted samples the largest eigenvalue of C

1

((x)

n;m;k

) tends to

in�nity or if the smallest eigenvalue tends to zero, then for every vector u 2 IR

d

, kuk = 1,

the transformed vector C

�1=2

1

((x)

n;m;k

)u must be contained in a true subspace of IR

d

. This

means that in case of a breakdown of C

1

the associated GSIR procedure can only estimate

directions from a true subspace of IR

d

as edr directions. This is a crucial point if the edr

directions are not contained in this subspace which is something we do not know. Theorem

2.1 can be seen as a special case of this fact, showing that the estimated edr directions for

a sequence of corrupted samples are �nally contained in the orthogonal complement of the

space spanned by the direction of corruption.

2. As a second indicator of breakdown of a GSIR procedure the largest eigenvalue of the

covariance estimate used in the fourth step is considered. If there is no breakdown of C

1

then this eigenvalue can yield a breakdown of a GSIR procedure, for example by becoming

arbitrarily large for corrupted samples (consider again Theorem 2.2 for SIR with known

covariance matrix �).

3. Moreover, we speak of a breakdown of a GSIR procedure if the largest eigenvalue can be

brought arbitrarily close to zero by corruption of a sample. In such a situation all eigenvalues

9



tend to zero which implies that the covariance matrices estimated in step 4 of GSIR tend

to the zero matrix. In this situation, a sensible estimation of the edr directions is no longer

possible.

4. A stronger and rather natural de�nition of breakdown of GSIR could consider not only the

eigenvalues mentioned above but the estimated edr directions themselves. One might then

speak of a breakdown of GSIR only in situations for which the smallest canonical correlation

between �

0

1

x; . . . ;�

0

K

x and

b

�

0

1

x; . . . ;

b

�

0

K

x can become zero by the corruption of a given

sample. But this nice looking condition would be almost impossible to verify. For example,

consider the situation that the Kth and the (K + 1)th eigenvalue of GSIR((x; y)

n

) are

almost equal, the corresponding eigenvectors
b
�

K

= u;
b
�

K+1

= v being orthogonal (� = I

d

known). Then it is possible that small changes of only a few data points alter the results

in such a way that vectors very close to v and u are eigenvectors to the Kth and to the

(K + 1)th largest eigenvalue respectively. Hence, small uctuations in the data could have

this dramatic e�ect on the results, being very diÆcult to analyse. Moreover, we concentrate

here on gross errors which means that we want to provide GSIR procedures which are able

to produce still good estimates of the edr directions in situations where some data points are

outliers w.r.t. the assumed distribution of x (cf. Davies and Gather, 1993).

4 A speci�c GSIR procedure: DAME

In this section, we investigate the robustness properties of a special aÆne equivariant GSIR

procedure. Our choice of robust estimators in the di�erent steps of the estimation scheme

is as follows:

For the standardization step one takes an aÆne equivariant covariance estimator C

1

which

ful�lls two conditions: From a theoretical point of view, the estimator should possess a

high �nite-sample breakdown point, and from a practical point of view, it must be able

to work successfully with high{dimensional data. With respect to these restrictions we

use an S-estimator of scatter as de�ned in Lopuha�a (1989) where the translated biweight

function as de�ned by Rocke (1993) is used as �-function in order to achieve an improved

10



performance in high{dimensional situations, e.g. in comparison with the ordinary biweight

function. The translated biweight function possesses two parameters which are chosen in

such a way that the S-estimator achieves the maximal possible �nite-sample breakdown

point and an asymptotic rejection probability of .01 (Rocke, 1993).

The choice of robust estimators T

2

and C

2

in the next steps is facilitated on the one hand

by the fact that orthogonal equivariant estimators can be used. But on the other hand one

has to keep in mind that the observations are partitioned into the di�erent slices. If the

number H of slices is large, we might have only very few observations in some slices. But

also, we have few slices if each slice has to contain a large number of observations. Hence,

we have to deal with the problem that either the location estimator T

2

has to be applied

to only a few observations, or that the covariance estimator C

2

is based on a few di�erent

points in a high{dimensional space.

