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Abstract

In the common trigonometric regression model we investigate the E-optimal de-

sign problem on the interval [c; d]. It is demonstrated that this problem can be

reduced to the consideration of the corresponding design problem for the model on

the interval [�a; a]; 0 < a � �. In a second step it is shown that the structure of the

optimal design for the symmetric design space [�a; a] depends sensitively on the size

of the design space and for most cases the E-optimal designs can be found explicitly.

Moreover, in the remaining situations a functional approach is proposed and used for

the numerical determination of E-optimal designs. The results are illustrated in the

linear, quadratic and cubic regression model, for which a complete solution is given.

AMS Subject Classi�cation: 62K05

Keywords and Phrases: trigonometric regression, E-optimality, optimal design for estimat-
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1 Introduction

Trigonometric regession models of the form

y =

�

0

p

2

+

m

X

j=1

�

2j�1

sin(jt) +

m

X

j=1

�

2j

cos(jt) + "; x 2 [c; d]; c < d(1.1)
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(d � c � �) are widely used to describe periodic phenomena [see e.g. Mardia (1972),

Graybill (1976) or Kitsos, Titterington and Torsney (1988)] and the problem of designing

experiments for Fourier regression models has been discussed by several authors [see e.g.

Hoel (1965), Karlin and Studden (1966), page 347, Fedorov (1972), page 94, Hill (1978), Lau

and Studden (1985), Riccomagno, Schwabe and Wynn (1997), Dette and Haller (1998)].

While most authors concentrate on the design space [��; �] much less attention has been

paid to the case of a smaller design space [see e.g. Hill (1978)]. This situation is of

practical importance because in many applications it is impossible to take observations on

the full circle [��; �]: We refer for example to Kitsos, Titterington and Torsney (1988),

who investigated a design problem in rhythmometry involving circadian rhythm exhibited

by peak expiratory ow, for which the design region has to be restricted to a partial cycle

of the complete 24-hour period. Optimal designs for estimating some of the individual

coeÆcients in the trigonometric regresion model (1.1) have been found explicitly by Dette

and Melas (2001). Recently Dette, Melas and Pepelyshe� (2001) determined D-optimal

designs for the trigonometric regression numerically.

Due to the minimax structure of the E-optimality criterion explicit results for E-optimal

designs in regression models are only available in speci�c situations. Most authors con-

centrate on the polynomial case or models with a very similar structure [see Melas (1982),

Pukelsheim and Studden (1993), Dette (1993), Heiligers (1994, 1998), Chang and Heiligers

(1996) or the recent work of Imhof and Studden (2001)]. In the present paper we present a

further model, for which the E-optimal designs can be found explicitly in nearly all cases.

In Section 2 we demonstrate that the problem of determining E-optimal designs in the

trigonometric regression model (1.1) on the the interval [c; d] can be reduced to the corre-

sponding design problem on the symmetric interval [�a; a], where 0 < a � �. It is then

shown that the structure of the E-optimal design depends sensitivley on the size a of the

interval [note that this is similar to the polynomial case, see Melas (2000)]. In Section 2 and

3 we �nd the E-optimal designs explicitly, whenever a 2 [�a; a]n(a; a), where a; a are given

constants depending on the degree of the regression. Moreover, it is demonstrated that the

range a � a not covered by these results is usually rather small. Section 4 contains the

discussion of the the linear trigonometric regression model, for which the optimal designs

can be found explicitly in all cases. Finally, Section 5 deals with models of degree larger

than one in the remaining case a 2 (a; a), and the functional approach proposed in Melas

(2000) is used to �nd the E-optimal designs numerically in these cases.

2 Preliminary results and E-optimal designs on large

design spaces

Consider the common regression model

y =

k

X

j=0

�

j

f

j

(x) + " ; x 2 X ;(2.1)

where the explanatory variable varies in the compact design space X ; f

0

; : : : ; f

k

are contin-

uous and linearly independent regression functions and observations at di�erent points are
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assumed to be independent. An approximate design is a probability measure � on X (or on

its Borel �eld) with �nite support [see Kiefer (1974)], where the observations are taken at the

support points proportional to the weights of � at these points. If f(x) = (f

0

(x); : : : ; f

k

(x))

T

denotes the vector of regression functions, the covariance matrix of the least squares es-

timator for the parameter � = (�

0

; : : : ; �

k

)

T

based on uncorrelated observations from an

approximate design is approximately proportional to the inverse of the information matrix

M(�) =

Z

X

f(t)f

T

(t)d�(t) ;(2.2)

and an optimal design maximizes an appropriate concave function of this matrix [see e.g.

Fedorov (1972), Silvey (1980) or Pukelsheim (1993)]. In the present paper we are interested

in the E-optimality criterion, which is given by

�(�) = �

min

(M(�)) ;(2.3)

where �

min

(A) denotes the minimum eigenvalue of a symmetric matrix A 2 R

k+1�k+1

. Note

that maximizing � is equivalent to minimizing the function

1

�(�)

= �

max

(M

�1

(�)) = max

kak

2

=1;a2R

k+1

a

T

M

�1

(�)a:

The expression a

T

M

�1

(�)a is proportional to the variance of the least squares estimate for

the linear combination a

T

� (a 2 R

k+1

) and therefore an E-optimal design minimizes the

worst variance over all possible (normalized) linear combinations.

