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Abstract

In mechanics it happens that some �xed in
uencing factors de-

termine the nature of a harmonic process. This can be modelled by

regression of the in
uencing factors on periodogram ordinates of the

relevant frequencies. Thereby the time-domain is bypassed, and static

models can be applied. Since it is known that periodogram ordinates

are (non-central) chi-squared distributed, when the noise process is

gaussian, it seems to be natural to tackle the problem with generalised

linear models. But in the case of harmonic processes the ordinates at

the relevant frequencies typically show large non-centrality parameters

and therefore a normal approximation may be an alternative.

Prior information about the error distribution, parameter esti-

mates and the link function is needed to construct an optimal ex-

perimental design for a generalised linear model. Therefore it is of

interest to assess the loss realised by using a normality assumption

in the construction of the experimental design. This possible loss is

investigated in a simulation study. The experimental design of the

simulation study itself is chosen to span a wide range of possible sit-

uations.

1 Introduction

This study was motivated by a project aimed at the modeling of the BTA-

deep-hole-drilling process. In the analysis of on-line measurements of the

�
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boring moment it turned out that the process is mainly dominated by several

eigen-frequencies. So it is of interest in which way in
uencing factors e�ect

these eigen-frequencies. The amplitudes of these eigen-frequencies change

during the process, because the damping e�ects in the system change with the

depth of the hole. To get a starting point for a further analysis of this process

the simpler question of the modeling of static in
uences on amplitudes is

considered. This is a necessary preliminary step to go on to the more complex

question of time-varying in
uences or time-variation in the response.

Looking at the periodogram ordinates as estimators of the amplitude of

frequencies in a harmonic process and then model the e�ect of in
uences on

these periodogram ordinates seems to be a natural way of dimension reduc-

tion in this problem. When looking at the distribution of the periodogram

ordinates of harmonic processes a normal approximation seemed to be quite

promising. If this approximation holds, it makes the use of known opti-

mal designs as a basis for designs for the models on periodogram ordinates

possible.

The paper is organised as follows: First the model is considered in some

detail, secondly the construction of the simulations to explore the goodness

of the normal approximation in a variety of settings is presented. Finally

results from this simulation are presented and conclusions for the next steps

are drawn and those next steps are outlined.

2 Models on Periodogram ordinates

As pointed out in the introduction the main focus of this work are harmonic

processes { or processes resulting in observed processes which resemble such

harmonic processes. So the basic model for the time series in this context is

the following:
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When applying the periodogram to this model the result is the following:
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where B 6= 0 is only true for frequencies near to one of the f

k

; k = 1; : : : ; K,

and j�j denotes the complex absolute value and F the �nite Fourier transform.
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Since F is a linear function F

"

is a normally distributed random variable and

thereby it is easily seen that the periodogram ordinates are non-central �

2

-

distributed. The amount of non-centrality is determined in this context by

the number of observations n in the series, the closeness to the relevant

frequencies f

k

, and the functions g

k

; k = 1; : : : ; K.

From this, one can derive that the expected value of the periodogram

ordinates at the relevant frequencies is

E(I

G

t

(~x)

(f)) = n(g

k

(~x)

2

+ 2�

2

"

) for f = f

k

; k = 1; : : : ; K: (iii)

This result uses mainly the fact that at the relevant frequencies the complex

Fourier transform reduces to its real part for the harmonic process. Addi-

tionally the second additive part is �

2

2

-distributed, which is the same as an

exponential distribution and so its expected value is 2�

2

"

.

Johnson et al. (1994) state several normal approximations of the non-

central �

2

-distribution. All of these approximations are dependent on the

value of the non-centrality parameter, which in this context depends on the

value of the functions g

k

; k = 1; : : : ; K and the number of observations. So

there is theoretical reason to use a normal approximation. The impact of

this approximation is tested in the simulation study.

Furthermore, to get an estimate of the amplitude functions g

k

it is neces-

sary to transform the periodogram ordinates I

G

t

(~x)

(f) in the following way:

r

I

G

t

(~x)

(f)� 2�

2

"

n

;

which is a transformation leading to a normal approximation.

2.1 Estimating the variance of " (�

2

"

)

When trying to construct an estimator for the functions g

k

(~x) ; k = 1; : : : ; K,

it is necessary to �nd an estimate of �

2

"

. If the frequencies are known, it is

possible to �t a harmonic process in those frequencies at di�erent values

of the input variables ~x and use the least squares residuals to estimate �

2

"

.