For T

2

, we choose the L

1

-median which combines the following advantages which are im-

portant here: The L

1

-median is an orthogonal equivariant location estimator with max-

imal possible �nite-sample breakdown point in this class of estimators (cf. Lopuha�a and

Rousseeuw, 1991) and there exist algorithms to compute this estimator, e.g. Bedall and

Zimmermann (1979). Moreover, in this step of the estimation scheme it is suÆcient to get

a coarse estimate of the inverse regression curve such that it seems justi�able to use the

L

1

-median. As an alternative the orthomedian proposed by Gr�ubel (1996) can be applied.

Other generalizations of the univariate median to the multivariate case are discussed by

Small (1990), in work on data depth (Liu, 1990) and on the bagplot (Rousseeuw and Ruts,

1997).

Based upon the projection pursuit principle, Li and Chen (1985) propose a robust estimation

method for principal components. For a sample x

1

; . . . ;x

n

in IR

d

the �rst principal compo-

nent is de�ned as a direction a

1

2 S(d) = fa 2 IR

d

: a

0

a = 1g for which a robust univariate

scale estimator applied to the projected sample a

0

x

1

; . . . ;a

0

x

n

becomes maximal. The cor-

responding �rst eigenvalue is computed by applying the scale estimator to the projected

sample a

0

1

x

1

; . . . ;a

0

1

x

n

. In order to �nd the second principal component only directions

orthogonal to a

1

are considered for the maximization problem. Continuing in this way, one

11



�nally gets all principal components and a corresponding covariance estimator. We use this

estimation procedure here for C

2

for several reasons: First of all it reects the intention of

SIR. In order to get estimates of the edr directions in model 1.1 one is interested in �nding

the directions in which the estimated inverse regression curve shows the greatest variability.

This is exactly what the described projection pursuit estimator does. Furthermore, the

procedure can be applied even when there is only a small number of observations. This is

no problem, because the method is based upon a univariate scale estimator which has to be

applied to projections of the data. As described above, this is an important feature here,

since the number of slices can be small compared to the dimension d.

Finally, a univariate scale estimator has to be chosen. We use a modi�cation of an estimator

proposed by Rousseeuw and Croux (1993) as an alternative to the MAD. This modi�cation

showed up best results also in our simulations. For a univariate sample u

1

; . . . ; u

n

this

estimator is de�ned by

RCQ

�

(u

1

; . . . ; u

n

) := fju

i

� u

j

j : 1 � i < j � ng

(k)

with k = (bn�c + 1)bn�c=2, � 2 [0:5; 1), which means that the k-th order statistic of the

absolute di�erences ju

i

� u

j

j, 1 � i < j � n, is determined.

Now we are able to state some results concerning the �nite-sample breakdown point of

this special GSIR procedure which we call DAME (Dimension Adjustment Method). We

concentrate here on the practically relevant case that slices of equal sizes are used, i.e.

n

1

= � � � = n

H

=: n

S

. Therefore, we use the weights w

1

= � � � = w

H

= 1. The following

conditions concerning the sample (x; y)

n

are needed:

(R1) For each partition of the observations of (x)

n

into the slices and for each standardization

of these observations according to x 7! Ax with A 2 IR

d�d

, A positive de�nite, �

d

(A) � �

0

for a �xed �

0

> 0, there exists d

0

> 0 with k
c
m

h

1

�
c
m

h

2

k � d

0

for all h

1

; h

2

2 f1; . . . ; Hg

with h

1

6= h

2

, where
c
m

h

denotes T

2

applied to the standardized observations in the h-th

slice.

(R2) There exists d

0

> 0, such that for each partition of the observations of (x)

n

into the

slices it holds that k
c
m

h

1

�
c
m

h

2

k � d

0

for all h

1

; h

2

2 f1; . . . ; Hg with h

1

6= h

2

.
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This condition is similar to the assumption that a sample is in general position which is

often claimed in multivariate robust framework.

Theorem 4.1 Let (x; y)

n

be a sample with (x)

n

in general position and with � unknown.

