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Abstract

For the Michaelis-Menten model we determine designs which maximize the minimum of

the D-eÆciencies over a certain interval for the non-linear parameter. The best two point

designs can be found explicitly and a characterization is given, when these designs are

optimal within the class of all designs. In most cases of practical interest the determined

designs are highly eÆcient and robust with respect to misspeci�cation of the non-linear

parameter. The results are illustrated and applied in an example of hormone-receptor

assay.

Keywords and Phrases: Michaelis-Menten model, robust optimal design, local D-optimality,

receptor assay

1 Introduction

The rectangular hyperbola has been used to describe saturation functions for numerous physical

and biological phenomena [see Cressie and Keightley (1979), Johansen (1984), Beverton and
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Holt (1957), Cornish-Browden (1979), Hay, Meznarich, DiGiacomo, Hirst, Zerbe (1988)]. The

form encountered most often in biology is the familiarMichaelis-Menten enzyme kinetic function

y =

ax

b + x

; x 2 [0; x

0

] ;(1.1)

where y is the reaction velocity, a the maximum velocity of this reaction, x the concentration of

a substrate and b the half-saturation constant, the value of x; where y is half-maximal. Several

methods have been proposed in the literature to estimate the parameters a; b [see e.g. Bliss and

James (1966), Glick, Landman and Roufogalis (1979), Zivin and Waud (1982), Currie (1982)

or Raaijmakers (1987)]. Most of these are based on transformations of the equation (1.1) to a

linear plot and an application of ordinary linear regression techniques. Recently Raaijmaakers

(1987) gave some arguments in favor of the application of maximum likelihood techniques for

the estimation of the parameters in the Michaelis-Menten model.

The problem of designing experiments for the Michaelis-Menten model has also found consid-

erable attention in the literature [see e.g. Duggleby (1979), Dunn (1988), Boer, Rasch and

Hendrix (2000) or Dette and Wong (1999)]. However, optimal designs are diÆcult to imple-

ment in practice, because in non-linear models the (locally) optimal designs depend on the

unknown parameters [see Cherno� (1953) or Silvey (1980)] and usually are not robust with

respect to their misspeci�cation. For this reason, Song and Wong (1998) proposed Bayesian

optimal designs for the Michael-Menten model and studied some of their properties. In this

paper we study a di�erent approach, which is based on the minimax concept [see M�uller (1995),

Haines (1995), Dette (1997) or Imhof (2001)]. For the sake of transparency, we concentrate on

maximum likelihood estimation and the D-optimality criterion, which means that an (locally)

optimal design maximizes the determinant of the Fisher information matrix. Following Dette

(1997) we propose as an optimality criterion the maximization of the minimum D-eÆciency

(with respect to the locally D-optimal design) taken over a certain range for the parameters.

This criterion is motivated by the fact that in many cases the experimenter is able to specify

a certain range for the non-linear parameters [see e.g. Cressie and Keightley (1982)], but has

no preference for speci�c values, which would allow the speci�cation of a prior distribution

for a Bayesian approach. The optimality criterion is carefully de�ned in Section 2, which also

discusses a useful reparametrization of the model. In Section 3 we determine the standardized

maximin optimal two point designs and give an explicit characterization, when these designs

are optimal within the class of all designs. It is demonstrated that in most cases the optimal

designs are supported on two points and have equal masses at these points. Moreover, in the

cases where the standardized maximin optimal designs are supported at more than two points it

is indicated that the best two point designs are rather eÆcient. Section 4 contains a brief discus-

sion of designing experiments for the Michaelis-Menten model in the case of heteroscedasticity

and gives the (standardized) maximin designs in the case, where the variance is a quadratic

function of the mean [see Dunn (1988)]. Finally, some of the more technical arguments are

deferred to an appendix.
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2 Standardized maximin optimal designs

Recalling the de�nition of the model (1.1) we introduce a slightly di�erent parametrization,

that is

a = �x

0

; b = �x

0

;(2.1)

and assume that Y follows an exponential distribution with mean

E[Y j x] =

�x

0

x

�x

0

+ x

; x 2 [0; x

0

](2.2)

and constant variance. The Fisher information for the parameters (�; �) at a point x is then

given by

I(x; �; �) = x

2

0

(x=x

0

)

2

(� + x=x

0

)

2

 

1 �

�

�+x=x

0

�

�

�+x=x

0

�

2

(�+x=x

0

)

2

!