It follows by standard arguments [see e.g. Pukelsheim (1993)] that an E-optimal design

exists. For an E-optimal design �

E

we de�ne P

�

E

as the eigenspace corresponding to the

minimal eigenvalue �

min

(M(�

E

)) and

P =

\

�

E

isE-optimal

P

�

E

(2.4)

as the intersection of all eigenspaces corresponding to E-optimal designs. It can easily be

veri�ed that P 6= ; and the following Lemma gives a characterization for E-optimal designs

[for a proof we refer to Melas (1982) or Pukelsheim (1993)].

Lemma 2.1. A design �

�

is E-optimal for the regression model (2.1) if and only if there

exists a nonnegative de�nite matrix A

�

2 R

k+1�k+1

such that trA

�

= 1 and

max

x2X

f

T

(x)A

�

f(x) � �

min

(M(�

�

)):(2.5)

Moreover, if x

�

is a support point of �

�

; there is equality in (2.5), i.e.

f

T

(x

�

)A

�

f(x

�

) = �

min

(M(�

�

))
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and the matrix A

�

can be represented as

A

�

=

s

X

i=1

�

i

z

i

z

T

i

;(2.6)

where z

1

; : : : ; z

s

is an orthonormal basis of the set P de�ned in (2.4), s = dimP and

�

1

; : : : ; �

s

� 0 with

P

s

i=1

�

i

= 1:

In the speci�c situation of the trigonometric regression model (1.1) we have X = [c; d],

f

0

(t) = 1=

p

2, f

2j

(t) = cos(jt) (j = 1; : : : ; m) and f

2j�1

(t) = sin(jt) (j = 1; : : : ; m). Note

that we use a slightly di�erent parametrization of the intercept, but most of our results are

also valid for the trigonometric regression model with f

0

(t) = 1. Our �rst result shows that

the E-optimal design in the trigonometric regression model is essentially invariant with

respect to transformations of the design space by an additive shift.

Lemma 2.2. Let

� =

 

t

1

: : : t

n

w

1

: : : w

n

!

denote a design on the interval [c; d], a = (c + d)=2 and �

�

be the design obtained by the

linear transformation t! t� a; i.e.

�

�

=

 

t

1

� a : : : t

n

� a

w

1

: : : w

n

!

;

then the information matrices M(�) and M(�

�

) in the trigonometric regression model (1.1)

have the same eigenvalues, in particular

�

min

(M(�)) = �

min

(M(�

�

)):

Proof: Let f(t) = (1=

p

2; sin t; cos t; : : : ; sin(mt); cos(mt))

T

; then we have for any � 2 R

f(t+ �) = P (�)f(t)

where P (�) is a (2m+ 1)� (2m+ 1) (block) matrix given by

P (�) =

0

B

B

B

B

@

1

p

2

Q(�)

.

.

.

Q(m�)

1

C

C

C

C

A
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with

Q(�) =

 

cos � sin�

� sin� cos �

!

2 R

2�2

:

Because P (�) is orthogonal the matrices M(�) and

M(�

�

) =

Z

a

�a

f(t)f

T

(t)d�

�

(t) =

Z

d

c

f(t� a)f

T

(t� a)d�(t) = P (�a)M(�)P

T

(�a)

have the same eigenvalues and the assertion of the Lemma has been established. 2

From the proof of Lemma 2.2 it follows that for any �

p

-criterion in the sense of Pukelsheim

(1993) the solution of the �

p

-optimal design problem for the trigonometric regression model

(1.1) on the interval [c; d] can be obtained from the solution of the corresponding problem

on the interval [�a; a] and a linear transformation. For this reason we will restrict our sub-

sequent investigations about E-optimal designs to symmetric intervals of the form [�a; a];

where 0 < a � �: Note that in general an E-optimal design for the trigonometric regression

model (1.1) on the interval [�a; a] is not necessarily unique. For example, it follows by

Lemma 2.1 that for the full circle [�a; a] = [��; �] any design with information matrix

M

�

= I

2m+1

= diag(

1

2

;

1

2

;

1

2

; : : : ;

1

2

) 2 R

2m+1�2m+1

(2.7)

is E-optimal. In particular any design of the form

�

�

n

=

 

t

1

: : : t

n

1

n

: : :

1

n

!

(2.8)

with n � 2m+ 1 and

t

j

= �� +

2j � 1

n

� ; j = 1; : : : ; n ;(2.9)

has information matrix M

�

[see Pukelsheim (1993)] and is therefore E-optimal for the

trigonometric regression model (1.1) on the interval [��; �]: In the following we will prove

that the E-optimal design for the trigonometric regression model is unique, provided that

the design space is suÆciently small.

To this end let �

(1)

(a)

denote the set of all designs of the form

� = �(a) =

 

�t

m

: : : �t

1

t

0

t

1

: : : t

m

w

m

2

: : :

w

1

2

w

0

w

1

2

: : :

w

m

2

!

;

where 0 = t

0

< t

1

< : : : < t

m�1

< t

m

= a and w

j

> 0 (j = 0; : : : ; m) such that

P

m

j=0

w

j

= 1:

Furthermore, de�ne

�

(2)

(a)

=

n

� j supp(�) � [�a; a]; 9A

�

2 PD(2m+ 1) : trA

�

= 1;(2.10)

f

T

(t)A

�

f(t) = �

min

(M(�)) 8 t 2 [�a; a]

o

;

5



where PD(2m+1) denotes the set of all positive de�nite (2m+1)� (2m+1) matrices. A

straightforward calculation shows �

�

2m+1

2 �

(2)

(a)

, and with the aid of Lemma 2.1 it is easy

to see that the design �

�

2m+1

de�ned in (2.8) is E-optimal for the trigonometric regression

model (1.1) on the interval [�a; a]; whenever a > �a, where

�a = �a(m) = �(1�

1

2m+ 1

)(2.11)

denotes the largest support point of the design �

�

2m+1

. The following result shows that

E-optimal designs for the trigonometric regression model (1.1) on the interval [�a; a] are

either in the set �

(1)

(a)

or in �

(2)

(a)

depending on the sign of the quantity a� �a.