There are two reasons against this procedure:

On the one hand one needs to know the relevant frequencies, which might

not be the case, and on the other hand a very good estimate of the phase is

needed to get an unbiased estimate.

So there is the need for another procedure, which does not rely on known

relevant frequencies and is not as vulnerable to faulty presteps for its calcu-

lation.
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Taking the special properties into account, which a harmonic process

with a small number of relevant frequencies K compared to the number of

observations n in each time series measured at some value of ~x does possess,

the following procedure looks promising:

(1) Estimate the periodogram I

G

t

(~x

l

)

for all input values x

l

; l 2 1; : : : ; L

(2) Merge all I

G

t

(~x

l

)

(f) into one sample

(3) Calculate a robust estimator for the expected value of I

G

t

(~x

l

)

(f), e.g.

the standardized median (med

stand:

(X) =

1

log(2)

med(X), Gather and

Schultze (1999)) on the merged sample

Step 2 enlarges the data base for the robust estimate, because it is as-

sumed that the observations at the di�erent input values are independent

and the realisations of I

G

t

(~x

l

)

(f) for di�erent Fourier-frequencies are inde-

pendent due to the orthogonality relations of the Fourier transform (cp. e.g.

Bloom�eld (2000)). If K � n and

K+K

l

n

, with K

l

the number of frequencies

in
uenced by leakage, is lower than the breakdown point of the robust es-

timator, which equals

1

2

for the standardized median (Gather and Schultze,

1999), we get an estimator for 2�

2

"

.

Known frequencies

If the relevant frequencies are known, it suÆces to calculate the regres-

sions on periodogram ordinates of the corresponding Fourier-frequencies. If

f

k

are Fourier-frequencies themselves it suÆces to do the calculations only

at those frequencies. If they are not Fourier-frequencies the models should

be estimated based on the amplitudes at the nearest Fourier-frequencies.

Unknown frequencies

In the case of unknown frequencies the relevant frequencies have to be

estimated which can be done by using the estimate of 2�

2

"

to test for signi�-

cant frequencies in all time series from the experiments and then select those

frequencies present in all of them. This expects the relevant frequencies to

be present for all values of ~x.

Estimating the models

For the evaluation of the regression models one proceedes as follows:

(1) Divide the periodogram ordinates by n

(2) substract 2�

2

"

to eliminate the bias

(3) take the square root of the periodogram ordinate
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(4) calculate the regression.

3 Simulation

In this section the simulation to evaluate the properties of the model of

static in
uences on harmonic processes is described. The main goal was to

assess these properties in a wide variety of settings. This goal was reached by

constructing the simulation according to standard procedures in experimental

design.

3.1 Design Considerations

When looking at the harmonic model with in
uenced amplitude, the follow-

ing parameters determine this model:

{ The functions g

k

; k = 1; : : : ; K

{ The relevant frequencies f

k

; k = 1; : : : ; K

{ The phases �

k

; k = 1; : : : ; K

{ The error variance �

2

"

Of these parameters the phases are of no interest for the models on peri-

odogram ordinates. For the models on periodogram ordinates the following

properties are of interest:

{ The length of the observed series n

{ The number of relevant frequencies f

k

; k = 1; : : : ; K

{ The distance of the relevant frequencies to each other

{ Whether the frequencies are Fourier frequencies or not

{ The functions g

k

; k = 1; : : : ; K

{ The error variance �

2

"

The last two points are closely related, since they determine the signal-to-

noise ratio in this model. To keep things simple for the simulation the chosen

functions g

k

; k = 1; : : : ; K, are all equal:

g

k

(~x) := 2 + 3x

1

+ 4x

2

+ 0:001x

3
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All in
uencing variables x

1

; x

2

; x

3

are set to levels 0 and 1 in a 2

3

full factorial

design. Then the smallest signal is reached for x

1

= x

2

= x

3

= 0 and

therefore the signal-to-noise ratio SNR may be calculated by

SNR =

2

�

"

(iv)