:(2.3)

A design is a probability measure � on the interval [0; x

0

] with �nite support, where the support

points correspond to the location of the observations and the weights give the relative propor-

tions of total observations to be taken at the corresponding points. The Fisher information

matrix of a design � is de�ned as

M(�; �; �) =

Z

x

0

0

I(x; �; �)d�(x);(2.4)

and a locally D-optimal design �

�

�;�

maximizes the determinant of the matrix M(�; �; �): Ob-

serving the structure of the Fisher information I(x; �; �) de�ned in (2.3) and the fact that we

are discussing the determinant criterion, it is easy to see that the factor � has no e�ect on the

maximization of the determinant jM(�; �; �)j, and we may assume without loss of generality

� = 1: For the sake of a transparent notation we introduce

M(�; �) =M(�; 1; �):

Similarly, it is easy to see that we can restrict ourselves to the case x

0

= 1 and that designs

on the general interval [0; x

0

] are simply obtained by rescaling the corresponding measures on

[0; 1] with the factor x

0

: For example the locally D-optimal design on the interval [0; 1] is given

by the measure

�

�

�

=

 

�

2�+1

1

1

2

1

2

!

(2.5)
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(here the �rst row represents the support points and the second row the corresponding weights)

and the locallyD-optimal design on the interval [0; x

0

] has equal masses at the points �x

0

=(2�+

1) and x

0

[see Rasch (1990)]. The value of the determinant of the locally D-optimal design can

easily be calculated as

jM(�

�

�

; �)j =

1

64�

2

(1 + �)

6

:(2.6)

Note that the optimal design depends sensitively on the unknown parameter � and some prior

knowledge regarding this parameter is necessary to implement this design in practice. However,

precise knowledge of this parameter is rarely available in practical problems and for this reason

locally optimal designs are not too widely used in applications. Nevertheless, in many situations

a certain range for the parameter � can be speci�ed by the experimenter [see for example

Cressie and Keightley (1981), p.237, where a speci�c range for the dissociation constant � for

the receptor-estradiol interaction is given] and a maximin approach might be appropriate which

maximizes the minimum of the determinants jM(�; �)j taken over a certain interval, say [�

0

; �

1

];

for the parameter � with respect to the choice of the design �: It was pointed out by Dette

(1997) in a more general context that the values of the determinants jM(�; �)j at di�erent points

� might be of rather di�erent size and for this reason not comparable. In fact it can be shown

by an application of H�older's inequality that jM(�; �)j is decreasing with increasing value of �

(independently of the design �) and consequently the design maximizing the minimum of the

determinants is in fact locally D-optimal for the smallest possible parameter �

0

, for which the

minimum is computed. Obviously this design is ineÆcient for large values in the interval [�

0

; �

1

].

A more reasonable criterion, which takes di�erent sizes of the determinants into account, is the

standardized maximin D-optimality criterion [see Dette (1997)]

�(�) = min

n

jM(�; �)j

sup

�

jM(�; �)j

�

�

�

� 2 [�

0

; �

1

]

o

(2.7)

= min

n

jM(�; �)j

jM(�

�

�

; �)j

�

�

�

� 2 [�

0

; �

1

]

o

:

This criterion seeks for a design maximizing the worst D-eÆciency

e�

�

(�) =

 

jM(�; �)j

jM(�

�

�

; �)j

!

