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Abstract

In this paper we describe some general methods for constructing goodness of �t tests

in nonparametric regression models. Our main concern is the development of statisticial

methodology for the assessment (validation) of speci�c parametric modelsM as they arise

in various �elds of applications.

The fundamental idea which underlies all these methods is the investigation of certain

goodness of �t statistics (which may depend on the particular problem and may driven by

di�erent criteria) under the assumption that a speci�ed model (which has to be validated)

holds true as well as under a broad range of scenaria, where this assumption is violated.

This is motivated by the fact that outcomes of tests for the classical hypothesis: "The

modelM holds true" (and their associated p values) bear various methodological aws.

Hence, our suggestion is, always to accompany such a test by an analysis of the type II

error, which is in goodness of �t problems often the more serious one.

We will give a careful description of the methodological aspects, the required asymp-

totic theory, and illustrate the main principles in the problem of testing model assump-

tions such as a speci�c parametric form or homoscedasticity in nonparametric regression

models.

AMS Subject Classi�cation: Primary 62G05, Secondary 62G10, 62G30, 62G07

Keywords: Model check, validation of goodness of �t, L

2

-distance, neighborhood hypotheses,

p-values, nonparametric regression, test of homoscedasticity.
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1 Introduction

In this chapter some methodological concepts of goodness of �t tests will be discussed in

detail. We will introduce the concept of neighborhood hypotheses, a method which provides

evidence in favour of a model, instead of the abscence of evidence against a certain model

(as it is provided by classical goodness of �t tests). Our approach requires knowledge of the

(asymptotic) distribution of test statistics at all points in the (possibly in�nite dimensional)

model space and therefore di�ers from the usual model checks proposed in the literature. In the

subsequent chapters this methodolgy is applied and worked out in detail for various settings in

the nonparametric regression model.

1.1 What are the right hypotheses?

Without any doubt, one of the main problems of (asymptotic) statistical inference consists in

the assessment (at a controlled type I error rate �) of a signi�cant di�erence between several

populations. The null hypothesis H of equality is rejected only when the data strongly indicate

a departure from equality. This is justi�ed in many applications, namely when the error of

falsely rejecting equality is considered as the more serious error (type I) in contrast to accept-

ing H although being false (type II). During the past, it has been recognized in various �elds,

that there are, however, problems of inference where the type II error (with respect to the

classical null hypothesis) is considered as more serious. This has been recognized nowadays in

various �elds where inference statistics is applied, including medical and pharmaceutical statis-

tics (Altmann and Bland (1995), Chow and Liu (1992), Munk and Czado (1998)), chemistry

(Roy, 1997) or in environmental statistics (McBride, 1998).

In the following we would like to show that this holds true particularly for all kinds of goodness

of �t problems, where it has to be checked whether a speci�c statistical model M describes

the data structure appropriately. Although this has been noticed by various authors (at least

implicitely) at several places during the past, this has never been systematically taken into

account in the development of goodness of �t tests.

Curiously, Fisher's celebrated �

2

-goodness of �t test for testing equality of the cell frequencies

from a multinomial sample has already initiated an extensive discussion regarding the inter-

pretation of a test result as a measure of evidence in favour or against the null hypothesis;

i.e. the validity of the model of equal cell frequencies. Berkson (1938, 1942, 1943) gave several

arguments in a series of papers against Fisher's test (and the use of its associated P -value)

which may be summarized as follows:

1. Any consistent test will detect any arbitrary small departure from the null model M

with increasing sample size because in the physical world the hypothesis H :M is never

exactly valid (p. 526, 1938).

2. In principle any data set indicating evidence againstM could occur althoughM is correct,

hence the \believer" in the alternative should determine the decision (p. 531, 1938) \My

view is that there is never any valid reason for rejection of the null hypothesis except on

the willingness to embrace an alternative one".
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3. \What characteristic does the test �

2

-variable represent?" More general, which quantity

does the underlying test statistic summarize (p. 536, 1938)?

4. Combination of experiments may lead to a substantial di�erent conclusion than the single

experiments (p. 536, 1938).

5. Deviation from the model assumption in another direction as one expects may lead to

the rejection of the null model. In order to illustrate this, Berkson discusses an example

where the variability of the covariable seems to be responsible for the departure from a

straight line regression (p. 329, 1942).

6. Only because the sample size is too small the null model is not rejected (p. 332, 1942).

Summarizing his objections from a practitioners view point (p.242, 1943) Berkson wrote:

"Time and time again I came upon actual situations in which (1) it was patent to all

competent people who viewed the data, that the null hypothesis, on the evidence,

was not true but a small P did not result, (2) a small P did result, but it was

obvious to all who examined the data, that on the evidence the null hypothesis was

tested by several tests, each put forward with equally good authority, the P 's were

considerably di�erent."

In 1954 Hodges and Lehmann have rediscovered Berkson's arguments and suggested what we

will denote as \(precise) neighborhood hypotheses" in the following. These hypotheses require,

in accordance with argument 3. above, always a speci�cation of a measure of discrepancy

between the model M and the \true" unknown model M

0

: More speci�cally, Hodges and

Lehmann (1954) considered the quantity

�(p; p

0

) :=

r

X

i=1

!

i

(p

0

i

� p

i

)

2

(1.1)

(here the !

i

are �xed weights) where p = (p

1

; : : : ; p

r

) and p

0

= (p

0

1

; : : : ; p

0

r

) denote the hypo-

thetical and the true vector of cell frequencies, respectively. Consequently, they suggested the

hypothesis

inf

p

0

2S

�(p; p

0

) � c

where S denotes the \model surface" to be investigated. This leads to a �

2

-test statistic which

is di�erent from the usual �

2

-statistic, because the LS estimator has to be found under the

constraint

�(p; p

0

) = c;

and hence depends on c: Operationally, this results in a much more complicated test which might

be one reason why this "neighborhood"-methodology had no signi�cant impact on practical
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statistics over a long period (at least to our knowledge). This is highlighted by other testing

problems which require even more complicated procedures compared to the classical null as

demonstrated in Hodges and Lehmann (1954) by the construction of an unbiased test for the

problem of testing interval hypotheses for the mean of a normal random variables with unknown

variance (cf. Brown, Hwang and Munk (1997) or Munk (2001a) for the converse hypotheses).

The problems mentioned above encountered with classical nulls were pointed out again by

several authors during the last years in various areas where goodness of �t problems occur.

For example McKinnon (1992) discussed again objection 1 of Berkson for the particular case

of checking speci�c regression models with independent observations as well as under speci�c

dependency structures, as they occur in time series analysis. Recently Goutis and Robert (1998)

suggested neighborhood hypotheses with respect to the Kullback-Leibler distance for model

selection in generalized linear models. Nevertheless, goodness of �t problems were treated

throughout the very most part of the literature as testing the null hypothesis, that the null

model is true. In this manuscript we follow the idea of neighborhoods around the classical nulls

and their associated tests.

1.2 Neigborhood hypotheses in regression.

As mentioned before our approach relies on the speci�cation of a proper distance from the true

modelM

0

to the model spaceM, in accordance with Hodges and Lehmann's approach. In what

follows, we deal only with L

2

-distances, which has mainly mathematical reasons, motivated by

the inner product structure of L

2

: For example, in problems concerning the signal m (which

corresponds toM

0

) in a nonparametric regression setting we consider throughout the following

the minimal distance (or a variation of it)

M

2

(M

0

;M) = M

2

(m) := min

�2�

km� f

�

k

2

as a measure of discrepancy between m and the parametric model M = ff

�

g

�2�

: The hy-

potheses to be tested depend now sensitively on the sort of data analysis to be performed. For

example, when one would like to consider a priori M

0

as very likely

H

�

: M(m) � � versus K

�

: M(m) > �(1.2)

seems to be a proper formulation of the problem. Here � denotes the bound in which the

experimenter would denoteM as \scienti�cally not relevant" di�erent fromM

0

: Observe, that

this could even include � = 0, and hence the classical null m 2 M. Often, we are, however,

concerned with the converse problem K

�

versus H

�

; i.e. we would like to \validate" the model

M at a controlled error rate � within the bound �: For example, if prediction is the main

concern of the subsequent data analysis a misspeci�cation could have drastic consequences. In

contrast, if we commit a type I error of the classical null hypothesis, M holds true, this will

only result in a less eÆcient data analysis, in general (e.g. when a paramtric

p

n-consistent

estimator based on M will be replaced by a nonparemtric curve estimator).

One of the most diÆcult tasks with neighborhood hypotheses in any practical application is

certainly the speci�cation of the bound �, of the distance M and the speci�cation of the level
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� (why should one use in model testing 0:05?) Therefore, it might be appealing to use the

classical hypotheses because here these diÆculties do not occur. For example, the bound � is

canonically given as � = 0. We mention, however, that this does not mean that classical null

hypotheses (and their tests) do avoid these or similar problems, they just cover them (cf. again

Berkson's argument). One way out of these diÆculties could be to consider model selection

more as an explorative data analysis (EDA) sort of issue rather than a testing problem, which

also to our believe is most appropriate in many cases.

However, in many practical examples goodness of �t tests are performed and have their own

merits. Hence, our claim is, that in these cases any goodnes of �t test should be accompanied

by a proper analysis of level and power of its corresponding neighbourhood hypotheses. As

we will see this includes as a byproduct also the computation of con�dence intervals for the

discrepancyM , which should always be performed additionally for a valid assessment of a model

speci�cation. If such a con�dence interval has to be computed for a measure of discrepancy,

such as M , the asymptotic law under all alternatives, M > 0, is required and it is not suÆcient

to derive a limit law under the classical null. Hence, computationally con�dence intervals, and

tests for neighborhood hypotheses are not di�erent.

In the remaining part of the paper we illustrate a general approach to deal with the questions

raised in the last sections. Note that the answer to any of the problems indicated here requires

the (asymptotic) distribution of a test statistic at any �xed point in the space M: As pointed

out in Section 1.1 this usually results in a much more complicated analysis, which may be one

reason why these concepts have not found too much attention in practical statistics. However,

the methods proposed in this paper usually yield test statistics which are (asymptotically)

normal in all situations and consequently the analysis presented in the last sections is directly

applicable.