1. Let b(n

S

+ 1)=2c � dH(1� �)e < b(n� d+ 1)=2c, then

"

?

2;+

((x; y)

n

; DAME) =

dH(1� �)e

Hn

S

�

n

S

+ 1

2

�

:

2. Let (bH�c+ 1)b(n

S

+ 1)=2c < b(n� d+ 1)=2c. For n

S

� 3 and under Condition (R1):

bH�c

Hn

S

� "

?

2;�

((x; y)

n

; DAME) �

bH�c+ 1

Hn

S

�

n

S

+ 1

2

�

:

3. Let bH�c < b(n� d+ 1)=2c. For n

S

= 2 and under Condition (R2) we have

"

?

2;�

((x; y)

n

; DAME) =

bH�c

2H

:

The proof is given in the Appendix.

Theorem 4.1 shows that DAME possesses good breakdown point properties compared with

SIR. The parameter � allows for a certain exibility in adjusting the procedure to di�erent

outlier situations. This is due to the fact that resistance against explosion of the largest and

against implosion of the smallest eigenvalue seem to be somewhat contradicting aims. This

becomes clear if one compares the explosion breakdown point in 1. and the lower bound for

the implosion breakdown point in 2. with respect to the choice of �. The simulations in

the next section show that and how DAME works and how it compares with SIR in some

typical outlier situations.

Of course, besides looking at breakdown properties, one should also consider other robust-

ness properties. For example, the bias of GSIR under outlier situations should be taken into

account as well, because it is well known that a bounded bias under outliers and eÆciency

are contradictory aims. Another problem lies in determining the dimension K of the edr

space. In this paper, we assume that K is known, but in practical situations K has to be

estimated in a possibly robust way, too, taking into account the possibility of outliers in the

data. Some research is done in this direction currently.

13



5 Simulations

In order to investigate the performance of DAME, we have conducted a simulation study.

Some of the results are shown here.

An important aspect concerning the application of robust procedures is the availability of

algorithms to compute the estimates. For the above DAME procedure, algorithms for the

various steps of the procedure have to be chosen.

For the computation of the S-estimator in the �rst step of DAME we use the hybrid algorithm

as described by Rocke and Woodru� (1996). This algorithm is based upon partitioning the

data into cells. Within each cell MCD-estimates are computed and are used as starting

points for an iterative computation of the desired estimates. Rocke and Woodru� (1996)

demonstrate that partitioning the data leads to improved estimates especially in high{

dimensional situations.

In order to compute the L

1

-median in the third step of DAME, the well-known algorithm

of Bedall and Zimmermann (1979) is applied.

Finally, for the projection pursuit estimator in the fourth step of DAME an algorithm

proposed by Croux and Ruiz-Gazen (1996) is used. This algorithm limits the search for

the k-th principal component to some speci�c directions which are chosen depending on the

data points and the k� 1 principal components which have already been found. Of course,

the original optimization problem is not solved exactly in this way, but the algorithm is

easy to implement and it seems that the results are suÆciently precise. In our study we use

RCQ

0:5

as well as the MAD as univariate scale estimators.

We restrict to two models here:

y = x

1

+ 0:1 � " (5.1)

y =

x

1

0:5 +

p

1:5 + x

2

+ 0:1 � " (5.2)

The �rst model corresponds to the situation K = 1 with �

1

= (1; 0; . . . ; 0)

T

, in the second

model we have K = 2 and �

1

= (1; 0; . . . ; 0)

T

and �

2

= (0; 1; 0; . . . ; 0)

T

.

We generate n = 300 data points. The dimension d equals 10; x

1

; . . . ; x

10

and " are i.i.d.

random variables from a standard normal distribution. We contaminate the samples by

14



adding 2

q

�

2

d;:999

� �

1

to 30 randomly chosen data points, which means that 10% of the

observations in our samples are contaminated with large outliers (also see Rocke, 1993).

For the numbers of slices we use H = 5; 10; 30; 60.