1=2

(2.8)

over the interval [�

0

; �

1

]: Following Dette (1997) a design �

�

maximizing the criterion � in (2.6)

is called standardized maximin D-optimal design. The following result characterizes the design

�

�

and can be proved by standard methods [see e.g. Wong (1992) or Pukelsheim (1993)].
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Lemma 2.1. A design �

�

is standardized maximin D-optimal if and only if there exists a prior

� supported on the set

N (�

�

) = f� 2 [�

0

; �

1

] j �(�

�

) = [e�

�

(�

�

)]

2

g(2.9)

such that the inequality

Z

[�

0

;�

1

]

f

T

(x; �)M

�1

(�

�

; �)f(x; �)�(d�) � 2(2.10)

holds for all x 2 [0; 1]; where

f

T

(x; �) =

x

� + x

(1;�

1

� + x

):

Moreover, there is equality in (2.10) for all support points of the design �

�

:

Although Lemma 2.1 is attractive from a theoretical point of view, its practical impact is limited,

because it does not answer the question how to choose the prior � in (2.10). For this reason,

standardized maximin optimal designs have only been found in rare circumstances [see M�uller

(1995), or Imhof (2001)]. In all of these cases the authors concentrate on the optimization in

the subclass of minimum supported designs. To be precise, we call a design with k support

points standardized maximin D-optimal k-point design, if it maximizes the function � de�ned

in (2.7) in the class of all designs with at most k support points. Our main result of this section

gives the standardized maximin D-optimal two point design for the Michaelis-Menten model.

The proof is deferred to the appendix.

Theorem 2.2. The standardized maximin D-optimal two point design �

z

�

for the Michaelis-

Menten model on the interval [0; 1] has equal masses at the points 1 and

z

�

= z

�

(�

0

; �

1

) =

�

1

p

�

0

(1 + �

0

)� �

0

p

�

1

(1 + �

1

)

p

�

1

(1 + �

1

)�

p

�

0

(1 + �

0

)

:(2.11)

Moreover, for this design the set N (�

z

�

) de�ned in (2.9) is given by

N (�

z

�

) = f�

0

; �

1

g:

The question if and when the design �

z

�

coincides with the standardized maximin D-optimal

design within the class of all designs will be deferred to the following section. Roughly speaking

this statement is correct, whenever

�

0

�

1

�

7

36

;
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but the lower bound can be improved (decreased) with increasing value of �

1

: We will con-

clude this section with an example illustrating the transformation introduced in (2.1) and the

application of Theorem 2.2 for �nding the best two point designs.

Example 2.3. For the analysis of data from hormone-receptor assays the relation between the

response and explanatory variable is usually modelled by the Michaelis-Menten equation [see

Cressie and Keightley (1981)]. In the speci�c example considered by these authors the range

for the variable x is the interval [0; x

0

] = [0; 2000]: We consider three possible ranges for the

interval for the parameter b in the model (1.1), namely

B

A

= [100; 2000]

B

B

= [100; 1000](2.12)

B

C

= [100; 500]

Using the transformation (2.1) this gives for the �-scale the intervals [0:05; 1]; [0:05; 0:5] and

[0:05; 0:25]; respectively. The standardized maximin D-optimal two point designs are now

obtained from Theorem 2.2 and the transformation x! 2000 x; which gives

�

A

=

 

267:35 2000

1

2

1

2

!

(2.13)

�

B

=

 

223:78 2000

1

2

1

2

!

(2.14)

�

C

=

 

177:83 2000

1

2

1

2

!

:(2.15)

It follows from the proof of Theorem 2.2 in the Appendix that the worst D-eÆciency of the

standardized maximin D-optimal two point design is given by

min

�2[�

0

;�

1

]

e�(�

z

�

) =

4�

0

(1 + �

0

)z

�

(1� z

�

)

(z

�

+ �

0

)

2

= [u(z

�

; �

0

)]

1=2

:

Figures 1 - 3 show the D-eÆciencies (with respect to the locally D-optimal design �

�

�

) of the

designs �

A

; �

B

and �

C

given in (2.13) - (2.15). We observe that for a broad range of the

intervals B

A

; B

B

and B

C

the standardized maximin D-optimal two point design has at least

local D-eÆciency 80%. For example, if we used the design �

B

and the true parameter in the

model (1.1) would be b = 600, then the design �

B

has eÆciency 90% compared to the locally

D-optimal design, which assumes precise knowledge of b.
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500 1000 1500 2000
b