For the lengths of the series powers of 2 are chosen to allow for real fast

fourier transforms. The number of frequencies is varied between 1 and 5,

the distance of the frequencies between 1 and 10 and for the signal-to-noise

ratio values between 1.11 and 101.11 are chosen. The choice of 1.11 for the

lower bound of the SNR is set to ensure that a signal is present although

not prominent in the series, the chosen transformation leads then to the up-

per bound (see below). The property \fourier frequency" or \non-fourier

frequency" is assured by selecting always as �rst frequency the fourier fre-

quency

5

n

and the next frequencies

5+Æ

f

(k�1)

n

and adding in the non-fourier

case an

1

p

2

. The underlying design is a sort of space-�lling design, a Co�ee-

House-design (M�uller, 2001), with 20 experiments constructed in a standard

hypercube [0; 1]

5

from which all variables are transformed to �t the require-

ments. The transformation functions are:

(1) For the number of frequencies: [10x] mod 5 + 1

(2) Fourier Frequencies yes/no ensured by additive factor:

[x]

p

2

(3) Distance of frequencies Æ

f

: [10x] mod 10 + 1

(4) Length of series n: 2

[10x]mod 7+6

(5) Signal-to-Noise ratio: x

3

� 100 + 1:11

[�] denotes the step function produced by rounding to the next integer. The

maximal length is dictated by the maximal available memory space of 512 MB

on the used computer. All calculations were done on an Athlon 700Mhz PC

running under Linux using the statistical package R (Ihaka and Gentleman,

1996).

3.2 Results

In the simulations it was found that in most cases the assumption of normal

distribution of the regression parameters can not be rejected at a 5% level in a

Shapiro-Wilk test (Shapiro et al., 1968), only 22 out of 368 estimated param-

eters showed a signi�cant non-normal behaviour in 100 repetitions according
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to this test. So only in 6% of the considered samples some non-normality was

found. At most two regression parameters were found to be distributed non-

normal. By checking the situations in which such rejections of the normality

assumption appeared, no recognizable pattern which parameter was a�ected

could be found. Common to the experiments with rejections of normality in

some parameters was that they had only a small number of observations, but

several relevant frequencies and a low SNR.

The proposed estimator for the error variance turned out to be generally

biased. The biasedness is dependent on the number of relevant frequencies

and the number of observations, as expected. It seems that the amount

of leakage is higher than presumed, even for only two relevant Fourier-

frequencies �

2

"

is overestimated, as can be seen in Figure 1. Nevertheless

the determination of relevant frequencies by using a signi�cance test based

on this estimate was found to be very eÆcient. In all situations at least all

relevant frequencies were found and the number of additionally considered

relevant frequencies was low. So the over-estimation allowed only very strong

leakage frequencies to appear relevant.
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Figure 1: Estimated �

2

"

and true value, depicted by vertical line.

Looking at the estimated parameter values, it turned out that they are

distributed around half the set value, which is correct, because the used
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design leads to the estimation of half-e�ects. Only a slight underestimation

of the parameters is observable, which is due to the overestimation of �

2

"

.

Figure 2 shows as example the results from an experiment with only one

relevant Fourier-frequence and the highest possible SNR. But at least the

signi�cance of the regression parameters is not heavily in
uenced by this

�nding, in all situations the parameter for variable x

3

was found insigni�cant.
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4 Conclusion

The simulation study showed that the usage of a normality approximation is

justi�ed in all situations, but dangerous when many relevant frequencies are

present and the number of observtions is low. Furthermore, the determina-

tion of the relevant frequencies by using the adjusted median as an estimate

for the error variance in the time series turned out to be very e�ective, al-

though it led in all situations to overestimation.

As consequence for the design of experiments for the discussed model it

can be stated, that the number of observations should be chosen as large as

possible. On the one hand this ensures that the relevant frequencies are near

to some of the fourier frequencies in the periodogram, on the other hand

it enlarges the non-centrality parameter in the non-central �

2

-distribution

and thereby improves the correctness of the normality approximation. Fur-

thermore, a large number of observations work against the overestimation of

�

2

"

.

The next question to tackle will be the impact of the usage of �lters in the

frequency domain on the models. In this way the estimates could possibly be

improved and also the approximations should become even more appropriate.

With the results of this simulation study it is now reasonable to ex-

plore the question of time-varying models on periodogram ordinates by using

the normal approximation and known results from repeated measurements.

Starting from these results the goal is to construct experimental designs for

these models.
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