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Abstract

In this paper a projection pursuit method is developed which deter-

mines optimal multivariate latent factor models based on a exible loss

function. This way, the unknown model coeÆcients are estimated with

respect to optimal predictive power. The speci�cation of the loss function

in practical applications is discussed. The method is illustrated by means

of simulation examples.
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1 Introduction

The target of this paper is to construct the minimum number of latent variables

corresponding to a speci�ed loss function which are suÆcient to describe the

dependency of certain response variables on certain possibly inuencing factors.

The basic ideas are two-fold. On the one hand side the paper is based on

ideas for estimating so-called reduced rank models in which latent variables are

searched for in both response variables and inuencing factors (cp. Schmidli,

1995, and for a more recent overview Reinsel and Velu, 1998). These ideas are

applied to the construction of best prediction oriented models in which only

latent factors are assumed. This is realized, on the other hand, by constructing

best orthogonal latent variables corresponding to certain prediction oriented loss

functions by means of simulated annealing, a general search method for function

optimization (cp. e.g. Press et al., 1992a, and R�ohl et.al., 2002) implemented

to �nd the best loadings matrix with optimal rank and orthogonal scores.

�
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The paper is organized as follows. In section 2 the models to be dealt

with will be introduced. Section 3 presents the basic ideas for constructing

prediction optimal latent factor models. Section 4 derives the criterion for the

best prediction oriented loadings matrix with orthogonal scores. In section 5 the

side condition of orthogonality of scores is discussed. Sections 6 and 7 present

the optimization algorithm, and section 8 some simulation results. In section 9

the paper is concluded.

2 Predictions with multivariate linear models

Particularly in the case of more than one response variable methods for

optimal prediction withmultivariate multiple models are of interest. The

various prediction methods, on the one hand side, di�er in the optimality crite-

rion judging the predictive power of a model. On the other side, the methods

di�er with respect to various restrictions on the models taken into account.

In principal components regression, e.g., only linear models with princi-

pal components as regressors are taken into account. In general, multivariate

multiple linear models are de�ned as follows.

Multivariate multiple linear model

Let Y the data matrix of the m response variables and X the data

matrix of the K inuential factors, both with n observations with

respect to the same objects. The multivariate multiple linear model

has then the form :

Y = XA+E, where

A is a matrix of unknown coeÆcients, and

E is the matrix of model errors.

If it is assumed that the structure of the matrix of coeÆcients is not re-

stricted and that the model errors are iid and normal, then the least squares

estimator has the desirable property that each response can be treated indi-

vidually estimating the coeÆcients. Thus, we can restrict ourselves to multiple

linear models for one response variable.

Moreover, this argument uncovers the most important reasons for multivari-

ate prediction in linear models:

� dependent model errors: the model errors of the di�erent response

variables are dependent, e.g. when the responses were measured in the

same experiment or at the same object,

� dependent coeÆcients: the model coeÆcients of the di�erent responses

are related to each other, e.g. when some of them are restricted to be

equal or when the matrix of coeÆcients does not have maximum rank, or

is restricted by a side condition.

In what follows, we exclusively consider an especially important multivariate

model with a coeÆcients matrix with reduced rank. It is assumed that the

expectation of the responses is linearly dependent on (a small number of) so-

called latent (or implicit) variables, which are themselves linear combinations

of the original factors. This leads to the so-called latent factor model, in which

the coeÆcients matrix is of a special form.
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Multivariate multiple linear latent factor model

Let Y the data matrix of m (mean centered) responses and X the

data matrix of K (mean centered) inuential factors, each with n

observations at the same objects. Amultivariate multiple linear

latent factor model has then the form:

Y = ZB +E = XGB +E, where

Z := XG is an n � r-matrix of the scores of r latent factors with

r < K and Z

0

Z = I ,

G;B are K � r - and r � m - matrices of unknown coeÆcients,

respectively, and

E is the matrix of model errors.