1.3 Two goodness of �t testing problems in regression models

Throughout this paper we consider the nonparametric regression model

Y = Y (t) = m(t) + �(t)";(1.3)

where m is an (unknown) regression function, " is a random error, �

2

the (unknown) variance

function and t is the predictor. For the sake of brevity we restrict ourselves to a one-dimensional

�xed predictor satisfying t 2 [0; 1]. Some extensions are briey mentioned in Section 2.7.

Among the many possible hypotheses about the regression model we illustrate our approach in

the problem of testing for a parametric form and in the problem of testing for homoscedasticity.

Parametric regression models are attractive among practioners because they describe in a con-

cise way the relation between the response Y and the predictor t and allow extrapolation in

many cases. However, misspeci�cation of such a model may lead to serious errors in the sub-

sequent data analysis, and in practice it is always advisable to test the goodness of �t of the

postulated model. For these reasons much e�ort has been devoted to the problem of testing for

a parametric form of the regression function. Early work dates back to the papers of Neyman

(1937) and von Neumann (1941, 1942) while more recent work can be found in the papers

of Bunke and Schmidt (1980), Bunke (1981), Neil and Johnson (1985), Cox, Whaba, Yandell
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(1988), Eubank and Spiegelmann (1990), Bierens (1990), Firth, Glosup and Hinkeley (1991),

Staniswalis and Severini (1991), Kozek (1991), Wooldridge (1992), Yatchew (1992), M�uller

(1992), McKinnon (1992), Hart and Wehrly (1992), Eubank and Hart (1992), Azzalini and

Bowman (1993), Brodeau (1993), H�ardle and Mammen (1993), Weirather (1993), Gonzalez-

Manteiga, Cao-Abad (1993), Eubank, Hart , La Riccia (1993), Gozalo (1993), Chen (1994),

Djojosugito (1994, 1995), Dieboldt (1995), Gonzalez-Manteiga and Vilar-Fernandez (1995),

Fan (1996), Kuchibhatta and Hart (1996), Jayashuriya (1996), Stute and Gonz�alez-Manteiga

(1996). . For a nice but not complete review of these results we refer to the monograph of Hart

(1997). A rather comprehensive summary is also given by Munk (2001b). More recent refer-

ences are Stute (1997), Zheng (1997), Dette and Munk (1998a,b), Stute, Gonzalez-Manteiga

and Presedo Quindimil (1998), Alcal�a, Christ�obal, Gonzalez-Manteiga (1999), Dette (1999,

2001), Dette, Munk and Wagner (2000), Biedermann and Dette (2000), Fan and Huang (2001),

Fan and Zhang (2001), Horrowitz and Spokoiny (2001). The various publications mainly di�er

with respect to the techniques, which are applied to deal with the problem of testing for a

parametric form of the regression (such as the use of empirical processes, order selection crite-

ria or nonparametric curve estimators). However, most of the results of these papers are only

applicable for the problem of testing the classical null hypothesis. H

0

: m 2 M and therefore

do not give answers to the questions raised in the introduction. In the following chapter we

will review some concepts introduced by Dette and Munk (1998a) which allow to deal with the

issues raised in Section 1.2 - 1.3. We present two interpretations of new classes of test statistics

which provide the opportunity to generalize our method in various directions. In the following

chapter these results are also applied for constructing tests of homoscedasticity. An application

of our approach in astrophysics can be found in Bissantz & Munk (2001).

To be concise, we consider for the moment the problem of testing for a linear regression model.

Assume that

M = fg

T

(t)�j� 2 �g

is a given family of functions, where � � R

d

is a proper parameter set and g = (g

1

; : : : ; g

d

)

T

are given linear independent regression functions. The classical hypothesis of a linear model is

H

0

: m 2 M :(1.4)

The simplest case appears with d = 1 and a constant function g

1

(t) � 1: Here the question is

whether the predictior t has an impact on the response Y or not. Similary, the popular linear

regression model

m(t) = a+ bt; t 2 R

can be obtained by chosing d = 2 g

1

(t) = 1 and g

2

(t) = t: Here we are interested in the problem

of checking if the mean of the response is a linear function of the predictor.

Similary to the problem of testing for a parametric form, the problem of detecting heteroscedas-

ticity in the model (1.3) is widely recognized because, if the requirement of homoscedasticity is

not met, the loss of eÆciency in using procedures for homoscedastic models may be substan-

tial. Checks on the assumption of homoscedasticity are usually based on visual examination of
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residual plots after a parametric or nonparametric �t. For a precise formulation of the testing

problem recall that

�

2

(t) = Var(Y (t))

is the variance of the response Y = Y (t) at the point t; then the classical hypothesis of ho-

moscedasticity can be expressed as

H

0

: �

2

(t) = �

2

for all t:

The remaining part of this paper is organized as follows. Chapter 2 deals with the testing

problem (1.4) , while Section 3 is devoted to the problem of checking homoscedasticity. In these

examples we illustrate a general method for the construction of tests and give two interpretations

of the corresponding test statistics, which might be appealing from a theoretical and a practical

point of view. Our �rst interpretation is based on classical Hilbert space theory and we estimate

a minimal L

2

-distance between the true model and the model space induced by the hypothesis.

Our second interpretation shows that this generalizes the classical concept of analysis of variance

to the nonparametric setting, because the test statistic can be interpreted as the di�erence

between a variance estimator under the null hypothesis and a variance estimator under the full

model. We study the asymptotic properties of the corresponding test statistic under the null

hypothesis and the alternative (the latter study is important because of the discussion of the

previous paragraphs) and derive asymptotic normality in all cases.

2 Testing for a parametric form of the regression

Assume that we observe responses of the form

Y

j;n

= Y (t

j;n

) = m(t

j;n

) + �(t

j;n

)"

j;n

j = 1; : : : ; n

where t

1;n

; : : : ; t

n;n

2 [0; 1] are distinct points and m is an (unknown) mean function. The errors

"

j;n

= "(t

j;n

) are assumed to form a triangular array of rowwise independent random variables

with mean zero and variance equal to one, that is �

2

(t

j;n

) = Var[Y

j;n

] (j = 1; : : : ; n): We call

the function m and �

2

regression and variance function, respectively, and assume further that

the fourth moments of the errors are uniformly bounded, i.e.

E["

4

j;n

] � C <1; j = 1; : : : ; n; n 2 N :(2.1)

The index n is omitted whenever this dependence will be clear from the context. Assume that

the design points t

1

; : : : ; t

n

satisfy

i

n

=

Z

t

i

0

f(t)dt i = 1; : : : ; n(2.2)

for a positive design density f , which is Lipschitz continuous of order  > 0 (see Sacks and

Ylvisaker (1970)), that is

jf(x)� f(y)j � cjx� yj



for some positive constant c.
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2.1 Estimating a minimal L

2

-distance.

Recall that the hypothesis of a linear model (1.4) is completely speci�ed by the given regression

functions g

1

; : : : ; g

d

and a natural measure of goodness of �t is the minimal L

2

-distance

M

2

= min

u2M

km� uk

2

= min

u2M

Z

1

0

(m(t)� u(t))

2

f(t)dt(2.3)

between the unknown regression function and the class M of parametric models. Note that

this distance is de�ned by the inner product

hp; qi :=

Z

1

0

p(t)q(t)f(t)dt(2.4)

and kpk = hp; pi

1=2

denotes the corresponding norm. A standard argument from Hilbert space

theory [see Achieser (1956), p.16 ] now shows that the minimum distance can be expressed as

a ratio of two Gramian determinants

M

2

=

�(m; g

1

; : : : ; g

d

)

�(g

1

; : : : ; g

d

)

(2.5)

where

�(p

1

; : : : ; p

d

) = det(hp

i

; p

j

i)

d

i;j=1

:

Example 2.1. In the case d = 1; g

1

(t) � 1 discussed in Section 1.3 the situation is more

transparent. Here we are interested in the problem of testing the hypothesis of a constant

regression function, i.e. H

0

: m(t) � c for some constant c 2 R and we have

�(g

1

) = h1; 1i =

Z

1

0

f(t)dt = 1 :

Consequently

M

2

= �(m; g

1

) =

�

�

�

�

�

hm;mi hm; g

1

i

hm; g

1

i hg

1

; g

1

i

�

�

�

�

�

=

Z

1

0

m

2

(t)f(t)dt� (

Z

1

0

m(t)f(t)dt)

2

= Var(m(U));

where U denotes a random variable with density f: Note that M

2

vanishes if and only if m is

constant, that is the hypothesis of constant mean is valid. Observing the approximations

E

h

1

n

n

X

i=1

Y

i

i

=

1

n

n

X

i=1

m(t

i

) �

Z

1

0

m(t)f(t)dt

E

h

1

n� 1

n

X

i=2

Y

i

Y

i�1

i

=

1

n� 1

n

X

i=1

m(t

i

)m(t

i�1

) �

1

n

n

X

i=1

m

2

(t

i

) �

Z

1

0

m

2

(t)f(t)dt
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it is reasonable to estimate M

2

by

^

M

2

n

=

1

n� 1

n

X

i=2

Y

i

Y

i�1

�

�

1

n

n

X

i=1

Y

i

�

2

(2.6)

and to reject the hypothesis of a constant trend for large values of the statistic

^

M

2

n

:

Note that in general we proceed exactly in the same way. The design density f is not known in

general, and consequently all terms in the Gramian determinants in (2.5) have to be estimated

from the data. To this end the inner products hm;mi; hg

i

; mi and hg

i

; g

j

i in these determinants

are replaced by their empirical counterparts

^

A

0

=

1

n� 1

n

X

j=2

Y

j

Y

j�1

^

A

i

=

1

n

n

X

j=1

g

i

(t

j

)Y

j

(i = 1; : : : ; d)(2.7)

^

B

p;q

=

1

n

n

X

j=1

g

p

(t

j

)g

q

(t

j

) (p; q = 1; : : : ; d) ;

where the dependency on the sample size n is omitted for the sake of simplicity. Recall that

the quantities

^

B

p;q

are not random, but are required for the estimation of the inner products

hg

p

; g

q

i; because the design density f is not assumed to be known. The resulting estimator of

the minimal L

2

-distance is �nally given by

^

M

2

n

=

�

�

�

�

�

�

�

�

�

�

^

A

0

^

A

1

� � �

^

A

d

^

A

1

^

B

1;1

: : :

^

B

1;d

.

.

.

.

.

.

.

.

.