0.75

0.8

0.85

0.9

0.95

Figure 1: D-eÆciencies of the standardized maximin D-optimal two point design �

A

, where the

minimum is taken over the range [100; 2000]

200 400 600 800 1000
b

0.8

0.85

0.9

0.95

Figure 2: D-eÆciencies of the standardized maximin D-optimal two point design �

B

, where the

minimum is taken over the range [100; 1000]

200 300 400 500
b

0.88

0.9

0.92

0.94

0.96

0.98

Figure 3: D-eÆciencies of the standardized maximin D-optimal two point design �

C

, where the

minimum is taken over the range [100; 500]
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3 Global optimality and eÆciency considerations

The optimality of the determined best two point designs can be checked with the equivalence

theorem given in Lemma 2.1. The following result determines the prior �; which is the main

ingredient in Lemma 2.1. The proof is deferred to the appendix.

Lemma 3.1. Let �

z

�

denote the standardized maximin D-optimal two point design given in

Theorem 2.2, then N (�

z

�

) = f�

0

; �

1

g and the only prior on the set N (�

z

�

); for which the

checking condition (2.10) is eventually satis�ed, is the uniform distribution on N (�

z

�

).

Note that it is not guaranteed that the design �

z

�

of Theorem 2.2 and the uniform prior on

the set f�

0

; �

1

g satisfy the inequality (2.10), but the only prior for which this could be possible

is the uniform prior. Consequently, we can use Lemma 2.1 with the uniform prior in order to

check the optimality of the best two point design �

z

�

given in Theorem 2.2. A straightforward

calculation shows that the inequality (2.10) holds for all x 2 [0; 1]; if and only if the function

L(�

z

�

) =

2

max

x2[0;1]

R

�

1

�

0

f

T

(x; �)M

�1

(�

z

�

; �)f(x; �)�(d�)

(3.1)

satis�es the equation

L(�

z

�

) = 1:(3.2)

Moreover, it was shown by Dette (1996) that the function L proves a lower boundary for the

�-eÆciency of a design with respect to the standardized maximin optimality criterion de�ned

in (2.7), that is

e�

�

(�) =

�(�)

max

�

�(�)

� L(�)(3.3)

for all designs �: For the best two point design �

z

�

and the uniform prior we obtain by a

straightforward calculation that the inequality (2.10) is equivalent to

g(x; �

0

; �

1

) � 2 8 x 2 [0; 1] ;(3.4)

and the function L is given by

L(�

z

�

) =

2

max

x2[0;1]

g(x; �

0

; �

1

)

;(3.5)
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where the function g is de�ned by

g(x; �

0

; �

1

) =

1

X

i=0

(1 + �

i

)

4

(z

�

+ �

i

)

4

x

2

(z

�

)

2

(1� z

�

)

2

(x + �

i

)

2

�

(z

�

)

2

(z

�

+ �

i

)

4

+

1

(1 + �

i

)

4

�

2

x + �

i

�

(z

�

)

2

(z

�

+ �

i

)

3

+

1

(1 + �

i

)

3

�

+

1

(x + �

i

)

2

�

(z

�

)

2

(z

�

+ �

i

)

2

+

1

(1 + �

i

)

2

��

:(3.6)

Example 3.2. Recall the situation of Example 2.3. The condition (3.4) for the best two point

designs in (2.13) - (2.15) is illustrated in Figure 4, where the designs have been rescaled to

the interval [0; 1]: From the inequality (3.4) it follows that the design �

C

is the standardized

maximin D-optimal design in the class of all designs, and that this conclusion is not correct

for the designs �

A

and �

B

(see Figure 4). However, we obtain from (3.3) and (3.5) the lower

bounds 80.24% and 93.8% for the �-eÆciencies of the designs �

A

and �

B

; respectively. Thus

one cannot expect a too substantial improvement by determining the standardized maximin

D-optimal design in the class of all designs (note that L(�

z

�

) provides only a lower bound for

the �-eÆciency and the true �-eÆciency could be in fact substantially larger).