The matrix G is called the matrix of factor loadings.

Note that these latent factor models should not be mixed with the reduced rank

models also well-known from the literature where the matrix product GB is a

full-rank decomposition of the overall coeÆcients matrix with G and B both

having rank r (cp. e.g. Schmidli, 1995, p. 55). This model type is generated

from, e.g., canonical correlation analysis and redundancy analysis (cp. e.g.

Schmidli, 1995, p. 61-64). Note that the rank restriction on the coeÆcient

matrix B in reduced rank models implies that r � m, i.e. that the number

of latent factors relevant to the responses Y is not greater than the number

of responses. Instead, our models are asymmetrical in that only latent factors

are assumed, and m might well be < r. This way, e.g., principal components

regression models are enclosed even for the case, e.g., of one response and two

principal components.

3 Predictions with latent factor models

In the following, we �rst introduce a theoretical measure discussed for predictive

power for reduced rank models (cp. Schmidli, 1995), which is then applied to

our latent factor models. This measure is based on the de�nition of simultaneous

predictions in p points, given here for latent factor models. In this de�nition it is

assumed that in the latent factor model there is no restriction on the matrix of

coeÆcients B of the latent factors Z so that least squares estimation is adequate.

Note that this, in particular, makes the di�erence to reduced rank models where

the matrix B has to have the same rank as the loadings matrix G.

Point prediction for latent factor models

For a known �xed p�K-matrix of inuential factorsX

0

= (x

10

: : : x

p0

)

0

the point prediction for a corresponding realization Y

0

= (y

10

: : : y

p0

)

0

of the p�m-matrix of random variables Y

1

; : : : ; Y

m

based on training

data X = (x

1

: : : x

n

)

0

and Y = (y

1

: : : y

n

)

0

is de�ned by the expecta-

tion of Y

0

based on least-squares estimations of the unknown model

coeÆcients B with respect to X and Y :

^

Y

0

:= Z

0

^

B = X

0

(G

^

B) =: X

0

^

A, where

^

B := Z

0

Y = (XG)

0

Y .

Note that the least squares estimates of the coeÆcients B have the above simple

form since the score matrix Z is assumed to be orthogonal, i.e. Z

0

Z = I . The

following class of measures for the predictive power is based on a fairly general

class of loss functions.
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Measures for predictive power

A loss function for the assessment of predictive power is de�ned

as:

V

�

(Y

0

) =

1

p

k(Y

0

�

^

Y

0

)�

�0:5

k

2

F

:=

1

p

trace((Y

0

�

^

Y

0

)

0

(Y

0

�

^

Y

0

)�

�1

),

where � is a deliberately speci�able, but �xed m�m weight matrix.

kAk

F

is called Frobenius-norm of the matrix A.

For the mean assessment of predictive power of a prediction model

often the expected loss (the so-called risk) is used. Note that

the (conditional) expectation is taken both with respect to Y

0

given

X

0

, and with respect to Y given X , where the responses given the

factors are assumed to be independently identically distributed. This

expected loss is often called Mean Squared Expected Prediction error

(MSEP):

MSEP :=

1

m

E

Y jX

E

Y

0

jX

0

k(Y

0

�

^

Y

0

)�

�

1

2

k

2

F

.

Obviously, these loss functions are minimal, when the point predictions are co-

incident with the realizations of the response variables in all relevant prediction

situations. Note that the MSEP is de�ned as a conditional expectation, condi-

tional on X and X

0

.

One problem of the predictive power measure MSEP is that the distribution

of the responses most of time is at least partially unknown. In such cases,

usually one of the following three methods is used:

� the �t method: one chooses Y

0

= Y (and X

0

= X)

� the asymptotic method: one tries to develop asymptotic approxima-

tions for MSEP;

� the resampling method: one uses resampling algorithms such as cross

validation or bootstrapping for the approximation of MSEP. This method

is explained in more detail in section 6.