The results are reported, using as performance criterion the absolute value jcorr(�

T

1

x;

b

�

T

1

x)j

of the correlation between �

T

1

x and the estimated variable

b

�

T

1

x for the �rst model. For the

two component model we use the canonical correlations between �

T

1

x;�

T

2

x and

b

�

T

1

x;

b

�

T

2

x.

This means that one looks at the angle between the model edr's and the estimated edr's.

The results of 500 replications are reported graphically using boxplots.

Figure 1 shows the results for the �rst model. For each value of H, three boxplots are

Figure 1: Simulation results for model 1: Boxplots of correlations between true and esti-

mated edr direction for SIR and two versions of DAME

shown. The �rst one presents the results for SIR, the second and the third boxplot show the

results for DAME using the MAD and RCQ

0:5

as univariate scale esimators in the fourth

step, respectively.

First of all, we observe that the results of SIR are rather bad in the simulated outlier

15



situations. Due to the outliers in the data, SIR is not able to give good estimates of the

edr direction �

1

. In contrast to this, DAME is more successful. Especially with the use of

RCQ

0:5

as univariate scale estimator in the fourth step we get good results.

For the second model, the results are very similar which is reected by �gure 2. Here, the

Figure 2: Simulation results for model 2: Boxplots of correlations between true and esti-

mated �rst and second edr directions, respectively, for SIR and two versions of DAME

�rst and the second boxplot show the results of SIR, the third and fourth boxplot represent

DAME using the MAD and the last two boxplots give the results for DAME using RCQ

0:5

.

We see that dimension reduction based upon classical SIR is not successful as only the �rst

canonical correlation achieves high values whereas the second canonical correlation gives

low values. The robust DAME procedures again show up better results. Moreover, the use

of RCQ

0:5

instead of the MAD seems to lead to improved results in most cases. Only for

H = 5 there seems to be a slight di�erence between the two methods.

Summing up it may be said that the e�ects of outliers on SIR are dramatic. The results

of this method can become totally unreliable if there are a few bad outliers in the data.
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Robusti�ed SIR-methods, such as DAME proposed above, can be used to overcome these

problems.
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Appendix: Proofs

Proof of Theorem 2.1

We �rst consider two Lemmas which are needed to prove Theorem 2.1.

The sample covariance matrix of the corrupted sample is given by

b

�

t

= S +

n� 1

n

2

t

2

�

t

�

0

t

; (5:3)

with S =

P

n

i=2

(x

i

� x

�

)(x

i

� x

�

)

0

=n, �

t

= � + (u� x

�

)=t and x

�

=

P

n

i=2

x

i

=(n� 1). We

use the fact that

b

�

t

is positive de�nite if S is positive de�nite. Then we have

lim

t!1

b

�

�1

t

= S

�1

�

S

�1

��

0

S

�1

�

0

S

�1

�

; lim

t!1

t

2

�

b

�

�1

t

�

t

=

n

2

S

�1

�

(n� 1)�

0

S

�1

�

: (5:4)

We now consider the limiting behavior of the matrix

e

V

t

de�ned as

e

V in (1.2), but for the

case of corrupted samples with t tending to in�nity. Using decomposition formulae (GriÆths

and Hill, 1985) we get

1

t

e

V

t

=

1

t

I

d

�

1

nt

b

�

�1

t

 

S

�

1

+

H

X

h=2

S

h

!

�

1

n

�

1�

1

n

1

�

�

t

b

�

�1

t

�

t

+

b

�

�1

t

(x

�

� x

�

1

)

�

�

�

t

+

x

�

� x

�

1

t

�

0

with S

�

1

=

P

n

1

i=2

(x

i

� x

�

1

)(x

i

� x

�

1

)

0

, S

h

=

P

i:y

i

2I

h

(x

i

� x

h

)(x

i

� x

h

)

0

.

Using (5.4), yields the following Lemma:
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Lemma 5.1 For positive de�nite S, we have that lim

t!1

e

V

t

=t =

e

V

�

with

e

V

�

=

1

n

�

1�

1

n

1

��

�

0

S

�1

(x

�

� x

�

1

)

�

0

S

�1

�

S

�1

� � S

�1

(x

�

� x

�

1

)

�

� �

0

; (5:5)

where x

�

1

=

P

n

1

i=2

x

i

=(n

1

� 1) and x

�

=

P

n

i=2

x

i

=(n� 1).