^

A

d

^

B

d;1

� � �

^

B

d;d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

^

B

1;1

� � �

^

B

1;d

.

.

.

.

.

.

^

B

d;1

� � �

^

B

d;d

�

�

�

�

�

�

�

:(2.8)

The following result shows that

^

M

2

n

consistently estimates the minimal L

2

distance M

2

de�ned

in (2.3) [or equivalently in (2.5)] and speci�es its asymptotic distribution. For a proof of the

following Theorem 2.2 we refer to Dette, Munk (1998a) or Dette, Munk and Wagner (2000).

Theorem 2.2. If the regression functions m; g

1

; : : : ; g

d

and the variance function �

2

are Lips-

chitz continuous of order  > 1=2, then as n!1

p

n(

^

M

2

n

�M

2

)

D

=) N (0; �

2

) ;

9



where the asymptotic variance is given by

�

2

=

Z

1

0

�

4

(t)f(t)dt+ 4

Z

1

0

�

2

(t)f(m� P

U

d

m)(t)g

2

f(t)dt(2.9)

and P

U

d

denotes the orthogonal projection onto the space

U

d

= spannfg

1

; : : : ; g

d

g(2.10)

with resepct to the inner product h�; �i.

Example 2.3. In the situation of Example 2.1 [d = 1; g

1

(t) � 1] the main idea of the proof can

easily be illustrated. Note that in this case the statistic

^

M

2

n

de�ned in (2.6) [or more generally

in (2.8)] can be rewritten as

^

M

2

n

= f

�

1

n� 1

n

X

i=2

Y

i

Y

i�1

;

1

n

n

X

i=1

Y

i

�

;

where the function f : R

2

! R is given by f(x; y) = x � y

2

: Similary, we have from Example

2.1

M

2

= f

�

Z

1

0

m

2

(t)f(t)dt;

Z

1

0

m(t)f(t)dt

�

and by the central limit theorem for m-dependent random variables [see Brockwell and Davis

(1991)]

p

n

 

1

n�1

P

n

i=2

Y

i

Y

i�1

�

R

1

0

m

2

(t)f(t)dt

1

n

P

n

i=1

Y

i

�

R

1

0

m(t)f(t)dt

!

D

=) N (0;�) ;

where the asymptotic covariance matrix is given by

� =

 

R

1

0

�

4

(t)f(t)dt+ 4

R

1

0

�

2

(t)m

2

(t)f(t)dt

R

1

0

�

2

(t)m(t)f(t)dt

R

1

0

�

2

(t)m(t)f(t)dt

R

1

0

�

2

(t)f(t)dt

!

:

Now the Æ-method shows asymptotic normality of

p

n(

^

M

2

n

�M

2

) =

p

n

n

f

�

1

n� 1

n

X

i=1

Y

i

Y

i�1

;

1

n

n

X

i=1

Y

i

�

� f

�

Z

1

0

m

2

(t)f(t)dt;

Z

1

0

m(t)f(t)dt

�o

with asymptotic variance

�

2

1

=

Z

1

0

�

4

(t)f(t)dt+ 4

Z

1

0

�

2

(t)

�

m� P

U

1

m

�

2

(t)f(t)dt:

It is worthwhile to mention that the proof of Theorem 2.2 in the general case follows exactly

the same arguments, where the non trivial part consists in the calculation of the asymptotic

variance [see Dette, Munk and Wagner (2000) for more details].

10



2.2 A re-interpretation of the test statistic, generalizations and the

principle of ANOVA

In this section we present a di�erent interpretation of the statistic

^

M

2

n

, which yields interesting

generalizations of the approach presented in Section 2.1.

� Recall the de�nition of the term

^

A

0

in (2.7). A simple calculation shows that this random

variable can be rewritten as

^

A

0

=

^

T � �̂

2

1

;

where

^

T =

1

2(n� 1)

n

X

i=2

(Y

2

i

+ Y

2

i�1

);

and

�̂

2

1

=

1

2(n� 1)

n

X

i=2

(Y

i

� Y

i�1

)

2

(2.11)

denotes a variance estimator in the nonparametric regression model under homoscedas-

ticity, which was introduced by Rice (1984). Under heteroscedasticity �̂

2

1

consistently

estimates the integrated variance function

Z

1

0

�

2

(t)f(t)dt

while

^

T is a consistent estimator of the sum

Z

1

0

m

2

(t)f(t)dt+

Z

1

0

�

2

(t)f(t)dt

and the di�erence is used to estimate the square L

2

-norm hm;mi:

� Recall the de�nition of the test statistic

^

M

2

n

in (2.6). A simple calculation shows that

^

M

2

n

is asymptotically equivalent to the statistic

~

M

2

n

=

1

n

n

X

i=1

(Y

i

�

�

Y

n

)

2

�

1

2(n� 1)

n

X

i=2

(Y

i

� Y

i�1

)

2

;

where

�

Y

n

=

1

n

P

n

i=1

Y

i

denotes the sample mean. Note that the �rst term

�̂

2

LSE

=

1

n

n

X

i=1

(Y

i

�

�

Y

n

)

2

11



is the least squares estimator of the variance under the null hypothesis of no e�ect H

0

:

m(t) � c (for some c 2 R) in a homoscedastic regression model (1.3). On the other

hand it was pointed out by Rice (1984) that the estimator de�ned in (2.11) is a variance

estimator in the general nonparametric (homoscedastic) regression model. In the case of

heteroscedasticity both estimators essentially estimate the integrated variance function.

This can be easily seen heuristically by looking at the expectations

E[�̂

2

1

] =

1

2(n� 1)

n

X

i=2

E(�(t

i

)"

i

� �(t

i�1

)"

i�1

)

2

=

1

2(n� 1)

n

X

i=2

n

�

2

(t

i

) + �

2

(t

i�1

)

o

�

Z

1

0

�

2

(t)f(t)dt

E

H

0

[�̂

2

LSE

] =

1

n

n

X

i=1

E(�

2

(t

i

)"

2

i

)� E

�

1

n

n

X

j=1

�

2

(t

j

)"

j

�

2

�

1

n

n

X

i=1

�

2

(t

i

)

�

Z

1

0

�

2

(t)f(t)dt:

Consequently, the statistic

^

M

2

n

can approximately be interpreted as a statistic of the form

~

M

2

n

= �̂

2

H

0

� �̂

2

1

;(2.12)

where �̂

2

H

0

denotes a variance estimator under the null hypothesis [here we use the least

squares estimator] and �̂

2

1

is a variance estimator in the general nonparametric regression

model [here we used the estimator of Rice (1984)]. Note that (2.12) is a nonparametric

analogon of the statistic in the numerator of the F -test in the linear model and that von

Neumann (1941, 1942) discussed a ratio of �̂

2

LSE

and �̂

2

1

for the construction of a test

for a trend. The following result is a consequence of standard Hilbert space theory [see

Dette and Munk (1998b)] and shows that under the null hypothesis of a linear model (i.e.

M

2

= 0) the estimator of the empirical minimal L

2

-distance

^

M

2

n

is always approximately

equal to a di�erence of variance estimators.

Lemma 2.4. Let

�̂

2

LSE

= min

�2R

d

1

n

n

X

i=1

(Y

i

� �

T

g(t

i

))

2

(2.13)

denote the standard least squares estimator in the linear regression model y = �

T

g(t) and

�̂

2

1

the estimator of Rice (1984) de�ned in (2.11), then

^

M

2

n

= �̂

2

LSE

� �̂

2

1

+O

p

�

1

n

�

= M

2

+O

p

�

1

n

�

:

From these observations it is reasonable to use di�erent variance estimators in the statistic

^

A

0

or in the statistic (2.12). An obvious generalization of (2.11) are the di�erence based type

12



estimators introduced by Hall, Kay and Titterington (1990), which are de�ned by

�̂

2

d;r

=

1

n� r

n

X

i=r+1

�

r

X

j=0

d

i

Y

i�j

�

2

:(2.14)

Here the sequence (d

i

)

r

i=0

is called di�erence sequence and satis�es

r

X

i=0

d

i

= 0;

r

X

i=0

d

2

i

= 1:(2.15)

Note that in the case r = 1 we obtain from (2.15) the estimator of Rice (1984) de�ned in (2.11).

Another popular choice is the variance estimator of Gasser, Sroka and Jennen-Steinmetz (1986)

�̂

2

G

=

1

6(n� 2)

n

X

i=3

(Y

i�2

� 2Y

i�1

+ Y

i

)

2

(2.16)

and is obtained by the choice

d

0

= d

2

=

1

p

6

; d

1

= �

2

p

6

:

For a careful discussion of di�erence type variance estimators we refer to Dette, Munk and

Wagner (1998). It can be shown that the asymptotic normality in Theorem 2.2 remains valid,

if the estimator �̂

2

1

in the de�nition of

^

A

0

or in (2.12) is replaced by a general di�erence based

type estimator. In this case the asymptotic distribution of the statistic

p

n(

^

M

2

n

�M

2

) =

p

n(�̂

2

LSE

� �̂

2

d;r

+ o

p

(n

�1=2

))�M

2

(2.17)

is still asymptotically normal with mean 0 and asymptotic variance

�

2

D

= 4

�

r

X

k=1

(

r�k

X

j=0

d

j

d

j+k

)

2

�

Z

1

0

�

4

(t)f(t)dt+ 4

Z

1

0

�

2

(t)(m� P

U

d

m)

2

(t)f(t)dt(2.18)

This variance can be minimized with respect to the choice of the weights d

i

[see Hall, Kay and

Titterington (1990)]. The optimal weights are displayed in Table 2.1 and give

r�k

X

j=0

d

j

d

j+k

= �

1

2r

k = 1; : : : ; r;

which yields for the smallest variance obtainable by the choice of a di�erence type estimator of

order r

�

2

r

=

1

r

Z

1

0

�

4

(t)f(t)dt+ 4

Z

1

0

�

2

(t)(m� P

U

d

m)

2

(t)f(t)dt

[the case r = 1 is given in Theorem 2.2]. In practice, a reasonable approximation by the normal

distribution is obtained by the use of the estimators in (2.11) and (2.16). For an improvement

13



of power it is recommended to choose variance minimizing weights. However, this increases

usually also the bias and can only be recommended for large samples or in combination with

the application of a jacknife correction or a bootstrap test [see Munk (2001b) for an empirical

study].

r d

0

d

1

d

2

d

3

d

4

d

5

1 0.7071 -0.7071

2 0.8090 -0.5 -0.3090

3 0.1942 0.2809 0.3832 -0.8582

4 0.2798 -0.0142 0.6909 -0.4858 -0.4617

5 0.9064 -0.2600 -0.2167 -0.1774 -0.1420 -0.1103

Table 2.1: Optimal weights for di�erence type variance estimators of order r

2.3 Applications

In this section we illustrate how Theorem 2.2 can be used to solve the problems indicated in

Section 1. The most appealing property of the suggested test statistic

^

M

2

n

certainly consists

in the following aspects. The test statistic can easily be computed and the calculation of

critical regions requires only tables of the normal distribution. This provides a very simple

test for the classical hypotheses (1.4). Moreover, Theorem 2.2 (or its generalization) gives

the asymptotic limit distribution of the statistic

p

n(

^

M

2

n

�M

2

) de�ned in (2.17) for arbitrary

regression functions m; which can be used to solve the statistical problems mentioned in the

introduction.