By di�erent choices of the weight matrix � one obtains di�erent model selec-

tion criteria. One possible choice for � is the covariance matrix of the measure-

ment errors of the responses. A motivation for such a choice would be, that the

inuential factors are assumed �xed (conditional considerations), and, thus, the

point predictions di�er only by the measurement errors from the realizations of

the responses.

In some special cases the form of the covariance matrix of measurement

errors can be derived from the type of the performed experiment. The structure

of the weight matrix � is, thus, determined by the data structure of the studied

problem (cp. Schmidli, 1995, p. 59).

1. Covariance matrix �

0

of the measurement errors known:

If the responses are measured in a routine experiment, sometimes one

can deduce estimates of the size of the measurement errors from repeated

former experiments. If such estimates are exact enough, they can be used

to derive reliable estimates of the error covariance matrix.

2. Covariance matrix proportional to identity matrix I:

If all responses are measured by means of the same measurement proce-

dure, it is often plausibel to assume that all measurement errors are of the
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same size. If additionally the measurements of di�erent responses are ob-

tained in di�erent experiments, then the measurement errors of di�erent

responses can be assumed independent. Altogether, this leads to an error

covariance matrix proportional to the identity matrix.

3. Covariance matrix diagonal: If the responses are measured in di�erent

experiments, but with di�erent measurement procedures, then a diagonal

error covariance matrix appears plausibel which is not necessarily propor-

tional to the identity matrix.

4. Covariance matrix unrestricted positive de�nite: If the responses

are measured in the same experiment, then the measurement errors are

correlated in general. If no further information about the measurement

errors is available, then one tends to assume invertibility at least.

4 Estimation of the loadings matrix

Since

^

B := Z

0

Y = (XG)

0

Y = G

0

X

0

Y was assumed to be the least squares

estimate, only the loadings matrix G is to be estimated. In order to optimally

estimate the matrix G, the predictive power measure in section 3 is used.

We will start, though, with the �t method introduced above. Thus, we will

replace X

0

; Y

0

by X;Y . Then, we obtain the following loss function to assess a

loadings matrix G:

V

�

(Y ) : =

1

p

k(Y �XGG

0

X

0

Y )�

�0:5

k

2

F

=

1

p

trace((Y �XGG

0

X

0

Y )�

�1

(Y �XGG

0

X

0

Y )

0

):

In special cases, from this loss function one obtains well-known criteria for the

estimation of G for �xed rank r which lead to analytical solutions when

normal errors and r � min(m;K) are assumed (cp. Schmidli, 1995, pp. 58-63).

(2) In the case 'Covariance matrix proportional to the identity ma-

trix I' one obtains the so-called redundancy analysis RDA. An equivalent

formulation of the corresponding optimization problem reads: trace(XG)

0

(Y C) =

max!, where (XG)

0

(XG) = I and C

0

C = I:

(4) In the case 'Covariance matrix unrestricted positive de�nite' one

obtains the so-called canonical correlation analysis CCA. An equivalent for-

mulation of the corresponding optimization problem reads: trace(XG)

0

(Y C) =

max!, where (XG)

0

(XG) = I and (Y C)

0

(Y C) = I:

Let us now turn to oblique prediction criteria. For the determination of

the optimal rank r in the literature it is proposed to use the MSEP criterion

in the following way (Schmidli, 1995, p. 87):

MSEP

�

(r) :=

1

p

E

Y jX

E

Y

0

jX

0

k(Y

0

�X

0

^

G

r

(Y )

^

G

r

(Y )

0

X

0

Y )�

�0:5

k

2

F

where the observations are sequentially preliminarily eliminated from the data

set to be utilized as (Y 0; X0), and only the rest of the observations is used to

produce the estimate

^

G

r

(Y ) of the matrix G

r

(cross validation). Thus,

^

G

r

(Y )

is exclusively based on Y so that implicitly Y

0

is set to Y in the criterion and
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one of the above cited analytical solution methods might be used. Then, the

rank r is determined by minimizing MSEP

�

(r). In this way, a method for the

construction of an approximately optimal model corresponding to the prediction

criterion can quite easily be employed.