Theorem 2.3. If a 2 [�a; �]; then any E-optimal design for the trigonometric regression

model (1.1) on the interval [�a; a] is contained in the set �

(2)

(a)

de�ned in (2.10). If a 2 (0; �a),

then the E-optimal design for the trigonometric regression model on the interval [�a; a] is

unique and contained in the set �

(1)

(a)

: Moreover, � 2 �

(2)

(a)

if and only if the information

matrix of � is of the form (2.7).

Proof: Let �

�

denote an E-optimal design for the trigonometric regression model on the

interval [�a; a] (0 < a � �); then it follows by similar arguments as given in the proof of

Lemma 2.2 of Dette, Melas and Pepelyshe� (2001) that

�

�

2 �

(1)

(a)

[ �

(2)

(a)

(we only have to replace the equivalence theorem for D-optimality by Lemma 2.1). The

same arguments show that if an E-optimal design for the trigonometric regression model

(1.1) on the interval [�a; a] belongs to the set �

(1)

(a)

; then it is the unique E-optimal design

on [�a; a]:

We start proving the last assertion of the theorem. If a > �a; then the design �

�

2m+1

de�ned

in (2.8) is E-optimal for the trigonometric regression on the interval [�a; a] and therefore

satis�es M(�

�

2m+1

) = M

�

; where M

�

is given in (2.7). Consequently, any design � on the

interval [�a; a] with M(�) = M

�

must also be E-optimal and satis�es � 2 �

(2)

(a)

:

Conversely, let

� =

 

t

1

t

2

: : : t

n

w

1

w

2

: : : w

n

!

denote an arbitrary design on the interval [�a; a]; then it is easy to see that the information

matrix of � in the trigonometric regression model (1.1) satis�es

(M(�))

11

=

1

2

; tr(M(�)) = m+

1

2

:(2.12)

6



Now assume additionally that � is E-optimal and a > �a; then the E-optimality of the

design �

�

2m+1

in (2.8) implies

�

min

(M(�)) = �

min

(M(�

�

2m+1

)) = �

min

(M

�

) =

1

2

:

On the other hand we have from the well known estimates (M(�))

ii

� �

min

(M(�)) =

1

2

and

the equations in (2.12)

m +

1

2

=

2m+1

X

i=1

(M(�))

ii

�

1

2

(2m+ 1) = m +

1

2

;(2.13)

which shows

(M(�))

ii

=

1

2

; i = 1; : : : ; 2m+ 1:(2.14)

In the next step let � = (M(�))

ij

= (M(�))

ji

denote the element in the position (i; j) of

the information matrix of the design �; where 1 � i 6= j � 2m + 1; and de�ne

p =

1

p

2

(e

i

� sign(�)e

j

);

where e

i

2 R

2m+1

denotes the ith unit vector. Then kpk

2

2

= 1 and we obtain

1

2

= �

min

(M(�)) � p

T

M(�)p =

1

2

(1;�sign(�))

 

1

2

�

�

1

2

! 

1

�sign(�)

!

=

1

2

� j�j �

1

2

;

which implies � = (M(�))

ij

= 0, whenever 1 � i 6= j � 2m + 1. Consequently the

information matrix of any E-optimal design is diagonal, i.e. M(�) =

1

2

I

2m+1

.

Now let a < �a; then it follows from the recent results of Dette, Melas and Pepelyshe�

(2001) that for any design � on the interval [�a; a]

detM(�) < (

1

2

)

2m+1

[see the proof of Theorem 3.3 in the same reference]. Because any E-optimal design �

�

in �

(2)

a

satis�es detM(�

�

) = detM

�

= 2

�2m�1

; there are no E-optimal designs on the

interval [�a; a], which belong to the set �

(2)

a

(if a < �a). Consequently, by the discussion at

the beginning of the proof the E-optimal design is unique and an element of the set �

(1)

a

:

Finally, if a > �a we have shown that the information matrix of the E-optimal design for the

trigonometric regression model (1.1) is unique and equal to the matrix M

�

=M(�

�

2m+1

) =

1

2

I

2m+1

; where the design �

�

2m+1

is de�ned by (2.8). Because �

�

2m+1

2 �

(2)

a

it follows from

the de�nition (2.10) that any E-optimal design belongs to the set �

(2)

a

:

2

7



Note that Theorem 2.3 provides a solution of the E-optimal design problem in the trigono-

metric regression model (1.1) on the interval [�a; a] whenever a > �a = �(1� 1=(2m+ 1)):

In this case the solution is not necessarily unique. However, the information matrix corre-

sponding to E-optimal designs is unique although the E-criterion (considered as a mapping

on the positive de�nite matrices) is not strictly concave. If a < �a the E-optimal design on

the interval [�a; a] is unique and will be described explicitly in the following section, if the

parameter a is suÆciently small.

3 E-optimal designs on suÆciently small intervals

Throughout this paper let

T

k

(x) = cos(k arccos x) ; k 2 N

0

;(3.1)

denote the k-th Chebyshev polynomial of the �rst kind [see Rivlin (1974)] which are or-

thogonal with respect to the arcsine distribution, i.e.