� Testing of the classical null hypothesis. The classical null hypothesis of the linear

model H

0

: m 2 M is rejected if

n

1=2

^

M

2

n

ŝ

2

n

> Æ

r

u

1��

;(2.19)

where the statistic

^

M

2

n

is de�ned in (2.8), u

�

denotes the �-quantile of the standard

normal distribution,

Æ

r

= 2

�

r

X

k=1

(

r�k

X

j=0

d

j

d

j+k

)

2

�

1=2

(r � 1):(2.20)

and ŝ

4

n

is an appropriate estimator of the asymptotic variance

R

1

0

�

4

(t)f(t)dt under the

null hypothesis of a linear model. Note that

^

�

0;n

= Æ

2

r

ŝ

4

n

de�nes an estimator of the

asmptotic variance in (2.18) under the assumption of a linear model. For the estimator

14



of Rice (1984) de�ned in (2.11) it follows Æ

1

= 1, while for the estimator of Gasser, Sroka,

Jennen-Steinmetz (1986) given in (2.16) we have Æ

2

2

= 17=9. The choice of the variance

estimator depends on the structure of the error distribution. Under homoscedasticity we

have

R

1

0

�

4

(t)f(t)dt = �

4

and any square of the di�erence based type estimators de�ned

in (2.14) could be used, i.e.

ŝ

2

n

= �̂

2

d;r

:(2.21)

If heteroscedasticity has to be taken into account a simple estimator is given by

ŝ

4

n

=

1

4(n� 3)

n�2

X

i=2

(Y

i

� Y

i�1

)

2

(Y

i+2

� Y

i+1

)

2

:(2.22)

� Approximation of the power. Theorem 2.2 establishes also asymptotic normality

under (�xed) alternatives, which allows an estimation of the power of the proposed test,

i.e.

P (\rejection") � 1� �((

^

�

0;n

u

1��

�

p

n

^

M

2

n

)=

^

�

1;n

)

where

^

�

2

1;n

is an appropriate estimator of the asymptotic variance.

� Con�dence intervals for the measure of linearity. Theorem 2.2 can be used for

constructing asymptotic con�dence intervals for the L

2

-distance M

2

between the regres-

sion function m and the subspace U

d

induced by the linear model. For example, an

(asymptotic) (1� �) upper con�dence bound for M is given by M

+

n

, where

(M

+

n

)

2

=

^

M

2

n

+

u

1��

p

n

^

�

1;n

(2.23)

and

^

�

2

1;n

is an appropriate estimator of the asymptotic variance de�ned in (2.18). In the

presence of homoscedasticity the problem of estimating this variance in the general model

can be simpli�ed by using the upper con�dence bound

(M

+

n

)

2

=

^

M

2

n

+

2u

2

1��

n

ŝ

2

n

+

u

1��

ŝ

n

p

n

r

4

^

M

2

n

+ ŝ

2

n

�

4u

2

1��

n

+ Æ

2

r

�

;(2.24)

where ŝ

2

n

is de�ned in (2.21).

� Testing of neighborhood hypotheses. Theorem 2.2 provides a method for the statisti-

cal assessment of the linear model instead of a simple \model check". The \neighborhood"

hypothesis

H

�

: M > � versus K

�

:M � �(2.25)

is rejected whenever

n

1=2

^

M

2

n

� �

2

^

�

1;n

� u

�

;(2.26)
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where

^

�

2

1;n

is an appropriate estimator of the asymptotic variance de�ned in (2.18). Note

that under the assumption of homoscedasticity the denomimnator on the left hand side

of the inequality (2.26) can be replaced by

^

�

1;n

= f4ŝ

2

n

�

2

+ Æ

2

r

ŝ

4

n

g

1=2

;

where ŝ

2

n

is de�ned in (2.21).

2.4 Simulations for goodness of �t tests based on di�erence type

variance estimators.

In this section we will investigate the �nite sample properties of the asymptotic normal law.

To this end we assumed homoscedasticity and performed an extensive simulation study of the

distribution of the statistic

H

n

= n

1=2

^

M

2

n

�M

2

�

17

9

ŝ

4

n

+ 4ŝ

2

n

M

2

�

1=2

(2.27)

for various sample sizes n, where ŝ

2

n

denotes the estimator of Gasser, Sroka and Jennen-

Steinmetz (1986) de�ned in (2.16), for which Æ

2

2

= 17=36 (see the discussion of the previous

paragraph). We considered three di�erent linear models

m

1

(x) = a

1

+ a

2

x+ exp(�x) model I

m

2

(x) = a

1

+ a

2

x+ (�x)

2

sin(�x) model II

m

3

(x) = a

1

+ a

2

x+ �x

2

model III

where � is a parameter which determines the L

2

-distance to the linear regression model U

2

=

span f1; xg. As a design we used

t

i;n

=

i� 1

n� 1

; i = 1; : : : ; n;

which corresponds to the design density f � 1. Table 2.2 displays for various sample sizes

the accuracy of the approximation of the �-quantiles of the standard normal distribution. The

numbers of outcomes which were smaller than the corresponding quantile of the normal distri-

bution were counted and divided by the total number of simulations. For the sample size and

�-quantiles we chosed n = 20; 50; 100 and � = 0:05; 0:1; 0:9; 0:95, respectively (note that the

5% and 10% quantile are needed in (2.26) while the 90% and 95% quantile are used in (2.19)).

For each study we have performed 5000 replications with a SAS-IML random generator. The

error, ", was assumed to be normally distributed with variance �

2

where �

2

= 0:09; 0:25; 1; 4.

For the distance M , we chose the values M

2

= 0; 0:5; 1. It turns out that the quality of the

approximation depends only slightly on this distance. Observe further, that, in general, the

estimated probabilities increase whenever the variances increase. When M = 0 (or equivalently

� = 0) we see that the variance �

2

does not a�ect the distribution of the test statistic H

n

which
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is in accordance with the observation that H

n

in (2.27) is invariant with respect to the group

of scale transformations acting on R

n

, whenever M = 0.

We observe that, even for relatively small sample sizes, the approximation of the level is sur-

prisingly accurate, independent of M

2

and the unknown variance �

2

. We found similar results

for di�erent distributional assumptions, even in the case of a nonsymmetric error distribution.

For example, if " � �

2

(�

2

1

� 1)=

p

2, M

2

= 0:5, �

2

= 0:25, n = 50 we obtained in model III

0:044, 0:097, 0:896 and 0:944 as approximations for the probabilities 0:05, 0:10, 0:90 and 0:95.

Other results are omitted for the sake of brevity and we refer to Dette and Munk (1998a) for

more details.

M

2

0 .5 1

Quantile .05 .1 .9 .95 .05 .10 .9 .95 .05 .10 .9 .95

.09 .042 .085 .915 .962 .050 .091 .879 .936 .044 .078 .869 .927

m

1

�

2

.25 .042 .085 .915 .962 .056 .102 .891 .945 .051 .096 .883 .939

1 .042 .085 .915 .962 .056 .107 .906 .956 .058 .107 .900 .951

4 .042 .085 .915 .962 .047 .093 .915 .959 .050 .098 .912 .958

.09 .042 .085 .915 .962 .031 .070 .884 .938 .028 .059 .867 .930

m

2

�

2

.25 .042 .085 .915 .962 .042 .083 .901 .948 .040 .080 .892 .942

1 .042 .085 .915 .962 .048 .091 .917 .956 .052 .092 .907 .952

4 .042 .085 .915 .962 .041 .081 .919 .963 .045 .089 .920 .960

.09 .042 .085 .915 .962 .058 .099 .881 .939 .053 .091 .873 .933

m

3

�

2

.25 .042 .085 .915 .962 .065 .112 .896 .946 .060 .104 .887 .941

1 .042 .085 .915 .962 .060 .113 .910 .955 .063 .116 .902 .951

4 .042 .085 .915 .962 .050 .093 .916 .959 .054 .102 .913 .959

Table 2.2. Simulated deviation from the normal distribution for the statistic H

n

with sample size

n = 20

If higher order di�erence estimators are used, in general power can be improved essentially.

However, in this case, as well for nonlinear models and random design [see Section 2.7 for

the corresponding asymptotic result], jacknife corrections are recommended. An extensive

simulation study and guidelines for the order of the di�erence estimator can be found in Munk

(2001b).

2.5 Goodness of �t tests using kernel based methods

From the arguments surrounding Lemma 2.4 it seems reasonable to replace in the statistic

�̂

2

LSE

� �̂

2

1

the nonparametric estimator �̂

2

1

by some re�nement. The application of generalized

versions of di�erence based type estimators was illustrated in the previous Section 2.2 and in
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the following section we will now discuss variance estimators based on nonparametric curve

estimators which will yield to asymptotically more eÆcient procedures.