In this paper, though, we propose a more general procedure, namely to

estimate the matrix

^

G

r

directly by means of the general prediction

criterion, i.e. by minimizing the general MSEP criterion avoiding to use Y

0

= Y

anywhere. This way, a much more suitable model can be built in that the

prediction generated by the constructed model is guaranteed to be optimal. The

loss function for the assessment of the predictive power of a matrix G

r

of rank r can be written as follows:

V

�

(G

r

) =

1

p

k(Y

0

�X

0

G

r

G

0

r

X

0

Y )�

�

1

2

k

2

F

,where (XG

r

)

0

(XG

r

) = Ir

The corresponding expected loss has then the form:

MSEP

�

(r) :=

1

p

E

Y jX

E

Y

0

jX

0

k(Y

0

�X

0

G

r

G

0

r

X

0

Y )�

�0:5

k

2

F

; (1)

where (XG

r

)

0

(XG

r

) = I

r

Here, the whole matrix G

r

is to be optimized over all possible ranks r.

The speci�cation of the weight matrix � should not be restricted. The matrix

G

r

projects the original data X into an r-dimensional subspace of the original

K-dimensional space. What we thus look for, is an optimal projection.

5 Feasible loadings matrices

As a preparation for the construction of general test problems for the above

minimum-norm problem (1) with side condition we determine the general solu-

tion of the side condition for �xed rank r. In passing we show that the value of

the loss function stays equal in certain solution classes.

For the determination of a solution G

r

of the side condition (XG

r

)

0

(XG

r

) =

I

r

we exploit the singular value decomposition of the matrix (X

0

X):

X

0

X = V �V

0

:

Let V

r

the matrix with the �rst r columns of the orthonormal matrix V and

�

rr

be the diagonal matrix with the �rst r rows and columns of the diagnonal

matrix �.

Then, a �rst solution of the side condition is G

r

:= V

r

�

�0:5

rr

since

(XG

r

)

0

(XG

r

) = G

0

r

X

0

XG

r

= G

0

r

V �V

0

G

r

= �

�0:5

rr

V

0

r

V �V V

r

�

�0:5

rr

= �

�0:5

rr

(I

r

0)�(I

r

0)

0

�

�0:5

rr

= �

�0:5

rr

�

rr

�

�0:5

rr

= I

r

Note that �

rr

is assumed to be invertible. In order that this is true for all

r � K, we assume for the moment that X has maximum column rank, i.e. that

rank(X) = K.

Thus, the (normalized) �rst r principal components V

r

are one solution

of the side condition of the optimization problem. This idea can, however, be

easily extended to a more general class of solutions.
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Let U := V W , where W is assumed to have maximum column rank, i.e.

rank(W ) = K: Then let G

r

:= U

r

(W

0

�W )

�0:5

rr

= (V W

r

)(W

0

r

�W

r

)

�0:5

, where

W

r

is the matrix with the �rst r columns of W , and (W

0

�W )

rr

the matrix with

the �rst r rows and columns of the matrix (W

0

�W ). This implies:

(XG

r

)

0

(XG

r

) = G

0

r

X

0

XG

r

= G

0

r

V �V

0

G

r

= ((W

0

r

�W

r

)

�0:5

)

0

W

0

r

V

0

(V �V

0

)V W

r

(W

0

r

�W

r

)

�0:5

= ((W

0

r

�W

r

)

�0:5

)

0

(W

0

r

�W

r

)(W

0

r

�W

r

)

�0:5

= I

r

:

Note that rank(X) = K together with rank(W ) = K guarantees that (W

0

r

�W

r

)

�1

exists for all r � K.