As the estimated edr directions are eigenvectors of

e

V

t

, we can use Lemma 5.1 to �nd results

about the limiting behavior of those directions. We need the following Lemma, the proof of

which is omitted here.

Lemma 5.2 For each t > 0 let M

t

2 IR

d�d

be a matrix with only real eigenvalues, and v

t

,

kv

t

k = 1, an eigenvector of M

t

with corresponding eigenvalue �

t

. If lim

t!1

M

t

= u

1

� u

0

2

,

u

1

;u

2

2 IR

d

, u

1

;u

2

6= 0, u

0

2

u

1

= 0 then lim

t!1

(u

0

2

v

t

) = 0.

Note that the conditions of Lemma 5.2 are ful�lled for

e

V

t

and

e

V

�

. The matrix

e

V

�

possesses

the structure

e

V

�

= u

1

u

0

2

with u

0

1

u

2

= 0 and u

2

= � which is the direction of contamination.

We now can prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality we assume �

0

i

��

j

= Æ

ij

, i; j = 1; . . . ; K.

Note that

e

V

�

possesses the structure used in Lemma 5.2 with u

2

= � and

u

1

=

1

n

�

1�

1

n

1

��

�

0

S

�1

(x

�

� x

�

1

)

�

0

S

�1

�

S

�1

� � S

�1

(x

�

� x

�

1

)

�

and u

0

2

u

1

= 0. Moreover we have u

1

6= 0, since x

�

� x

�

1

is not a scalar multiple of �.

Using the additional assumptions, it follows that there exist b

0

> 0 and b

1

< 1 with

b

0

� k

b

�

i;t

m

k

2

� b

1

, i = 1; . . . ; K, m 2 IN.

Analogously we �nd that there exist an upper bound l

1

< 1 and a lower bound l

d

> 0

for the eigenvalues of

b

B

0

t

m

�

b

B

t

m

, m 2 IN, such that

b

B

0

t

m

�

b

B

t

m

is positive de�nite for each

m 2 IN.

The estimated edr directions

b

�

i;t

, i = 1; . . . ; K, are eigenvectors of

e

V

t

and consequently of

e

V

t

=t for each t > 0 . Without loss of generality let

b

�

i;t

, i = 1; . . . ; K, be oriented in the

sense of Lemma 5.2. Since u

2

= � we have

lim

m!1

b

�

0

i;t

m

��

1

= lim

m!1

b

�

0

i;t

m

� = 0; i = 1; . . . ; K: (5:6)
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We now get %

2

1;t

m

; . . . ; %

2

K;t

m

as eigenvalues of

A

t

m

:=

�

B

0

�

b

B

t

m

��

b

B

0

t

m

�

b

B

t

m

�

�1

�

b

B

0

t

m

�B

�

;

since B

0

�B = I

K

. With e

1

= (1; 0; . . . ; 0)

0

we �nd

e

0

1

A

t

m

e

1

=

�

�

0

1

�

b

�

i;t

m

�

i=1;...;K

�

b

B

0

t

m

�

b

B

t

m

�

�1

�

b

�

0

i;t

m

��

1

�

i=1;...;K

:

Looking at (5.6), we have lim

m!1

e

0

1

A

t

m

e

1

= 0. This completes the proof since %

2

K;t

m

�

e

0

1

A

t

m

e

1

for all m 2 IN. 2

Proof of Theorem 4.1

Let r := maxfkx

1

k; . . . ; kx

n

kg. Without loss of generality let x = 0. Moreover let S

1

=

fx

1

; . . . ;x

n

1

g and S

h

= fx

n

1

+���+n

h�1

+1

; . . . ;x

n

1

+���+n

h

g, h = 2; . . . ; H, such that S

h

denotes

the set of points of (x)

n

which fall into the h-th slice.