More precisely, we use a sum of squared residuals based on a nonparametric �t of the regression

function as estimator of the integrated variance function. Following Hall and Marron (1990)

we de�ne weights of the form

w

ij

=

K

�

t

i

�t

j

h

�

P

n

`=1

K

�

t

i

�t

`

h

�

; (i; j = 1; : : : ; n) ;

where K is a kernel function with compact support satisfying

Z

1

�1

K(u)u

j

du =

�

1 if j = 0

0 if 1 � j � r � 1

;(2.28)

for some r � 2 and h is called bandwidth. Note that for each i we have

P

n

j=1

w

ij

= 1

and usually the weight w

ij

is decreasing with the di�erence ji � jj. The weighted average

m̂

i

=

P

n

j=1

w

ij

Y

j

is used as an estimator of the unknown regression function at the point t

i

and based on the residuals

"̂

i

= Y

i

� m̂

i

= Y

i

�

n

X

j=1

w

ij

Y

j

(i = 1; : : : ; n)

from this �t. Hall and Marron (1990) proposed

�̂

2

HM

=

1

v

n

X

j=1

"̂

2

j

as an estimator of the variance in a homoscedastic nonparametric regression. Here the quantity

v = n� 2

n

X

i=1

w

ii

+

n

X

i;k=1

w

2

ik

is a normalizing constant, motivated by the fact that E[�̂

2

HM

] = �

2

when m(t) � 0: It is

demonstrated in Dette, Munk and Wagner (1998) that �̂

2

HM

has a reasonable performance in

many regression problems.

For the asymptotic inference the bandwidth h is supposed to satisfy

h = O(n

�

2

4r+1

); nh

2

!1(2.29)

if n ! 1, and the design density f , the regression function m; the variance function �

2

and

the basis functions g

1

; : : : ; g

p

are assumed to be suÆciently smooth, i.e.

m; f 2 C

(r)

([0; 1]); �

2

; g

1

; : : : ; g

p

2 C

(1)

([0; 1]) ;(2.30)
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where C

(r)

([0; 1]) denotes the space of r times continuously di�erentiable functions. For a

homoscedastic error structure it was shown by Hall and Marron (1990) that under suitable

modi�cation of the estimator at the boundary we have E[�̂

2

HM

] = �

2

+ C

2

h

2r

+ o(h

2r

); where

C

2

= �

2

r

Z

1

0

f(mf)

(r)

(u)�mf

(r)

(u)g

2

du

f(u)

;(2.31)

and the constant �

r

is de�ned by

�

r

=

(�1)

r

r!

Z

1

�1

u

r

K(u)du:

In the heteroscedastic case a slight modi�cation of this expansion is necessary and it was shown

in Dette (1999) that

E[�̂

2

HM

] =

Z

1

0

�

2

(t)f(t)dt+ C

2

h

2r

+

C

3

nh

+ o(h

2r

) +O

�

1

n

�

;(2.32)

where the constant C

2

is de�ned by (2.31) and

C

3

=

�

2K(0)�

Z

1

�1

K

2

(t)dt

��

Z

1

0

�

2

(t)f(t)dt�

Z

1

0

�

2

(t)dt

�

:(2.33)

Observing the discussion given in Section 2.2 it is reasonable to base a test for a parametric

regression model on the di�erence of the parametric and nonparametric variance estimator, and

therefore we de�ne

T

n

= �̂

2

LSE

� �̂

2

HM

:(2.34)

A tedious calculation [see Dette (1999)] shows that

E[�̂

2

LSE

] =

Z

1

0

�

2

(t)f(t)dt+M

2

+O(n

�1

)

where M

2

is de�ned in (2.3). Consequently the statistic T

n

is an asymptotically unbiased es-

timator of the minimal L

2

-distance M

2

between the linear regression model and the unknown

regression function. The following result gives the asymptotic distribution of the random vari-

able T

n

under the hypothesis of linearity (M

2

= 0) and the alternative (M

2

> 0): The proofs

are cumbersome and can be found in Dette (1999).

Theorem 2.5. Assume that (2.1), (2.2), (2.28), (2.29) and (2.30) are satis�ed and n!1.

a) If M

2

= 0 , then

n

p

h(T

n

+ C

2

h

2r

+

C

3

nh

)

D

=)N (0; �

2

0

) ;(2.35)

where the asymptotic variance is given by

�

2

0

= 2

Z

1

0

(2K(u)�K �K(u))

2

du

Z

1

0

�

4

(u)du(2.36)

and K

1

�K

2

denotes the convolution of K

1

with K

2

.

19



b) If M

2

> 0 , then

p

n(T

n

�M

2

)

D

=) N (0; �

2

1

) ;(2.37)

where the asymptotic variance is given by

�

2

1

= 4

Z

1

0

�

2

(u)[m(u)� P

U

d

m(u)]

2

f(u)du;(2.38)

and P

U

d

denotes the orthogonal projection onto the space U

d

de�ned in (2.10) with resepct

to the inner product h�; �i.

It is remarkable that the normalizing factor is of di�erent order in both parts of Theorem 2.5.

Under the null hypohtesis H

0

: m 2 M the variance of T

n

is of order (n

2

h)

�1

while under the

alternative m 62 M this is of order n

�1

: Moreover, we have C

3

= 0 under the assumption of a

uniform design or a homoscedastic error. In all applications of Theorem 2.5 (as indicated in

Section 2.3) the choice of the bandwidth h becomes an important and non-trivial problem. It

follows from Hall and Marron (1990) that in a homoscedastic regression the asymptotic optimal

(with respect to the MSE criterion) bandwidth is of order n

�2=(4r+1)

; and it can be shown that

this result carries over to the heteroscedastic case.

However, our numerical studies show that in the problem of validating linear models the bias of

the statistic T

n

is more important than the variance and a balance between bias and variance

seems only appropriate for very large sample sizes. Based on an extensive simulation study we

recommend the bandwidth

(�̂

2

n

=n)

2=(2r+1)

;

where r is the order of the corresponding kernel and �̂

2

n

is an estimator of the integrated

variance

R

1

0

�

2

(t)f(t)dt, for example the variance estimator of Rice (1984) de�ned in (2.11)

or the estimator of Gasser, Sroka and Jennen-Steinmetz (1986) given in (2.16). This speci�c

order can also be motivated by the requirement that the \bias" nC

2

h

2r+1=2

converges to 0 at

a reasonable rate, which is n

�2r=(2r+1)

for the proposed choice. For this choice the classical

hypothesis of linearity

H

0

: m 2 M

is rejected if

n

p

h

�

T

n

+

C

3

nh

�

> u

1��

�̂

0

; h = o(n

�2=(4r+1)

);(2.39)

where u

1��

is the 1 � � quantile of the standard normal distribution and �̂

2

0

an appropriate

estimator of the variance. A simple way of estimating this variance under the null hypothesis

and the general assumption of heteroscedasticity is given by

�̂

2

0

= 2

Z

1

�1

(2K(u)�K �K(u))

2

du

n�1

X

i=1

(t

i+1

� t

i

)[Y

i

�

^

�

T

n

g(t

i

)]

2

[Y

i+1

�

^

�

T

n

g(t

i+1

)]

2

;(2.40)
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where

^

�

n

denotes the least squares estimator of �: In the case of a homoscedastic error structure

we can use a modi�ed estimator for the asymptotic variance, that is

~�

2

0

= 2

Z

1

�1

(2K(u)�K �K(u))

2

du � �̂

4

LSE

:(2.41)

Similary, all other implications stated in Section 2.3 remain valid for the statistic T

n

. For

example Theorem 2.5 provides useful information about the type II error of the above test at

any particular point of the alternative by the approximation

p = P (\rejection") � �

�

p

n

�

1

n

M

2

�

u

1��

�

0

n

p

h

o�

;(2.42)

and an asymptotic level � test for the problem of precise hypotheses (2.25) is obtained by

rejecting the null hypothesis H : M > � ; whenever

p

n

T

n

� �

2

�̂

1

� u

�

;

where �̂

2

1

is an appropriate estimator of the asymptotic variance �

2

1

and u

�

denotes the �-

quantile of the standard normal distribution. Finally, it is also notable that Theorem 2.5 allows

the construction of con�dence intervals for the parameter M

2

; which measures the deviation

from the linear model M:

Remark 2.6. It is worthwhile to mention that the results of Theorem 2.5 do not depend on

the special smoothing procedures used for the calculation of the residuals "̂

i

= Y

i

�

P

n

j=1

w

ij

Y

j

in the nonparametric variance estimator. Roughly speaking the results of Theorem 2.5 remain

valid, where the bias term C

2

h

2r

and the asymptotic variance �

2

0

in (2.36) depend on the

speci�c smoothing procedure under consideration, while the asymptotic variance �

2

1

in (2.38)

is not changed. For example, if the kernel estimator of Gasser and M�uller (1979) is used for

the calculation of the residuals, the weights w

ij

are de�ned by

w

ij

=

1

h

Z

s

j

s

j�1

K

�

t� t

i

h

�

dt;

where s

0

= 0; s

n

= 1; s

j

= (t

j

+ t

j+1

)=2 (j = 1; : : : ; n� 1) and only the constant C

2

has to be

changed in Theorem 2.5, that is

C

2

= �

2

r

Z

1

0

(m

(r)

(t))

2

dt:

A similar argument applies to the local polynomial estimator [see e.g. Fan (1992) or Fan and

Gijbels (1996)], where the residuals "̂

i

in the estimator of Hall and Marron (1990) are replaced

by

~"

i

= Y

i

�

^

�

i0
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and (

^

�

i0

; : : : ;

^

�

ip

) is the minimizer of

n

X

k=1

n

Y

k

�

p

X

j=0

�

ij

(t

k

� t

i

)

j

o

2

K(

t

k

� t

i

h

)

[see Dette (1999) for more details]. Note that the local polynomial estimator of order p = 0

corresponds to the Nadaraya-Watson estimator discussed in Theorem 2.5.

Remark 2.7. Several related tests using kernel based methods have been proposed in the

literature [see Azzalini and Bowman (1993), H�ardle and Mammen (1993) and Zheng (1997)],

for which similar results can be obtained. For later purposes we mention a statistic introduced

by Zheng (1997)

Z

n

=

1

hn(n� 1)

n

X

i=1

X

j 6=i

"̂

i

"̂

j

K(

t

i

� t

j

h

):(2.43)

Zheng (1997) showed under the null hypothesis of linearity that

n

p

hV

n

D

)N (0; �

2

0

);

where the asympotic variance is given by

�

2

0

=

Z

1

0

�

4

(t)f

2

(t)dt �

Z

1

�1

K

2

(x)dx:

Under �xed alternatives Dette (1999) proved

p

n

n

Z

n

�

Z

1

0

K(u)(�f)(x)(�f)(x� uh)dudx

o

D

=) N (0; �

2

3

);(2.44)

where �(t) = m(t)� P

U

d

m(t); and the asymptotic variance is given by

�

2

3

= 4

Z

1

0

�

2

(u)

n

(�f)(u)� P

U

d

(�f)(u)

o

2

f(u)du:(2.45)

2.6 Simulations for goodness of �t tests based on kernel type vari-

ance estimators.