2

�

Z

1

�1

T

i

(x)T

j

(x)

dx

p

1� x

2

=

8

>

<

>

:

1 if i = j � 1

2 if i = j = 0

0 if i 6= j

(3.2)

It is well know [see Rivlin (1974)] that T

k

(x) is the unique solution of the extremal problem

min

a

0

;:::;a

k�1

2R

max

x2[�1;1]

j2

k�1

x

k

+ a

k�1

x

k�1

+ : : :+ a

1

x + a

0

j ;

and in particular we have equality at the Chebyshev points s

i

= cos(i�=k); i.e.

T

k

(s

i

) = (�1)

i

; i = 0; : : : ; k:(3.3)

Throughout this paper let � = cos a 2 [�1; 1), de�ne

x

i

= x

i

(a) =

1� �

2

s

i

+

1 + �

2

; i = 0; : : : ; m ;(3.4)

as the extremal points of the Chebyshev polynomial of the �rst kind

T

m

�

2x� 1� �

1� �

�

=

q

a0

p

2

+

m

X

i=1

q

ai

T

i

(x)(3.5)

on the interval [�; 1] and

t

i

= t

i

(a) =

1

a

arccos x

i

; i = 0; : : : ; m:(3.6)

We will consider designs of the form

^

�

a

=

 

�at

m

: : : �at

1

t

0

at

1

: : : at

m

ŵ

m

2

: : :

ŵ

1

2

ŵ

0

ŵ

1

2

: : :

ŵ

m

2

!

(3.7)
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as candidate for the E-optimal design in the trigonometric regression model (1.1) on the

interval [�a; a] (note that

^

�

a

2 �

(1)

(a)

): The weights in (3.7) are given by

ŵ

i

= ŵ

i

(a) =

jq

T

a

F

�1

e

i

j

P

m

j=0

jq

T

a

F

�1

e

j

j

; i = 0; : : : ; m;(3.8)

where e

i

2 R

m+1

denotes the (i + 1)th unit vector, the vector q

T

a

= (q

a0

; : : : ; q

am

) 2 R

m+1

is de�ned by the representation (3.5) and the matrix F 2 R

m+1�m+1

is given by

F =

0

B

B

B

B

@

1

p

2

1

p

2

: : :

1

p

2

T

1

(x

0

) T

1

(x

1

) : : : T

1

(x

m

)

.

.

.

.

.

.

.

.

.

.

.

.

T

m

(x

0

) T

m

(x

1

) : : : T

m

(x

m

)

1

C

C

C

C

A

:(3.9)

The following result speci�es some properties of the design de�ned in (3.7) and (3.8) and

is the main tool for proving its E-optimality for suÆciently small design spaces [�a; a]:

Lemma 3.1. Let

^

�

a

denote the design de�ned by (3.7) and (3.8), then the following

statements are correct.

(i) If 0 < a � �=2; then the weights ŵ

i

= ŵ

i

(a) can be represented as

ŵ

i

= �

a

(�1)

i

2

�

Z

1

�1

`

i

(x)T

m

�

2x� �� 1

1� �

�

dx

p

1� x

2

;

where the constant �

a

is given by

�

a

=

1

q

T

a

q

a

;(3.10)

the vector q

T

a

= (q

a0

; : : : ; q

am

) is de�ned in the representation (3.5) and

`

i

(x) =

Y

j 6=i

x� x

j

x

i

� x

j

(3.11)

denotes the ith Lagrange interpolation polynomial with knots x

0

; : : : ; x

m

given by (3.4).

(ii) For all a 2 (0; �] the quantity �

a

de�ned in (3.10) is an eigenvalue of the matrix

M(

^

�

a

) with corresponding eigenvector �q

a

= (q

a0

; 0; q

a1

; 0; : : : ; 0; q

am

)

T

:

(iii) The support points and weights de�ned by (3.6) and (3.8), respectively, satisfy

lim

a!0

t

i

(a) = cos

�

�

m� i

2m

�

i = 0; : : : ; m(3.12)

lim

a!0

ŵ

i

(a) =

(

1

m

if i = 1; : : : ; m� 1

1

2m

if i = 0; m:

(3.13)
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Proof: Let w = (w

0

; : : : ; w

m

)

T

2 R

m+1

+

;

P

m

i=0

w

i

= 1 and

�

a

(w) =

 

�at

m

: : : �at

1

t

0

at

1

: : : at

m

w

m

2

: : :

w

1

2

w

0

w

1

2

: : :

w

m

2

!

an arbitrary design with positive weights at the points �at

i

(i = 0; : : : ; m): It was shown

in Theorem 4.1 and 4.3 of Dette and Melas (2001) that for a 2 (0; �=2] the optimal designs

�

(0)

,�

(2)

,: : :, �

(2m)

for estimating the individual coeÆcients �

0

; �

2

; : : : ; �

2m

, respectively, in

the trigonometric regression model (1.1) on the interval [�a; a] are of the form

�

(2j)

= �

a

(w

(j)

) ; j = 0; : : : ; m;(3.14)

where the weights w

(j)

= (w

(j)0

; : : : ; w

(j)m

)

T

are given by

w

(j)i

=

B

(j)i

P

m

s=0

B

(j)s

; i = 0; : : : ; m;(3.15)

and

B

(j)i

= (�1)

m+i�j

Z

1

�1

`

i

(x)T

j

(x)

dx

p

1� x

2

= (�1)

m+i+j

c

j

e

T

i

F

�1

e

j

(3.16)

with c

0

= �=

p

2; c

j

= �=2 (j = 1; : : : ; m): Note that we use a slightly di�erent notation for

the support points t

i

and weights w

(j)i

compared to the cited reference.