Examples for such W are so-called permutation matrices, which inter-

change the ordering of the columns of a matrix when multiplied from the right.

In this way, U

r

can contain any r columns of V . Note that this corresponds

to the standard practice of principal component regression to choose the

best predicting principal components, and not just the �rst r components as

predictors. But note moreover that more general W are allowed, too.

Let us now consider the case of a rank de�cient matrix X . In this case

there are additive transformations of a feasible loadings matrix G

r

not only

leading to feasible loadings matrices again but also to equivalent loadings

matrices, i.e. to the same utility function value. In such cases, there exists a

whole manifold of matrices F

r

equivalent to some feasible G

r

. Indeed, assume

that X = X

b

C is a full rank decomposition of X , i.e. X

b

has maximum

column rank R � K so that the columns of X

b

build a basis of the range of X ,

and C has maximum row rank. Then let H

r

any r(� R) dimensional solution

of

CH

r

= 0, i.e. let the columns of H

r

be any elements of the null space of C.

Then

F

r

= G

r

+H

r

has the property

CF

r

= C(G

r

+ H

r

) = CG

r

, which implies XF

r

= X

b

CF

r

= X

b

CG

r

= XG

r

.

Thus,

(XF

r

)

0

(XF

r

) = (XG

r

)

0

(XG

r

) = I

r

; i.e. feasibility is retained, and

V

�

(F

r

) =

1

p

k(Y

0

� (X

0

F

r

)(XF

r

)

0

Y )�

�0:5

k

2

F

=

1

p

k(Y

0

� (X

0

G

r

)(XG

r

)

0

Y )�

�0:5

k

2

F

= V

�

(G

r

);

i.e. the loss is equal for G

r

and all F

r

.

Example: Let K = 2; r = 1, and X = x

b

c

0

, where x

b

is a basis (column)

vector of the range of X , and c

0

is a row vector. Then for any given loadings

vector g

1

the vectors f

1

= g

1

+h

1

with c

0

h

1

= 0 are equivalent loadings vectors.

Thus, the equivalent vectors are lying on a line in IR

2

.

Independent of the rank of X there are other equivalent loadings matrices.

Indeed, if an r dimensional subspace is �xed by means of G

r

, then it is easy to

show that the value of the above loss function stays constant when this solution

G

r

is transformed by means of an r dimensional orthonormal transformation
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H

r

, an r � r matrix. Let F

r

= G

r

H

r

, H

0

r

H

r

= I

r

= H

r

H

0

r

, then

V

�

(F

r

) =

1

p

k(Y

0

�X

0

F

r

F

0

r

X

0

Y )�

�0:5

k

2

F

=

1

p

k(Y

0

�X

0

G

r

H

r

(G

r

H

r

)

0

X

0

Y )�

�0:5

k

2

F

=

1

p

k(Y

0

�X

0

G

r

H

r

H

0

r

G

0

r

X

0

Y )�

�0:5

k

2

F

=

1

p

k(Y

0

�X

0

G

r

G

0

r

X

0

Y )�

�0:5

k

2

F

= V

�

(G

r

)

Obviously, this property is even valid independent of the validity of the side

condition for the matrix G

r

! Thus, by means of r dimensional orthonor-

mal transformations equivalence classes of loadings matrices G

r

are

de�ned in any case.

Note that the existence of equivalence classes leads to problems with re-

producibility, i.e. in simulation experiments one generally should not expect

to reproduce the matrix G

r

used for data generation by means of the solver of

the mininum-norm problem. On the other hand, models with matrices X with

non-de�cient rank and no model errors can be used to check algorithms

constructed to determine the optimal loadings matrix G. Indeed, for such mod-

els it is clear that the minimal model error is zero even in subsamples, since by

construction it is valid that

Y = XGB with (XG)

0

(XG) = I .

In subsamples X

s

the restriction (X

s

G)

0

(X

s

G) = I might not be valid, though.