In this example we study the �nite sample behaviour of the test (2.39). We consider a random

and a �xed uniform design [for the corresponding asymptotic theory see Section 2.7] on the

interval [0; 1] (i.e. f � 1) and the sample size is chosen as n = 50; 100; 200 and 400: Note that

for the uniform design we have for the constant C

3

in (2.39) C

3

= 0. We use the kernel

K(t) =

3

4

(1� t

2

)Ifjtj � 1g(2.46)
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of order 2 and the corresponding bandwidth h = (�̂

2

1

=n)

2=5

, where �̂

2

1

denotes the estimator

of Rice (1984) de�ned in (2.11). Our simulation results show that the choice of the estimator

has a negligable impact on the distributional behaviour of the test statistic (these results are

not displayed). The asymptotic variance �

2

0

in (2.39) was estimated by the statistic ~�

2

0

de�ned

in (2.41) for the case of a homoscedastic error and by the statistic �̂

2

0

in (2.40) for the case of

a heteroscedastic error. We also performed simulations with higher order kernels [see Gasser,

M�uller and Mammitzsch (1985)] and local polynomial estimators [see Remark 2.6]. These

results did not yield a substantial di�erence with respect to power and approximation of the

nominal level and are not displayed for the sake of brevity.

We consider the model

m(t) = 5t+ at

2

(2.47)

for various values of a; where the case a = 0 corresponds to the null hypothesis of a linear

regression through the origin. The results are listed in Table 2.3 for a homoscedastic error and

show the relative proportion of rejection calculated by 1000 simulations on the basis of a 5%

level. The normal approximation provided by Theorem 2.5 yields a very accurate approximation

of the nominal level, even for n = 50: Moreover, the second part of Theorem 2.5 provides the

asymptotic distribution of the test statistic in (2.39) under the alternative, which allows a

calculation of the probability for the type II error at any particular point m; if the test accepts

the hypothesis H

0

: m 2 M: As a numerical example we estimate the probability of rejection in

the case of a �xed design, a = 2; n = 100; �

2

= 1 and obtain p � 0:334; while the corresponding

simulated probability is 0:343 (see Table 2.3).

n = 50 n = 100 n = 200 n = 400

�

2

a �xed random �xed random �xed random �xed random

0 0.053 0.042 0.054 0.052 0.053 0.053 0.051 0.051

1 1 0.095 0.071 0.116 0.111 0.167 0.146 0.297 0.283

2 0.181 0.149 0.343 0.297 0.597 0.536 0.892 0.872

0 0.060 0.049 0.056 0.052 0.055 0.057 0.048 0.054

2 1 0.089 0.065 0.084 0.100 0.130 0.125 0.184 0.178

2 0.120 0.108 0.194 0.188 0.335 0.295 0.594 0.589

0 0.059 0.051 0.054 0.050 0.054 0.058 0.058 0.054

3 1 0.081 0.083 0.092 0.101 0.103 0.110 0.144 0.143

2 0.089 0.086 0.147 0.146 0.221 0.215 0.427 0.415

Table 2.3. Simulated rejection probabilities of the test (2.39) in the model (2.47) for various

values of a; �

2

; n and a �xed and random uniform design on the interval [0; 1]:

Our second example investigates the impact of deviations from homoscedasticity on power and

level of the test (2.39). We consider a heteroscedastic situation for the model (2.47) where
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the variance function is given by �

2

(t) = 3(1 + ct

2

)=(3 + c): The results are given in Table 2.4

under the same setup as considered in the previous paragraph. Note that the function �

2

has

been normalized such that

R

1

0

�

2

(t)f(t)dt = 1: Compared to the homoscedastic case (a = 0) we

observe no signi�cant loss in the accuracy of the approximation of the nominal level and a loss

of power with increasing values of c:

n = 50 n = 100 n = 200 n = 400

c a �xed random �xed random �xed random �xed random

0 0.048 0.050 0.050 0.057 0.054 0.050 0.053 0.049

0 1 0.093 0.071 0.094 0.092 0.168 0.163 0.296 0.285

2 0.168 0.132 0.328 0.254 0.616 0.537 0.886 0.886

0 0.047 0.051 0.043 0.047 0.058 0.045 0.055 0.045

1 1 0.079 0.060 0.088 0.085 0.152 0.156 0.301 0.260

2 0.158 0.142 0.323 0.254 0.578 0.522 0.896 0.875

0 0.046 0.043 0.045 0.050 0.052 0.048 0.048 0.048

2 1 0.074 0.059 0.097 0.092 0.153 0.151 0.261 0.255

2 0.149 0.129 0.306 0.243 0.431 0.546 0.882 0.850

Table 2.4. Simulated power of the test (2.39) in the model (2.47) for various scenarios of

hetereoscedasticity and alternatives. The design is a uniform distribution, the variance function

is given by �

2

(t) = 3(1 + ct

2

)=(3 + c) and normalized by

R

1

0

�

2

(t)f(t)dt = 1:

2.7 High dimensional predictors, nonlinear models, random designs

The interpretation of the test statistic as an ANOVA statistic allows generalizations in several

directions. In this section we mention two possible extensions namely the consideration of

multivariate predictors and the problem of testing the goodness of �t in nonlinear models. We

also discuss the impact of the random design assumption on the corresponding test procedures.

� Theorem 2.5 can be extended without any diÆculties to the case of a multivariate pre-

dictor of dimension k: If a product kernel

K(x

1

; : : : ; x

k

) =

k

Y

j=1

K

j

(x

j

)

is used the normalizing factor under the null hypothesis is n

p

h

1

: : : h

k

where h

j

is the

bandwidth used for the jth marginal kernel (j = 1; : : : ; k): Because of the curse of di-

mensionality the choice of h

j

is even more critical in this case. Based on a �rst numerical

experience in the two dimensional case we recommend for a kernel of order 2 the band-

width

h

j

=

�

1

n

Z

1

0

�

2

(t)f(t)

�

2=(k+4)

j = 1; 2; : : : ; k:
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A generalization of Theorem 2.2 to a multivariate predictor seems to be more diÆcult,

because it relies heavily on the application of di�erence based type variance estimators. If

data is available at design points which form approximately a grid results of Hall, Kay and

Titterington (1991) can be used for the construction of an analogue of the test statistic

^

M

2

n

considered in Section 2.2.

� The results presented so far remain true if M is a class of nonlinear models

M = fm(t; �)j� 2 �g(2.48)

where � � R

d

; and the minimum

M

2

�

= min

�2�

Z

1

0

[m(t)�m(t; �)]

2

f(t)dt(2.49)

is attained at a unique interior point �

0

2 �: Then under regularity assumptions [see e.g.

Seber and Wild (1989), pp. 572-574 or Gallant (1987), Chapter 4], Theorem 2.2 and 2.5

remain valid, where M

2

in (2.3) has to be replaced by M

2

�

: A heuristic argument for this

statement uses a Taylor expansion and the fact that the sum of squared residuals in the

nonlinear model can be approximated by

�̂

2

LSE

= min

�2�

1

n

n

X

i=1

(y

i

�m(t

i

; �))

2

=

1

n

�

T

(I �G(G

T

G)

�1

G

T

)� +O

p

(

1

n

);

where G

T

=

�

@m

@�

(t

i

; �

0

)

�

n

i=1

2 R

d�n

and � = (y

i

� m(t

i

; �

0

))

n

i=1

: Roughly speaking this

means that the nonlinear model can be treated as the linear model with the d regression

functions

g

1

(t) =

@

@�

1

m(t; �

0

); : : : ; g

d

(t) =

@

@�

d

m(t; �

0

);

where the regression m(t) has to be replaced by m(t)�m(t; �

0

): If the regression functions

g

1

; : : : ; g

d

are assumed as orthonormal with respect to the design density f , the orthogonal

projection of a function q onto U

d

= span fg

1

; : : : ; g

d

g is given by

P

U

d

q =

d

X

`=1

hq; g

`

ig

`

:

Consequently the quantity M

2

in Theorem 2.5 is given by

M

2

=

Z

1

0

[m(t)�m(t; �

0

)�

p

X

`=1

hm�m

�

0

; g

`

ig

`

(t)]

2

f(t)dt

=

Z

1

0

(m(t)�m(t; �

0

))

2

f(t)dt;

where m

�

0

= m(�; �

0

) and the last equality is a consequence of the representation (2.49),

which implies

0 =

@

@�

`

Z

1

0

[m(t)�m(t; �)]

2

f(t)dtj

�=�

0

= �2hm�m

�

0

; g

`

i ; ` = 1; : : : ; d:
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� The approach of using the di�erence of two variance estimators as a goodness of �t

statistic can be transferred to the case of a random design where t

1

; : : : ; t

n

are realiza-

tions of i.i.d. random variables U

1

; : : : ; U

n

with positive density f on the interval [0; 1]:

For a generalization of the statistic

^

M

2

n

to this situation let U

(1)

; : : : ; U

(n)

denote the or-

der statistics of U

1

; : : : ; U

n

and de�ne R

�1

1

; : : : ; R

�1

n

as the antiranks of U

1

; : : : ; U

n

, i.e.

(U

(1)

; Y

R

�1

1

); : : : ; (U

(n)

; Y

R

�1

n

) is the ordered sample (according to the U -values) of the ob-

servations. The analogs of the estimates in (2.7) are then de�ned by

^

A

0

=

1

n� 1

n

X

j=2

Y

R

�1

j

Y

R

�1

j�1

^

A

i

=

1

n

n

X

j=1

g

i

(U

(j)

)Y

R

�1

j

=

1

n

n

X

j=1

g

i

(U

j

)Y

j

^

B

p;q

=

1

n

n

X

j=1

g

p

(U

j

)g

q

(U

j

) :

If these estimates are used in the construction of the test statistic

^

M

2

n

it can be shown

[see Dette and Munk (1998b)] that for n!1

p

n(

^

M

2

n

�M

2

)

D

=) N (0; �

2

1

) :

Here the asymptotic variance is given by

�

2

1

= E[�

4

(U

1

)] + 4E[�

2

(U

1

)f(m� P

U

d

m)(U

1

)g

2

] + Var[f(m� P

U

d

m)(U

1

)g

2

]

= �

2

+ Var[f(m� P

U

d

m)(U

1

)g

2

] ;

where �

2

is de�ned in (2.9) and P

U

d

denotes the orthogonal projection onto the space U

d

de�ned in (2.10) with resepct to the inner product h�; �i.