A similar argument as given in the proof of Lemma 2.2 of Dette and Melas (2001) shows

that the design �

�

(2j)

obtained by the transformation

�

�

(cos x) =

(

�(x) + �(�x) if 0 < x � a

�(0) if x = 0

(3.17)

is optimal for estimating the coeÆcient Æ

j

in the Chebyshev regression model

y =

Æ

0

p

2

+

m

X

j=1

Æ

j

T

j

(x) + " ;(3.18)

and the representation (3.5) in this paper and Lemma 2.1 in the cited reference show

q

2

aj

= e

T

j

M

�1

T

(�

�

(2j)

)e

j

; j = 0; : : : ; m;(3.19)

whereM

T

(�) denotes the information matrix of the design � in the model (3.18). Moreover,

recalling the de�nition of the matrix F in (3.9) it follows from Lemma 8.9 in Pukelsheim

(1993) that

q

2

aj

= e

T

j

M

�1

T

(�

�

(j)

)e

j

=

�

m

X

i=0

je

T

i

F

�1

e

j

j

�

2

=

�

m

X

i=0

(�1)

m+i+j

e

T

i

F

�1

e

j

�

2

(3.20)
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(j = 0; : : : ; m); where the last equality is obtained by a careful analysis of the sign pattern

in the matrix F

�1

observing that a 2 (0; �=2]: Because for a 2 (0; �=2] the sign of q

aj

is

(�1)

m�j

we obtain from the identity (3.20)

q

aj

=

m

X

i=0

(�1)

i

e

T

i

F

�1

e

j

; j = 0; : : : ; m ;(3.21)

and the second equality in (3.16) gives for the vector q

T

a

= (q

a0

; : : : ; q

am

)

T

q

T

a

F

�1

e

i

=

m

X

j=0

q

aj

(e

T

j

F

�1

e

i

)(3.22)

=

Z

1

�1

`

i

(x)

m

X

j=0

q

aj

c

j

T

j

(x)

dx

p

1� x

2

=

2

�

Z

1

�1

`

i

(x)T

m

�

2x� 1� �

1� �

�

dx

p

1� x

2

(i = 0; : : : ; m); where we have used the representation (3.5) and the fact that c

j

= �=2 (j =

1; : : : ; m); c

0

= �=

p

2: Moreover, observing that for a 2 (0; �=2] the sign of q

aj

and e

T

j

F

�1

e

i

is (�1)

m�j

and (�1)

m+i+j

; respectively, we obtain that the sign of q

T

a

F

�1

e

i

is (�1)

i

: Now

the polynomial in (3.5) attains the values (�1)

i

at the point x

i

(i = 0; : : : ; m) and it follows

T

m

�

2x� 1� �

1� �

�

=

q

a0

p

2

+

m

X

j=1

q

aj

T

j

(x) =

m

X

j=0

(�1)

j

`

j

(x):(3.23)

Combining these arguments yields

m

X

i=0

jq

T

a

F

�1

e

i

j =

m

X

i=0

(�1)

i

q

T

a

F

�1

e

i

(3.24)

=

2

�

m

X

i=0

(�1)

i

Z

1

�1

`

i

(x)T

m

�

2x� 1� �

1� �

�

dx

p

1� x

2

=

2

�

Z

1

�1

T

2

m

�

2x� 1� �

1� �

�

dx

p

1� x

2

= q

T

a

q

a

;

where the last equation is a consequence of the representation (3.5) and the orthogonality

relations (3.2). The assertion (i) of Lemma 3.1 now follows from the de�nition (3.8) and

the identity (3.22).

In order to prove the second assertion of Lemma 3.1 let P 2 R

2m+1�2m+1

denote a permu-

tation matrix such that

PM(

^

�

a

)P

T

=

�

M(

^

�

a

) :=

 

M

c

(

^

�

a

) 0

0 M

s

(

^

�

a

)

!

;(3.25)
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where the blocks in the matrix

�

M(

^

�

a

) are de�ned by

M

c

(�) =

Z

a

�a

f

c

(t)f

T

c

(t)d�(t) 2 R

m+1�m+1

;(3.26)

M

s

(�) =

Z

a

�a

f

s

(t)f

T

s

(t)d�(t) 2 R

m�m

;(3.27)

and the vectors f

c

(t) 2 R

m+1

and f

s

(t) 2 R

m

are given by

f

T

c

(t) = (1=

p

2; cos t; : : : ; cos(mt));(3.28)

f

T

s

(t) = (sin t; : : : ; sin(mt));(3.29)

respectively. Because the matrices

�

M(

^

�

a

) and M(

^

�

a

) have the same eigenvalues and its

corresponding eigenvectors are related by the transformation x ! Px the assertion (ii)

of Lemma 3.1 follows, if we prove that the vector ~q

a

= Pq

a

= (q

T

a

; 0

T

)

T

2 R

2m+1

is an

eigenvector of the matrix

�

M(

^

�

a

) with corresponding eigenvalue

�

a

= (~q

T

a

~q

a

)

�1

= (q

T

a

q

a

)

�1

:

But this follows easily observing that the sign of q

T

a

F

�1

e

i

is (�1)

i

for a 2 (0; �] and from

the representation of the weights ŵ

i

in (3.8) and (3.24), which gives

M

c

(

^

�

a

)q

a

=

m

X

i=0

f

c

(at

i

)f

T

c

(at

i

)ŵ

i

q

a

=

m

X

i=0

f

c

(at

i

)

1

q

T

a

q

a

q

T

a

F

�1

e

i

=

1

q

T

a

q

a

FF

�1

q

a

= �

a

q

a

:

Consequently, we obtain

�

M(

^

�

a

)~q

a

= �

a

~q

a

completing the proof of the second assertion of Lemma 3.1.