0.2 0.4 0.6 0.8 1

1.25

1.5

1.75

2

2.25

2.5

Figure 4: The function g de�ned in (3.6) for the designs �

A

(dotted line), �

B

(dashed line) and

�

C

. The design is standardized maximin D-optimal if and only if the curve stays below the line

x = 2. Twice the inverse of the maximal excess gives a lower bound for the �-eÆciency [see

inequality (3.3)]

For the following discussion we use a slightly di�erent parametrization of the interval [�

0

; �

1

]:
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Let c 2 (0; 1] be de�ned by

�

0

= c�

1

and consider the function

h(c; �

1

) = max

x2[0;1]

g(x; c�

1

; �

1

);

where the function g is given in (3.6). By Lemma 2.1 and the discussion preceding Example

3.2 it follows that the best two point design is in fact standardized maximin D-optimal within

the class of all measures if and only if h(c; �

1

) = 2: For example, for the choice c = 1; the

interval [�

0

; �

1

] collapses to the point �

1

and the standardized maximin D-optimality criterion

reduces to the localD-optimality criterion. We trivially obtain h(1; �

1

) = 2; because the locally

D-optimal design is in fact supported on two points. We are now interested in the bound

k(�

1

) = inff c 2 (0; 1] j h(u; �

1

) = 2 8 u � cg:

In other words k(�

1

) is the smallest number in the interval (0; 1]; such that for any value

c > k(�

1

) the best two point design of Theorem 2.2 is actually the standardized maximin

D-optimal design in the class of all models (where the minimum is taken over the interval

[c�

1

; �

1

]): Although an analytical derivation of this function seems to be intractable, our nu-

merical calculations show that it is in fact inverse linear. More precisely, our numerical results

indicate that k(�

1

) is determined by the relation

k(�

1

) =

1

4:14307231�

1

+ 5:14307231

:(3.7)

20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

Figure 5: The function k de�ned in (3.7) for �

1

2 (0; 100]

The function k is depicted in Figure 5 for a broad range of �

1

-values. Moreover, our numerical

study shows that for all values smaller than k(�

1

) the best two point design is not optimal

within the class of all designs. In other words:
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Remark 3.3. The standardized maximin D-optimal two point design given in Theorem 2.2 is

standardized maximin D-optimal within the class of all designs, if and only if

c =

�

0

�

1

� k(�

1

);

where the function k is de�ned in (3.7).

We �nally note that in the situation of Example 3.2 and Example 2.3 the constant c is given by

0.05, 0.1 and 0.2, corresponding to the intervals B

A

; B

B

and B

C

in (2.12) and the values for the

critical point k(�

1

) are k(1) = 0:10768, k(0:5) = 0:13860 and k(0:25) = 0:16184; respectively,

which con�rms the results given in Example 3.2.

4 A remark concerning heteroscedasticity

Several authors point out that many biological phenomena, where the Michaelis-Menten model

is used, exhibit heteroscedasticity [see e.g. Currie (1982) or Dunn (1988).] Usually it is assumed

that the conditional variance of Y in (2.2) is a function of the mean, i.e.

Var (Y j x) = v(g(x; a; b));(4.1)

where g(x; a; b) = a x=(b + x) denotes the conditional expectation of Y at x. Using results of

Atkinson and Cook (1995) it can be shown that the Fisher information at the point x in the

Michaelis-Menten model (1.1) with heteroscedastic structure (4.1) is given by

I

v

(x; a; b) =

g

2

(x; a; b)

a

2

0

B

@

1 �

a

b+x

�

a

b+x

a

2

(b+x)

2

1

C

A

n

1

v(g(x; a; b))

+

1

2

�

v

0

(g(x; a; b))

v(g(x; a; b))

�

2

o

(4.2)

and an analogous analysis as described in the homoscedastic case (v � 1) can be performed,

where the structure of the standardized maximin D-optimal design depends on the assumed

link function v. If

M

v

(�; a; b) =

Z

x

0

0

I

v

(�; a; b) d�(x)

denotes the information matrix of a design � on [0; x

0

] and

�

�

a;b

= argmax

�

jM

v

(�; a; b)j

11



is the locally D-optimal design, the standardized maximin D-optimal design maximizes

min

n

jM

v

(�; a; b)j

jM

v

(�

�

a;b

; a; b)j

�

�

�

(a; b) 2 A�B

o

;(4.3)

where A;B � R are given sets. For example Dunn (1988) postulated for receptor assays the

quadratic relation v(t) = t

2

, for which the solution of the optimization problem is particularly

simple.