However, if X

s

G has maximum column rank, X

s

G can be orthonormalized by

an invertible matrix T . Then,

(X

s

GT )

0

(X

s

GT ) = I and

Y

s

= X

s

GB = X

s

GTT

�1

B = (X

s

GT )B

s

with B

s

= T

�1

B as the new coeÆ-

cient matrix.

Thus, an algorithm to determine the optimal loadings matrix should �nd a

matrix with (at least nearly) zero model error.

Example: In the case K = 2; r = 1, G has only one column, and the matrix

T is a scalar 6= 0. Therefore, the angle between the optimal loadings vector and

the line through the vector G is zero.

Note that the found equivalence classes neither depend upon the weight matrix

�, nor on the values of the responses in Y or Y

0

, whereas the value of the

minimum-norm criterion, and thus the optimum, very well depends on these

matrices.

6 Projection pursuit

In order to solve the minimum-norm problem under the side condition, we pro-

pose a search method constructed to �nd the optimal projection. Such methods

are often called projection pursuit methods. Basically, the method looks as

follows:

1. Generate a random subsample (X;Y ) from the observations.
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2. Mean centering of X , subtract the mean of X , also from X

0

.

3. As the MSEP is a conditional expectation it is necessary in a simulation

study to generate di�erent values for Y and Y

0

with the same partition in

X and X

0

to estimate the MSEP correctly - when G is not linear function

of X;Y . This is done by adding di�erent values of E { according to the

error structure { to generate Y and Y

0

. With real data this can be done

by a bootstrap method.

4. Mean centering of Y , subtract the mean of Y , also from Y

0

.

5. Determine for each rank r the minimum-norm optimal G

r

for this sample,

where it is guaranteed that (XG

r

)

0

(XG

r

) = I

r

.

6. Repeat step 3-5 often.

7. Repeat the �rst six steps suÆciently often.

8. Estimate the expected loss by means of the mean over all samples.

9. Choose the optimal G

r

, i.e. the optimal rank r.

One candidate for the optimization method to be used in the second step is

simulated annealing (Bohachevsky et al., 1986). The problem with this method,

and with every search method, is to guarantee the side condition. A feasible

starting matrix is known from section 5, namely G

r

:= V

r

�

�0:5

rr

. Also based

on section 5, at the moment we restrict ourselves to problems of the optimal

choice of a maximum column rank matrix W which transforms the eigenvector

matrix V . In order to guarantee maximum column rank we even restrict our-

selves to orthonormal transformation matrices W . Then, the side condition is

automatically ful�lled. Thus, projection pursuit has to look for that W that

minimizes the expected loss (1). If in a search step the generated transforma-

tion matrix W is not orthonormal, the Gram-Schmidt method can be used for

post-orthonormalisation. The success of a step is judged only after such an

orthonormalisation. Based on these ideas the optimization algorithm can be

described as follows.

7 The optimization algorithm

We now discuss the optimization algorithm for the entries in the transformation

matrix W of the loadings matrix G

r

:= V

r

�

�0:5

rr

to minimize the expected loss

(1) for �xed rank r in detail. Simulated annealing is used for this task since it

does not need derivatives and since it has proved to overcome local minima.

In physics it is well-known that freezing and crystallizing of liquids overcomes

local energy minima. This strategy serves as the prototype for a computer

program. To model the natural procedure, we need a con�guration space (a

discrete or continuous domain), a mechanism which describes how to get from

one con�guration to another and a cooling schedule describing how to decrease

the temperature T (T

0

! T

1

! : : : ! T

n

! : : :). In a concrete optimization,

the temperature T is not a physical quantity but an abstract parameter which

controls the optimization.
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In our problem, the con�guration space is IR

K

2

, the space of vectorized trans-

formation matrices w. In our algorithm, the cooling schedule is a simple linear

scheme, and at each parameter value T a markov chain based on a stochastic

version of the well-known Nelder/Mead search algorithm (see below) serves as

the transition mechanism between succeeding con�gurations. At each param-

eter value T { beginning at any con�guration w

0

{ we start a markov chain.