For the proof of the remaining third part recall that the sign of q

aj

and e

T

j

F

�1

e

i

is (�1)

m�j

and (�1)

m+i+j

, respectively. Then (3.21) implies for suÆciently small a

jq

aj

j =

m

X

i=0

je

T

j

F

�1

e

i

j ;

and from the �rst equation in (3.22) we have

(�1)

i

q

T

a

F

�1

e

i

= (�1)

i

m

X

j=0

jq

aj

j(�1)

m�j

je

j

F

�1

e

i

j(�1)

m+i+j

=

m

X

j=0

jq

aj

jje

j

F

�1

e

i

j:

12



A summation of these quantities yields for the weights of the design

^

�

a

de�ned in (3.7)

ŵ

i

=

jq

T

a

F

�1

e

i

j

P

m

j=0

jq

T

a

F

�1

e

i

j

=

m

X

j=0

w

(j)i

� �

j

(a) ; i = 0; : : : ; m ;

where

�

j

(a) =

jq

aj

j

2

P

m

s=0

jq

as

j

2

; j = 0; : : : ; m ;(3.30)

and the weights w

(j)i

are de�ned in (3.15), (3.16) and (3.20) corresponding to the optimal

design

�

(2j)

= �(w

(j)

) =

 

�at

m

: : : �at

1

t

0

at

1

: : : at

m

w

(j)m

2

: : :

w

(j)1

2

w

(j)0

w

(j)1

2

: : :

w

(j)m

2

!

for estimating the individual coeÆcient �

2j

in the trigonometric regression model (1.1) on

the interval [�a; a], whenever 0 < a < �=2. Note that we use the second representation

in (3.16) and the equation (3.20) to �nd this normalization. In other words: the design

^

�

a

is obtained as a convex combination of the optimal designs for estimating the individual

coeÆcients in the trigonometric regression model (1.1) on the interval [�a; a] (whenever

0 < a < �=2), that is

^

�

a

=

m

X

j=0

�

j

(a)�

(2j)

:(3.31)

If a! 0, the representation (3.5) implies that (� = cos a)

lim

a!0

(1� �)

m

q

a

= f 2 R

m+1

;(3.32)

where f = (f

0

; : : : ; f

m

)

T

6= 0 denotes the vector in the expansion

2

2m�1

(x� 1)

m

=

f

0

p

2

+

m

X

j=1

f

j

T

j

(x) :(3.33)

Consequently, we obtain from (3.30) for the weights in the convex combinaion (3.31)

lim

a!0

�

j

(a) = �

�

j

=

jf

j

j

2

P

m

i=0

jf

i

j

2

; j = 0; : : : ; m :(3.34)

Finally, Corollary 4.2 in Dette and Melas (2001) shows that for j = 0; : : : ; m the optimal

design �

(2j)

for estimating the individual coeÆcient �

2j

in the trigonometric regression

model (1.1) on the interval [�a; a] converges weakly in the following sense

lim

a!0

�

(2j)

([�a; at]) = �([�1; t]) ; t 2 [�1; 1] ;

where the limiting design � is given by

� =

 

�y

m

�y

m�1

: : : �y

1

y

0

y

1

: : : y

m�1

y

m

1

4m

1

2m

: : :

1

2m

1

2m

1

2m

: : :

1

2m

1

4m

!

(3.35)
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with

y

i

= cos

�

�(m� i)

2m

�

; i = 0; : : : ; m:

Consequently, equation (3.31) shows that

^

�

�

has the same weak limit, i. e.

lim

a!0

^

�

a

([�a; at]) = �[�1; t] ; t 2 [�1; 1] ;

and assumption (iii) of Lemma 3.1 follows by rewriting this statement in terms of the

support points and weights of the designs

^

�

a

and �, respectively. 2

Theorem 3.2. For suÆciently small a > 0 the design

^

�

a

de�ned in (3.7) and (3.8) is E-

optimal for the trigonometric regression model (1.1) on the interval [�a; a]. The minimum

eigenvalue is given by �

min

(M(

^

�

a

)) = �

a

where

�

�1

a

= q

T

a

q

a

=

2

�

Z

1

�1

T

2

m

�

2x� 1� �

1� �

�

dx

p

1� x

2

and the vector q

a

= (q

a0

; : : : ; q

a0

)

T

is de�ned by the expansion (3.5).

Proof: Recalling the de�nition of the design

^

�

a

in (3.7) and (3.8) , we will study the

asymptotic behaviour of the matrix

a

4m

M

�1

(

^

�

a

)

as a! 0. To this end let

U

k

(x) =

sin((k + 1)arccosx)

sin(arccos x)

k � 0(3.36)

denote the Chebyshev polynomial of the second kind and de�ne

u = u(t) =

2(1� cos t)

a

2

:

Obviously cos(kt) = T

k

(1 �

a

2

2

u), sin(kt)= sin t = U

k�1

(1 �

a

2

2

u) and consequently there

exists an (m + 1)� (m + 1) matrix S

(1)

and an m�m matrix S

(2)

such that the vector

�

f(t) =

�

f

T

c

(t); f

T

s

(t)

�

T

2 R

2m+1

can be represented as

�

f(t) = SA

~

f(u(t)) ;(3.37)

where

~

f(t) =

�

1

p

2

; u(t); : : : ; u

m

(t);

sin t

a

;

sin t

a

u(t); : : : ;

sin t

a

u

m�1

(t)

�

T

(3.38)
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and the matrices A and S are de�ned by

A = A(a) = diag

n

1;

a

2

2

; : : : ; (

a

2

2

)

m

; a; a(

a

2

2

) : : : ; a(

a

2

2

)

m�1

o

2 R

2m+1�2m+1

(3.39)

and

S =

 

S

(1)

0

0 S

(2)

!