Theorem 4.1. For any set A�B the standardized maximinD-optimal design for the Michaelis-

Menten model (1.1) with heteroscedastic structure

Var (Y j x) =

�

a x

b+ x

�

2

has equal masses at the points 0 and x

0

. Moreover, this design is locally D-optimal for all

parameter combinations of (a; b).

Example 4.2. It might be of interest to compare the optimal designs under the assumption

of homoscedasticity (v(t) � 1) and a quadratic link function (v(t) = t

2

). The standardized

maximin D-optimal two point designs under the assumption of homoscedasticity are given in

Example 2.3 and depend on the speci�ed range for the non-linear parameter b. If a quadratic

link function is assumed the optimal design does not depend on this range and has equal masses

at the points 0 and x

0

. This means that the structure of the design depends sensitively on the

assumed link function for the variance.

5 Appendix: proofs

Proof of Theorem 2.2: It is easy to check that the optimal weights of a two point design

must be equal [see e.g. Silvey (1980)]. If the support points are denoted by z

1

; z

2

2 [0; 1] we

obtain for the Fisher information matrix of a design �

z

1

;z

2

with equal weights at the points z

1

and z

2

M(�; �) =

1

2

2

X

i=1

0

B

@

z

2

i

(z

i

+�)

2

�

z

2

i

(z

i

+�)

3

�

z

2

i

(z

i

+�)

3

z

2

i

(z

i

+�)

4

1

C

A

;(5.1)

12



and a straightforward calculation gives for the determinant

jM(�; �)j =

1

4

z

2

1

z

2

2

(z

2

� z

1

)

2

(z

1

+ �)

4

(z

1

+ �)

4

:

Therefore the standardized maximin D-optimality criterion reduces to

�(�

z

1

;z

2

) = min

n

16�

2

(1 + �)

6

z

2

1

z

2

2

(z

2

� z

1

)

2

(z

1

+ �)

4

(z

2

+ �)

4

�

�

�

� 2 [�

0

; �

1

]

o

;(5.2)

where we have used the representation for the determinant of the locally D-optimal design in

(2.6). Now it is easy to see that �(�

z

1

;z

2

) � �(�

z

1

;1

) for all z

2

2 (z

1

; 1] and consequently 1 is a

support point of the best two point design. For �

z

= �

z;1

the criterion in (5.2) reduces to

�(�

z

) = minfu(z; �) j � 2 [�

0

; �

1

]g;(5.3)

where the function u is de�ned by

u(z; �) = 16�

2

(1 + �)

2

z

2

(1� z)

2

(z + �)

4

:(5.4)

Recalling the de�nition of the point z

�

in (2.11) we will prove below the following two assertions.

{ For any �xed z 2 (0; 1) the function � ! log u(z; �) is unimodal.

{ If �

z

�

maximizes the function � in the class of all two point designs then

u(z

�

; �

0

) = u(z

�

; �

1

):(5.5)

If these assertions have been established we obtain the representation

�(�

z

) = minfu(z; �

0

); u(z; �

1

)g(5.6)

for the criterion (5.3) from the unimodality of the function � ! log u(z; �), and (5.5) gives a

condition on the optimal design �

z

�

, which determines z

�

uniquely. Solving equation (5.5) with

respect to z

�

it follows by a straightforward calculation

z

�

= z

�

(�

0

; �

1

) =

�

1

p

�

0

(1 + �

0

)� �

0

p

�

1

(1 + �

1

)

p

�

1

(1 + �

1

)�

p

�

0

(1 + �

0

)

;(5.7)

which proves the assertion of Theorem 2.2. We complete the proof by showing the unimodality

of the function � ! log u(z; �) and the identity (5.5).