This chain generates random realizations (after some burn-in period) from a

density proportional to �(w) = exp(�V

�

(W )=T ), where the loss function V

�

is

expressed as a function of the transformation matrix W corresponding to the

vector w.

A trial point w

p

is chosen according to the stochastic Nelder/Mead tran-

sition function q(w

0

; w

p

). The eÆciency of the optimization algorithm de-

pends on this transition function and on the cooling schedule. The transition

function `explores' the con�guration space. Information about this space en-

hances the search. The trial point is accepted with probability �(w

p

)=�(w

0

) =

exp(�(V

�

(W

p

) � V

�

(W

0

))=T )). In this way, in our problem transformations

leading to a decrease of loss are accepted in any case, but also transforma-

tions increasing the loss are accepted with some probability. This is the reason,

why simulated annealing is able to overcome local optima and thus avoids the

selection of multiple starting points.

After a number of steps in the markov chain, the parameter T

n

will be

decreased by the simple linear scheme T

n+1

= �T

n

; 0 < � < 1, and a new chain

will be created (the starting point of the new chain is the end point of the last

one).

We use an implementation of the simulated annealing algorithm based on

a routine in `Numerical Recipes in C' (Press et al., 1992a). In this routine the

transition function is a stochastic version of the search algorithm of Nelder and

Mead (Press et al., 1992b). This algorithm encloses the optimum by shrinking

simplices. The shrinking is proportional to the parameter T

n

. Therefore, as

T

n

approaches zero, the allowed movements will be more and more local, and

the algorithm converges to the next optimum. In this respect, the cooling

schedule `encodes' the size of the neighborhood that can be visited from a point

of the markov chain. Because of the bigger values of the parameter T in the

beginning of the procedure there is a good chance that this optimum is a global

one. This algorithm had to be somewhat extended because in each search step

the generated loadings matrix needs to be orthonormal. Therefore, the Gram-

Schmidt method is used for post-orthonormalisation of W . The success of a

step is judged only after this orthonormalisation.

For the not yet speci�ed parameters of the simulated annealing procedure we

have chosen the following values: T

0

= 0:5 (section 8.1), and 0.01 (section 8.2).

� = 0:8 and the number of iterations in the markov chain at each temperature

is 100. The minimum temperature is 1E�07.

8 Simulation

8.1 Rank check

We performed the following simulation experiment to check whether our algo-

rithm �nds the correct rank of G for the identity as the weight matrix �.
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1. Generate a design matrix X

all

= (X

0

X

0

0

)

0

: We use a 100� 7 matrix with

independent realizations of a binomial (B(10; 0:5)) distribution. Note that

it is not the intention to generate random design matrices here, but to use

a simple method to create simulation datasets. X

all

should be interpreted

as �xed.

2. Mean centering of X

all

.

3. Generate the true loadings matrix G

r

, r = 3 (cp. section 5): In simu-

lations 1 G

r

:= V

r

�

�0:5

rr

is used, whereas in simulations 2 we use G

r

:=

(V W

r

)((W

�1

)

(r)

�W

r

)

�0:5

, where W is a realization of a random matrix

equal to the right singular vectors of a matrix with independent binomial

(IB(10; 0:2)) entries. Again, the intention of this choice of the �xed `true'

W was technical.

4. Generate a matrix of the response variables: We generate a 100�2 matrix

Y

all

= X

all

G

r

B where the r � p matrix B is �lled columnwise with the

entries 1; : : : ; rp = 3�2 = 6. Note that r = 3 is not smaller thanmin(m;K)

so that we are not dealing with a reduced rank model but only with what

we call a latent factor model. Generate the learning and test samples: We

use random 50% splits.

5. Mean centering of subsample X , use the estimate of the mean of X to

center X

0

.