2 R

2m+1�2m+1

;(3.40)

respectively. It is easy to see that the matrices S

(1)

, S

(2)

do not depend on the parameter

a and are lower triangular with nonvanishing diagonal elements. Consequently, we obtain

an alternative representation for the matrix

�

M(

^

�

a

) de�ned in (3.25)

�

M(

^

�

a

) = SA

~

M(

^

�

a

)AS

T

(3.41)

where

~

M(�) =

Z

~

f(t)

~

f

T

(t)d�(t) 2 R

2m+1�2m+1

:(3.42)

Now let

^

f(t) =

�

1

p

2

; t

2

; : : : ; t

2m

; t; t

3

; : : : ; t

2m�1

�

T

and de�ne for any design �

^

M(�) =

Z

^

f(t)

^

f

T

(t)d�(t)(3.43)

as the corresponding information matrix. From the expansions

1� cos(at) =

(at)

2

2

(1 + o(a)) and sin(at) = at(1 + o(a))

and (3.38) it is easy to see that

lim

a!0

~

f(at) =

^

f(t):

Consequently we obtain from the third part of Lemma 3.1 and the de�nition (3.42) that

lim

a!0

~

M(

^

�

a

) =

^

M(�)(3.44)

where � is the limiting design de�ned in (3.35). Moreover, from (3.39) we have

lim

a!0

(

a

2

2

)

m

A

�1

(a) = diag(0; : : : ; 0

| {z }

m

; 1; 0; : : : ; 0

| {z }

m

);(3.45)

which gives for the matrix

�

M(

^

�

a

) in (3.41)

lim

a!0

(

a

2

2

)

2m

�

M

�1

(

^

�

a

) = (S

T

)

�1

DS

�1

(3.46)

and for the corresponding (m+ 1)� (m+ 1) block

lim

a!0

(

a

2

2

)

2m

M

�1

c

(

^

�

a

) = (S

T

(1)

)

�1

D

(1)

S

�1

(1)

;(3.47)
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where the matrix D 2 R

2m+1�2m+1

is de�ned by

D =

 

D

(1)

0

0 0

!

with

D

(1)

= �e

m

e

T

m

2 R

m+1�m+1

;

e

m

= (0; : : : ; 0; 1)

T

2 R

m+1

,

� = e

T

m

^

M

�1

�

(�)e

m

:

and

^

M

�

(�) denotes the m+ 1�m+ 1 matrix formed by the �rst m+ 1 rows and columns

of the matrix

^

M(�) de�nd in (3.43). Because the matrices D and D

(1)

have rank one, the

matrices on the right hand sides of (3.46) and (3.47) have only one non-vanishing eigenvalue.

By the discussion at the end of the proof of Lemma 3.1 we have

lim

a!0

�

a

2

2

�

m

q

a

= f 6= 0 2 R

m+1

;

where the vector f is de�ned by the expansion (3.33). Similary, it follows for the eigenvalue

�

�1

a

of

�

M

�1

(

^

�

a

)

lim

a!0

�

a

2

2

�

2m

�

�1

a

= lim

a!0

�

a

2

2

�

2m

q

T

a

q

a

= f

T

f 6= 0:

Consequently, the continuous dependence of the eigenvalues of a matrix from its elements

[see Lancaster (1969)], formula (3.46) and (3.47) imply that for suÆciently small a the

matrices

(

a

2

2

)

2m

�

M

�1

(

^

�

a

); (

a

2

2

)

2m

M

�1

c

(

^

�

a

)

have a maximal eigenvalue of multiplicity 1, which is given by

(

a

2

2

)

2m

�

�1

a

:

In other words, the minimal eigenvalue �

a

of the matrix

�

M(

^

�

a

) has multiplicity 1, provided

that a is close to 0.

Now let 0 < a < �a be suÆciently small such that this property is satis�ed. By Lemma 3.1

(ii) the vector �q

a

= (q

a0

; 0; q

a1

; 0; : : : ; 0; q

am

)

T

is the eigenvector corresponding to �

a

and we

de�ne A

�

= �

a

�q

a

�q

T

a

. With these notations we have from (3.5)

max

t2[�a;a]

f

T

(t)A

�

f(t) = max

t2[�a;a]

(q

T

a

f

c

(t))

2

q

T

a

q

a

= max

x2[�;1]

T

m

(

2x�1��

1��

)

q

T

a

q

a

=

=

1

q

T

a

q

a

= �

a

= �

min

(

�

M(

^

�

a

)) = �

min

(M(

^

�

a

))

and the optimality of the design

^

�

a

follows from the equivalence theorem given in Lemma

2.1.
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Finally, the integral representation of �

�1

a

follows from the orthogonality properties (3.2)

of the Chebyshev polynomials and the representation (3.5), i. e.