13



Proof of unimodality: This follows by a straightforward investigation of

@

@�

logu(z; �) =

1

�

+

1

1 + �

�

2

z + �

which has at most one zero for �xed z.

Proof of (5.5): Since the function � ! log u(z; �) has at most one maximum it follows that

the standardized maximin D-optimal two point design �

z

�

can be found by maximizing the

function �(�

z

) de�ned in (5.6) over the interval (0; 1): This maximization can be divided into

three separate steps, namely the maximization over the sets

M

<

:= fz 2 (0; 1) j u(z; �

0

) < u(z; �

1

)g

M

>

:= fz 2 (0; 1) j u(z; �

0

) > u(z; �

1

)g(5.8)

M

=

:= fz 2 (0; 1) j u(z; �

0

) = u(z; �

1

)g:

We will now demonstrate that the maximization over the �rst two sets yields a maximum at

the boundary, which proves the assertion of (5.5). To this end consider the �rst set M

<

; the

second case is treated exactly in the same way. A straightforward calculation shows

M

<

= (0; z

�

);

where the point z

�

is de�ned in (5.7). Because for z 2 M

<

we have �(�

z

) = u(z; �

0

) a

straightforward maximization of �(�

z

) over the set M

<

yields

~z =

�

0

1 + 2�

0

and u(~z; �

0

) = 1:

Now assume that ~z is in the set M

<

then we must have u(~z; �

0

) < u(~z; �

1

) and a tedious

calculation shows that this inequality is equivalent to (�

0

� �

1

)

2

< 0: This contradiction shows

that the maximum is not attained in the interior of the setM

<

and a similar argument for the

set M

>

establishes the assertion (5.5) completing the proof of Theorem 2.2.

2

Proof of Lemma 3.1: It follows from Theorem 2.2 that N (�

z

�

) = f�

0

; �

1

g: If a prior � puts

weights �

0

and �

1

= (1� �

0

) at the points �

0

and �

1

; respectively, then the inequality (2.10)

can be rewritten as (note that �

0

= 1� �

1

)

d(x; �

0

) =

1

X

i=0

�

i

f

T

(x; �

i

)M

�1

(�

�

; �

i

)f(x; �

i

) � 2:
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If �

z

�

is in fact the (global) standardized maximin D-optimal design we must have equality for

the support points of �

z

�

: The equalities d(1; �

0

) = d(z

�

; �

0

) = 2 hold for all �

0

2 (0; 1) and

therefore give no information regarding the weight. However at the point x = z

�

the function

d must have a local maximum, which yields the condition

@

@x

d(x; �

0

) j

x=z

�

= 0:(5.9)

Now a straightforward but very tedious calculation shows that this equation implies �

0

= 1=2;

which establishes the assertion of the Lemma.

2

Proof of Theorem 4.1: For v(t) = t

2

the Fisher information at the point x in (4.2) reduces

to

I(x; a; b) =

3

a

2

0

B

@

1 �

a

b+x

�

a

b+x

a

2

(b+x)

2

1

C

A

and it is easy to see that the best two point (locally) D-optimal design �

�

a;b

has equal masses

at the points 0 and x

0

with information matrix

M(�

�

a;b

; a; b) =

3

2a

2

0

B

@

2 � a (

1

b

+

1

b+x

0

)

�a (

1

b

+

1

b+x

0

) a

2

(

1

b

2

+

1

(b+x

0

)

2

)

1

C

A

:

It is now straightforward to prove that the inequality

tr

�

I(x; a; b)M

�1

(�

�

a;b

; a; b)

�

= 2

2 b x

0

x

2

+ x

2

0

x

2

+ b

2

x

2

+ b

2

(x

0

� x)

2

(b+ x)

2

x

2

0

� 2

holds for all x 2 [0; x

0

], which establishes the local D-optimality of the best two point design

within the class of all designs. Since this design does not depend on a and b the assertion of

Theorem 4.1 follows.
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