6. We use two variants of the simulations, 1 and 2, respectively, namely with-

out error E and with an error matrix E with independent realizations of

a 2-dimensional normal distribution with expectation zero and a diagonal

covariance matrix with diagonal entries 0.1 and 0.001, respectivly. Note

that the maximum error is a factor 30 smaller than the maximum response

value. Thus, errors are small.

7. Mean centering of subsample Y , use the estimate of the mean of Y to

center Y

0

.

8. Repeat steps 6-8 �ve times.

9. Apply the optimization algorithm to generate the optimal loadings matrix

for ranks 1; 2; : : : ;K�1. Note that in simulations 1 for r = 3 the iteration

should (at least in principle) stop in the starting point, if the structure of

the subsample would be near to the structure of the whole sample.

10. Repeat steps 4-9 twenty times

11. From these 100 replications estimate the mean loss function for the di�er-

ent ranks.

12. Determine the best rank based on the average losses.

The results of this simulation experiment are very promising. The optimum

rank was between 3 and 6, but the di�erence between the loss 3 till 6 is more

or less negliable { except for simulation 2 with no errors.
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Table 1: Mean loss for ranks 1-6

sim var 1 2 3 4 5 6

1 0 6.47E�03 3.79E�05 9.94E�08 1.61E�08 2.34E�08 1.10E�08

1 0.001 8.17E�03 1.99E�03 1.94E�03 1.96E�03 2.01E�03 2.05E�03

1 0.1 2.01E�01 1.89E�01 1.89E�01 1.89E�01 1.89E�01 2.02E�01

2 0 6.51E�03 4.06E�04 1.82E�06 2.31E�08 2.35E�08 1.27E�08

2 0.001 9.91E�03 2.20E�03 1.93E�03 1.95E�03 1.99E�03 2.05E�03

2 0.1 2.06E�01 1.89E�01 1.89E�01 1.89E�01 1.89E�01 2.00E�01

8.2 Loadings check

In order to check whether the correct loadings are generated by the algorithm

we simulated a model with K = 2; r = 1, and a matrix X with non-de�cient

rank (= 2). In this case the optimal loss is zero and the angle of the optimal

loadings vector to the line through the vector G used for the generation of the

observations of Y is zero, too (cp. section 5). To check this, we performed the

following simulation experiment again using the identity as the weight matrix

1. Generate a design matrix X

all

: We use a 300�2 matrix with independent

realizations of a binomial (B(10; 0:5)) distribution in both columns.

2. Mean centering of X

all

.

3. Generate the true loadings matrix G

r

; r = 1, as G

r

:= V

r

�

�0:5

rr

.

4. Generate a vector of the response variables: We generate a 100-vector

Y

all

= X

all

G

r

B, where the scalar B is equal to 1 .

5. Generate the learning and test samples: We use random 50% splits.

6. Mean centering of subsample X and Y , use the estimate of the mean of

X to center X

0

and the mean of Y to center Y

0

respectively.

7. Apply the optimization algorithm to generate the optimal loadings matrix

for rank 1.

8. Repeat steps 4 and 5 one hundert times.

9. Determine the maximum deviation of the found optimal losses from zero.

10. Determine the distribution of the angles of the found optimal loadings

vectors to the line through the true loadings vector G

r

.

As there is no error in this model it is not necessary to generate di�erent Y and

Y

0

.

The results are very promising, too, since the maximum loss is 2:5E � 28,

and the maximum angle is 1:2E � 06.
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9 Conclusion

In this paper we developed a projection pursuit procedure for the optimization

of a exible prediction oriented loss function to estimate a latent factor model

optimal corresponding to this criterion. In order to demonstrate the power

of this method we ran two simulation experiments. In these experiments the

optimal rank as well as the correct loadings matrix was found, respectively.

Overall, the results are very promising. Further research will include systematic

simulations as well as a generalization to nonlinear models.
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