The generalization of the statistic T

n

de�ned in Section 2.5 to the random design case

is substantially easier, because it does not depend on the order of the predictor. In this

case we have under the assumption of a linear model (i.e. M

2

= 0) for n!1

p

h(T

n

+ C

2

h

2r

+

C

3

nh

)

D

=) N (0; �

2

0

)

in the case M

2

=0 and

p

n(T

n

�M

2

)

D

=) N (0; ~�

2

1

):

Here the asymptotic variance �

2

0

is de�ned in (2.36) and

~�

2

1

= 4E[�

2

(U

1

)f(m� P

U

d

m)(U

1

)g

2

] + Var[f(m� P

U

d

m)(U

1

)g

2

]

= �

2

1

+ Var[f(m� P

U

d

m)(U

1

)g

2

] ;
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where �

2

1

is de�ned in (2.38).

Comparing these results with Theorem 2.2 and 2.5 we observe no di�erence between

the random and �xed design assumption under the classical null hypothesis M

2

= 0:

Surprisingly, there appears an additional term in the asymptotic variance under the al-

ternative M

2

> 0 which a�ects the rate of misspeci�cations of the model M, i.e. the

probability of the type II error. In the case of testing classical hypotheses the test statis-

tic does not discriminate between �xed and random design which may result in a large

type II error solely caused by the variability of the predictor U . In fact, it can be shown

that the hypothesis H

0

: m 2 M will be falsely accepted with increasing probability as

Var[f(m�P

U

d

m)(U

1

)g

2

] increases, �xing an alternative M

2

= C > 0. Because this quan-

tity will be unknown in general this observation supports certainly the 'precise testing'

approach in the random design case. Note, that also the length of the con�dence intervals

discussed in Section 2.3 involves additional estimation of Var[f(m�P

U

d

m)(U

1

)g

2

]: Hence

testing of (2.25) or the additional consideration of con�dence intervals for the measure of

linarity M

2

is strictly recommended.

3 Testing for homoscedasticity in regression

In many applications of regression models the usual assumptions of homoscedastic disturbances

cannot be guaranteed a priori. Therefore, the importance of being able to detect heteroscedas-

ticity is widely recognized because, if the assumption of homoscedasticity is not met, eÆcient

inference for the regression function requires that the heteroscedasticity is taken into account.

This may result in transformations of the data, weighted least squares (or modi�ed likeli-

hood) procedures or the choice of a variable bandwidth in nonparametric kernel smoothing [see

M�uller and Stadtm�uller (1987)]. In many cases the loss of eÆciency in using procedures for

homoscedastic models under heteroscedastic errors may be substantial.

In contrast to the problem of testing for a parametric form of the regression much less attention

has been paid to the problem of testing hypotheses regarding the variance structure in a non-

parametric regression model. Most of the graphical procedures and formal tests are based on

residuals after �tting a model with completely parametrically speci�ed regression and variance

function [see for example Harrison and McCabe (1979), Breusch and Pagan (1979), Koenker

and Bassett (1981), Cook and Weisberg (1983), Carroll and Ruppert (1988), Sec. 3.4, and

Diblasi and Bowman (1997)]. A diagnostic test under a smoothness assumption on the regres-

sion function and the assumption of a normal distributed error distribution has been proposed

by Eubank and Thomas (1993). Recently M�uller and Zhao (1995) considered a semiparamet-

ric variance function model where the relation between the mean regression and the variance

function is assumed to follow a generalized linear model and the mean response is modelled

nonparametrically. They demonstrated that

p

n-consistent inference for the parameters is pos-

sible and applied the results to obtain a test for heteroscedasticity under minimal assumptions

on the shape of the regression function.

Although the problem of testing the hypothesis of homoscedasticity

H

0

: �

2

(�) � �

2

versus H

1

: �

2

(�) 6� �

2

(3.1)
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(for some constant �

2

> 0) has been discussed by the above authors under parametric or

semiparametric assumptions, this problem has only been solved recently by Dette and Munk

(1998c), Zheng (2000) and Dette (2001) in a completely nonparametric regression setup under

minimal assumptions on the error structure and the regression and variance function. It is the

purpose of this section to present a simple concept for the construction of test statistics for the

hypothesis (3.1), which relates this problem to the problem of testing for a parametric form in

a transformed regression model. This concept is then successfully applied for the construction

of two tests for homoscedasticity.

3.1 A a general principle to construct tests for homoscedasticity

Recall the de�nition of the estimator of the integrated variance function given in (2.11) [see

Rice (1984)], which considers a sum of squared local residuals

1

n� 1

n

X

i=2

R

2

i;n

;

where

R

i;n

=

1

p

2

(Y

i

� Y

i�1

):(3.2)

Under smoothness assumptions on the regression and variance function we have

E[R

2

i

] =

1

2

[m(t

i

)�m(t

i�1

)]

2

+

1

2

E[�(t

i

)"

i

� �(t

i�1

)"

i�1

]

2

� �

2

(t

i

):(3.3)

Therefore, the problem of testing the hypothesis of homoscedasticity (3.1) is (approximately)

equivalent to the problem of testing the hypothesis that the regression of the random variable

R

2

i;n

on the predictor t

i

is constant. This problem was extensively discussed in Section 2,

and it seems natural to apply one of the procedures developed in the previous sections to the

pseudo residuals R

2

i;n

: An obvious diÆculty in this construction of the test statistic is that

all procedures cited above are derived under the assumptions of independent innovations, but

the calculation of pseudo residuals produces obviously m-dependent random variables. In the

following section we will indicate that nevertheless this basic idea can be successfully applied

for the construction of a test for heteroscedasticity with some additional technical diÆculties

in the asymptotic analysis.

3.2 Tests for homoscedasticity using di�erence based type variance

estimators

Recall the situation of Example 2.1, where the test statistic for a constant regression is de�ned in

(2.6). Following the discussion of the last paragraph we propose as a measure of homoscedaticity

the statistic

^

V

2

n

=

1

(n� 3)

n�2

X

j=2

R

2

j;n

R

2

j+2;n

�

�

1

(n� 1)

n

X

j=2

R

2

j;n

�

2

;(3.4)
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where the pseudo residuals are de�ned in (3.2). Note that there is a small modi�cation in

(3.4), where we replaced R

2

j+1;n

by R

2

j+2;n

in (2.6). This replacement substantially simpli�es

the asymptotic analysis of the statistic

^

V

2

n

[see Dette and Munk (1998c)]. If the regression and

variance function and the functions

m

3

(t) = E[("(t))

3

] ; m

4

(t) = E[("(t))

4

](3.5)

are Lipschitz continuous of order  > 0 it follows that

^

V

2

n

is an asymptotically unbiased estimate

for a measure of homoscedasticity

M

2

�

:= min

a2R

+

Z

1

0

(�

2

(t)� a)

2

f(t)dt =

Z

1

0

�

4

(t)f(t)dt�

�

Z

1

0

�

2

(t)f(t)dt

�

2

:

These results suggest a simple test for heteroscedasticity in the nonparametric regression model.

The null hypothesis (3.1) is rejected for large values of the statistic

^

V

2

n

; where

^

V

2

n

is the empirical

L

2

-distance de�ned in (3.4). Our main result of this section shows that

^

V

2

n

(appropriately stan-

dardized) is asymptotically normally distributed, even under the alternative of heteroscedastic-

ity. A detailed proof is rather involved and can be found in Dette and Munk (1998c). For the

sake of brevity we will in the following only display the results for pseudo residuals of order 1

[see Section 2.2], however, we mention that analoguous results can be proved for higher order

[see Dette (2001) and Munk, Wagner, Scholz and Bissantz (2001)]. The comparison of proce-

dures with residuals of di�erent order is similar to the case of testing parametric assumptions

concerning the regression functions. Again, asymptotic most eÆcient di�erence schemes can

be determined [see Munk, Wagner, Scholz and Bissantz (2001) for more details].

Theorem 3.1. If the functions m, �

2

, m

3

and m

4

are Lipschitz continuous of order  >

1

2

;

then, as n!1;

4

p

n(

^

V

2

n

�M

2

�

)

D

=)N(0; v

2

�

);(3.6)

where the asymptotic variance is given by

v

2

�

=

Z

1

0

n

(6m

2

4

(t) + 4m

4

(t) + 6)�

8

(t) + 64m

4

(t)�

4

(t)(�

2

(t)� ��

2

)

2

(3.7)

� 8m

2

3

(t)�

6

(t)(�

2

(t)� 2��

2

)

o

f(t) dt

and ��

2

=

R

1

0

�

2

(t)f(t)dt:

Note that under the hypothesis of homoscedasticity in (3.1) this result simpli�es to

4

p

n

^

V

2

n

D

=)N

�

0; �

8

Z

1

0

f4m

4

(t) + 6m

2

4

(t) + 6 + 8m

2

3

(t)gf(t) dt

�

;(3.8)
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and in the case of normal responses we have from (3.7) that

v

2

�

= 24

n

11

Z

1

0

�

8

(t)f(t) dt� 16

Z

1

0

�

6

(t) f(t) dt ��

2

+ 8

Z

1

0

�

4

(t)f(t) dt ��

4

o

;

which reduces under the null hypothesis of homoscedasticity to v

2

�

= 72�

8

: A test for the classical

hypothesis of homoscedasticity can now easily be obtained by rejecting the null hypothesis in

(3.1) whenever 4

p

n

^

M

2

n

=v̂

�

> u

1��

, where u

1��

denotes the 1� � quantile of the standard

normal distribution and v̂

�

is an estimator of the limiting variance v

2

�

in (3.8). In principle this

can be done in a straightforward but tedious manner. To be precise de�ne

^

A

1;n

=

4

(n� 3)

n�2

X

j=2

R

4

j;n

R

4

j+2;n

;

^

A

2;n

=

2

(n� 5)

n�4

X

j=2

R

4

j;n

R

2

j+2;n

R

2

j+4;n

;(3.9)