We corrupt (x)

n

in the following manner: Let
~
u 2 IR

d

,
~
u

0

~
u = 1, and replace S

1

by S

t

1

1

with

t

1

2 IR and

S

t

1

1

=

�

x

1

; . . . ;x

bn

S

=2c

; t

1

~
u; t

1

~
u� (x

1

� t

1

~
u); . . . ; t

1

~
u� (x

bn

S

=2c

� t

1

~
u)

	

if n

S

is odd, and by

S

t

1

1

=

�

x

1

; . . . ;x

bn

S

=2c

; t

1

~
u� (x

1

� t

1

~
u); . . . ; t

1

~
u� (x

bn

S

=2c

� t

1

~
u)

	

if n

S

is even. The slices S

2

; . . . ; S

dH(1��)e

are corrupted in an analogous manner using

~
u in each case. For any choice t

1

; . . . ; t

dH(1��)e

2 IR we get a corrupted sample (x)

n;m

with m = dH(1 � �)eb(n

S

+ 1)=2c. Note that C

1

cannot break down in this situation.

Consequently, there exists a lower bound L

d

> 0 for the smallest eigenvalue of C

1

((x)

n;m

)

and for each corrupted sample (x)

n;m

.

The special structure of the contaminated sample and the fact that T

2

is orthogonal equivari-

ant imply that for the corrupted slices the application of T

2

yields t

h

u, h = 1; . . . ; dH(1��)e,

with u = C

�1=2

1

((x)

n;m

)
~
u. For the non-corrupted slices the application of T

2

yields a location

estimate
c
m

h

with k
c
m

h

k � R := rL

�1=2

d

, h = dH(1� �)e+ 1; . . . ; H.

We now choose T > 0 and t

h

= (R + 2hT )=kuk, h = 1; . . . ; dH(1� �)e.
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For the fourth step of the DAME procedure we look at the projection of the location

estimates delivered in the third step onto the direction u=kuk. We get u

0

t

h

u=kuk = R +

2hT , h = 1; . . . ; dH(1 � �)e, and u

0

c
m

h

=kuk 2 [�R;R], h = dH(1 � �)e + 1; . . . ; H.

Hence, a number of bH�c(bH�c � 1)=2 < bH�c(bH�c+ 1)=2 absolute di�erences between

points of the projected sample are smaller or equal to 2R, the other di�erences are all

larger than T . Therefore the scale estimator RCQ

�

yields a value larger than T , too.

Looking at the de�nition of the projection pursuit estimator C

2

, we see that the largest

eigenvalue of this estimator exceeds T

2

. Therefore, it can be made arbitrarily large by

choosing T appropriately. This shows that dH(1��)eb(n

S

+1)=2c=n is an upper bound for

the breakdown point "

?

2;+

.

Now consider the situation that without loss of generality the location estimates
c
m

1

; . . . ;

c
m

bH�c+1

remain bounded: k
c
m

h

k � L

0

, h = 1; . . . ; bH�c+1, L

0

> 0. Then for each u 2 IR

d

,

kuk = 1, we have

ju

0

c
m

h

1

� u

0

c
m

h

2

j � 2L

0

with h

1

; h

2

2 f1; . . . ; bH�c + 1g, h

1

6= h

2

. This means that bH�c(bH�c + 1)=2 absolute

di�erences between points of the projected sample are bounded by 2L

0

. With respect to

the de�nitions of RCQ

�

and the projection pursuit covariance estimator in the fourth step

of DAME, we see that the largest eigenvalue of the covariance estimator remains bounded.

It follows that this eigenvalue can explode only if dH(1 � �)e of the location estimates in

the third step can be made arbitrarily large. Since the L

1

-median is used as a location

estimator, this means that one has to corrupt a minimum of b(n

S

+ 1)=2c data points in

each of the corresponding dH(1� �)e slices, such that dH(1��)eb(n

S

+1)=2c=n is a lower

bound for the breakdown point "

?

2;+

, too. This completes the proof of the �rst part of the

theorem.

The remaining parts can be proved by similar considerations. 2
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