^

A

3;n

=

2

(n� 3)

n�2

X

j=2

R

4

j;n

R

2

j+2;n

;

^

A

4;n

=

2

(n� 1)

n

X

j=2

R

4

j;n

;(3.10)

^

A

5;n

=

2

9(n� 5)

n�3

X

j=3

(R

j;n

� R

j�1;n

)

3

(R

j+3;n

�R

j+2;n

)

3

;(3.11)

^

A

6;n

=

2

9(n� 7)

n�5

X

j=3

(R

j;n

� R

j�1;n

)

3

(R

j+3

� R

j+2;n

)

3

R

2

j+5;n

;(3.12)

^

S

2k;n

=

1

(n� 2k + 1)

n�2k+2

X

j=2

R

2

j;n

: : : R

2

j+2k�2;n

; k = 1; 2; 3; 4;(3.13)

then it follows that

^

A

1;n

; : : : ;

^

A

6;n

and

^

S

2k;n

are consistent estimators of

Z

1

0

(m

4

(t) + 3)

2

�

8

(t) f(t) dt;

Z

1

0

(m

4

(t) + 3)�

8

(t) f(t) dt;

Z

1

0

(m

4

(t) + 3)�

6

(t) f(t) dt;

Z

1

0

(m

4

(t) + 3)�

4

(t) f(t) dt;

Z

1

0

m

2

3

(t)�

6

(t) f(t) dt;

Z

1

0

m

2

3

(t)�

8

(t) f(t) dt;

Z

1

0

�

2k

(t) f(t) dt (k = 1; 2; 3; 4);

respectively. The estimator of v

2

�

is then obtained in a straightforward manner as an appropriate

linear combination, i.e.

v̂

2

n

= 6

^

A

1;n

+ 32

^

A

2;n

� 128

^

A

3;n

^

S

2;n

+ 64

^

A

4;n

^

S

2

2;n

+ 16

^

A

5;n

^

S

2;n

� 8

^

A

6;n

(3.14)

� 144

^

S

8;n

+ 384

^

S

6;n

^

S

2;n

� 192

^

S

4;n

^

S

2

2;n

:

Under the hypothesis of homoscedasticity we obtain from (3.8)

~v

2

n

= 6

^

A

1;n

� 32

^

A

2;n

+ 48

^

S

8

2;n

+ 8

^

A

6;n

(3.15)
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as a consistent estimator of v

2

�

. A consistent test for the classical null hypothesis of homoscedas-

ticity is now easily obtained from Theorem 3.1 by rejecting the null hypothesis of homoscedas-

ticity, whenever

4

p

n

^

T

2

n

~v

n

> u

1��

;(3.16)

where ~v

2

n

is the estimator of the asymptotic variance under the assumption of homoscedasticity

de�ned in (3.15), u

1��

denotes the upper (1� �) quantile of the standard normal distribution,

and

^

T

2

n

=

^

V

2

n

+

1

n� 1

f

^

A

4;n

�

^

S

2

2;n

g:(3.17)

The remainder term in (3.17) corresponds to the second order approximation of E[

^

V

2

n

]: This

correction is recommended because a numerical study (not displayed) showed that a better

approximation of the �nite sample distribution is achieved with

^

T

2

n

in (3.17) instead of

^

V

2

n

.

The performance of this test is illustrated by a detailed simulation study in Dette and Munk

(1998c).

Remark 3.2. We mention that all statistical issues raised in Section 1 can be answered by

similar arguments a given in Section 2.3. For example, the second part of Theorem 3.1 provides

the possibility to estimate the type II error of the test in (3.16) as

P ("H

0

is accepted") � �

 

u

1��

~v

n

� 4

p

n

^

T

2

n

v̂

n

!

;(3.18)

where � denotes the standard normal c.d.f. and ~v

n

; v̂

n

are consistent estimators of the asymp-

totic variance under the null hypothesis and alternative, respectively [see (3.8) and (3.7)] .

Observe, in addition, that the asymptotic power function of the test in (3.16) is invariant with

respect to rescaling the variance function �

2

(t) by a constant c > 0: Hence the power is not

a�ected by the magnitude of the variance rather by its deviation from a constant.

Again Theorem 3.1 can be used for the construction of tests of precise hypotheses and con�dence

intervals for the measure of heteroscedasticity M

2

�

: For example, a (1� �)-con�dence interval

for M

2

�

is given by

[0;

^

T

2

n

+

u

1��

v̂

n

4

p

n

);

where v̂

2

n

is a consistent estimator of the asymptotic variance under the alternative of het-

eroscedasticity [see (3.7)].

3.3 A test of homoscedasticity using kernel based methods

Following the discsussion in Section 3.1 we use a modi�ed version of a kernel based test of

constant regression for the construction of a test of homoscedasticity. For technical reasons we
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follow the approach of Zheng (1997) illustrated in Remark 2.7 and de�ne

W

n

=

1

(n� 1)(n� 2)h

X

ji�jj�2

K(

t

i

� t

j

h

)(R

2

i;n

�R

2

n

)(R

2

j;n

�R

2

n

)(3.19)

where K denotes a kernel [see Section 2.5 for more details], h is a bandwidth and

R

2

n

=

1

n� 1

n

X

i=2

R

2

i;n

(3.20)

is the mean of the pseudo residuals de�ned in (3.2). A generalization of the statistic W

n

which

is based on pseudo residuals of larger order turns out to be asymptotically more eÆcient and

can be found in Dette (2001). The probabilistic properties ofW

n

will be derived in the following

Theorem.

Theorem 3.3. Assume that E[j"(t)j

8

) � c < 1 for all t 2 [0; 1], that the regression and

variance function are Lipschitz continuous of order  � 1=2 and that n!1, h! 0, nh

2

!1:

(i) Under the hypothesis (3.1) of homoscedasticity we have for the statistic W

n

de�ned in

(3.19)

n

p

hW

n

D

=) N (0; �

2

0

);(3.21)

where the asymptotic variance is given by

�

2

0

= 2�

8

Z

K

2

(x)dx

Z

1

0

m

2

4

(x)f

2

(x)dx :(3.22)

(ii) Under the alternative of heteroscedasticity we have

p

n

n

W

n

�

1

h

Z Z

K(

x� y

h

)�(x)�(y)f(x)f(y)dxdy

o

D

�! N (0; �

2

1

);(3.23)

where the asymptotic variance is given by

�

2

1

= 4

Z

1

0

m

4

(x)�

4

(x)f(�f)(x)��fg

2

f(x)dx;(3.24)

the function � denotes the deviation of �

2

(�) from its mean, i.e.

�(x) = �

2

(x)�

Z

1

0

�

2

(t)f(t)dt ;(3.25)

and �f the corresponding mean of �f = � � f with respect to the design density, i.e.

�f =

Z

1

�1

�(x)f

2

(x)dx:(3.26)
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Note that the bias in (3.23) has the expansion

E[W

n

] =M

2

(h) + o(1);

where

M

2

(h) =

1

h

Z Z

K(

x� y

h

)(�f)(x)(�f)(y)dxdy =

Z

1

0

�

2

(x)f

2

(x)dx+ o(1)(3.27)

and � is de�ned in (3.25). The right hand side is of order o(1) if and only if the hypothesis of

homoscedasticity is satis�ed, and we obtain a consistent test by rejecting the hypothesis (3.1)

of homoscedasticity if

n

p

hW

n

> u

1��

^

�

0;n

;(3.28)

where u

1��

denotes the (1 � �) quantile of the standard normal distribution and

^

�

2

0;n

is any

consistent estimator for the asymptotic variance (3.22). A simple estimator is obtained by

similar arguments as in the previous section

^

�

2

0;n

= 2(

^

A

1;n

� 6

^

A

2;n

+ 9(R

2

n

)

4

)

Z

K

2

(x)dx(3.29)

where R

2

n

is de�ned in (3.20) and

^

A

1;n

,

^

A

2n

are given in (3.9). A simulation study illustrating

the �nite sample properties of a bootstrap version of this test can be found in Dette (2001).

4 Summary, conclsuions and further remarks

We have tried to argue, that the problem of assesing the goodness of �t, if treated as a testing

problem, is conceptually di�erent from most of the testing problems established in statistical

praxis and theory. The paradigm to choose the null hypothesis in such a way that only strong

empirical evidence should force us to switch to an alternative can be reparaphrased in goodness

of �t problems in two completely di�erent ways.

1. Choose the null hypothesis as the model to be investigated, because in this case rejection

will imply more complicated modelling or giving up a well accepted theory. In general, a

wrong rejection will lead to a loss in eÆcency in the subsequent statistical analysis.

2. Choose the model to be investigated as the alternative because controlling the error of

acceptance of a model, albeit wrong, is the more serious error. This is, e.g. due to

subsequent inconsistent data analysis, i.e. a loss of consistency.

We believe, that both formulations have their relative merits, depending of the sort of data

analysis to be performed. In this paper, we summarized the required limit laws (based on a

speci�c and subjective selection of test statistics) in two particular cases: testing parametric

assumptions about the signal and the variance in regression models with continuous response

and independent observations.
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We are aware of the fact, that testing model assumptions is basically a questionable proceeding

and it is not diÆcult to attack both approaches, 1. and 2., by means of more fundamental

arguments, e.g. from a Bayesian perspective. Nevertheless, often goodness of �t tests are

applied and will be applied in the future. Hence, we o�er to add a bit more understanding of

the particular test selected for a problem by considering its associated neighborhood hypotheses

and con�dence intervals for the underlying measure of discrepancy between the true model and

hypothetical model space. This forces us, to consider the type of distance implicitely chosen

by each test and its own view on the data. In all examples discussed (we have also investigated

various other test statistics, which show a similar behaviour), this is displayed in the asymptotic

mean and variance under violation of the null model. Hence, our proposal is to estimate these

quantities in order to inspect whether decision in favour of a model is based on empirical grounds

or simply because the chosen test has not enough power to detect the underlying deviation from

the null model, due to small sample size or large variabilty of data, say. This can simply be

done, because we found always asymptotic normality of all statisics under consideration. This

is in contrast to the asymptotic distribution of many other goodnes of �t statistics for the

hypothesis "the model M holds true" where often complicated convolutions of �

2

-laws are

required for the analysis.

Finally, we mention once again that the construction of asymptotic con�dence intervals for the

underlying measures of discrepancy is intrinsically related to this approach and requires the

same limit laws.
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