�

�1

a

= q

T

a

q

a

=

m

X

i;j=0

q

ai

q

aj

2

�

Z

1

�1

b

j

T

i

(x)T

j

(x)

dx

p

1� x

2

=

2

�

Z

1

�1

�

q

a0

p

2

+

m

X

i=1

q

ai

T

i

(x)

�

2

dx

p

1� x

2

=

2

�

Z

1

�1

T

2

m

�

2x� 1� a

1� a

�

dx

p

1� x

2

;

where b

0

= 1=2, b

j

= 1, if j � 1.

2

The following Corollary is an immediate consequence of Theorem 3.2 and its proof.

Corollary 3.3. Let

a = a(m) = supfa > 0 j �

min

(M(

^

�

a

)) = �

a

g ;(3.48)

where �

a

is de�ned in (3.10). Whenever 0 < a < a, the E-optimal design for the trigono-

metric regression model (1.1) on the interval [�a; a] is given by the design

^

�

a

de�ned in

(3.7) and (3.8). Moreover

a = minfa

(1)

; a

(2)

g;(3.49)

where the quantities a

(1)

and a

(2)

are given by

a

(1)

= a

(1)

(m) = supfa > 0j�

min

(M

c

(

^

�

a

)) = �

a

g

(3.50)

a

(2)

= a

(2)

(m) = supfa > 0j�

min

(M

s

(

^

�

a

)) > �

a

g

The quantities a

(1)

, a

(2)

have been calculated numerically for lower order trigonometric

regression models and are listed in Table 1. Note that these values are rather close to the

upper bound �a = �(1� 1=(2m+ 1)) obtained in Section 2 and consequently Theorem 2.3

and Corollary 3.3 cover a rather large range of the interval (0; �] for the parameter a of

the design space [�a; a]. Moreover, the Table indicates that both values might be equal in

general and in Section 5 we will prove that a

(1)

= a

(2)

for all m 2 N .

Note that Table 1 does not contain the case m = 1, for which a complete analytic solution

is presented in the following section. For later purposes we require the following auxiliary

result, which is probably of independent interest.
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Table 1: Bounds �a, a = minfa

(1)

; a

(2)

g obtained in Sections 2 and 3. The E-optimal design

for the trigonometric regression model (1.1) on the interval [�a; a] can be found analytically,

whenever a 2 (0; a] [ [�a; �]

m a

(1)

a

(2)

�a

2 0.741� 0.741� 0.8�

3 0.794� 0.794� 0.857�

4 0.827� 0.827� 0.889�

5 0.851� 0.851� 0.909�

Lemma 3.4. Let 0 < a < �a = �(1� 1=(2m + 1)) and �

�

denote the E-optimal design for

the trigonometric regression model (1.1) on the interval [�a; a]. If the minimum eigenvalue

of the information matrix M(�

�

) has multiplicity 1, then

�

�

=

^

�

a

;

where the design

^

�

a

is de�ned in (3.7).

Proof: From Theorem 2.3 we have that the E-optimal design �

�

is unique and of the form

�

�

=

 

�t

�

m

: : : �t

�

1

t

�

0

t

�

1

: : : t

�

m

w

�

m

2

: : :

w

�

1

2

w

�

0

w

�

1

2

: : :

w

�

m

2

!

:

Now let

�

�

= �

min

(M(�

�

)) = minf�

min

(M

c

(�

�

)); �

min

(M

s

(�

�

))g

denote the minimum eigenvalue of the matrix M(�

�

) and consider at �rst the case where

�

�

= �

min

(M

c

(�

�

)). Obviously, �

�

is a simple eigenvalue of M

c

(�

�

) and we de�ne q =

(q

0

; : : : ; q

m

)

T

as the corresponding eigenvector. With the notation �q = (q

0

; 0; q

1

; 0; : : : ; 0; q

m

)

T

and A

�

= �q�q

T

=�q

T

�q it follows from Lemma 2.1 that (note the �

�

is E-optimal)

�

�

= max

t2[�a;a]

f

T

(t)A

�

f(t) = max

t2[�a;a]

(q

T

f

c

(t))

2

q

T

q

:

Consequently, the polynomial

	(x) = q

T

f

c

(arccos x)

attains its maximum absolute value in the interval [�; 1] at the m + 1 points x

�

i

= cos t

�

i

(i = 0; : : : ; m) and must coincide with the polynomial

�T

m

�

2x� 1� �

1� �

�

;
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which implies supp(�

�

) = supp(

^

�

a

), q = �q

a

and �

�

= �

a

= 1=q

T

a

q

a

. From the equation

M

c

(�

�

)q

a

= �

a

q

a

it is then easy to see that the weights w

�

i

must coincide with the weights of the design

^

�

a

given in (3.8) and it follows that �

�

=

^

�

a

.

Secondly, if �

�

= �

min

(M

s

(�

�

)) < �

min

(M

c

(�

�

)), then a similar argument shows that �

�

is

concentrated at 2m points, which is impossible. 2

4 Example: the linear trigonometric regression model

on a partial circle

In this section we study the linear trigonometric regression model on the interval [�a; a],

which indicates that even this relatively simple case is not trivial. Our next proposition

speci�es the E-optimal designs in the linear trigonometric regression model. In this case

it proves that a = �a and we will show in the following section that this equality only holds

in the linear case.

Proposition 4.1. Consider the linear trigonometric regression model (1.1) on the interval

[�a; a].

(i) If �a = 2�=3 � a � �, then an E-optimal design for the model (1.1) is given by

�

�

3

=

 

�2�

3

0

2�

3

1

3

1

3

1

3

!

:

(ii) If 0 < a � a = 2�=3, then the E-optimal design for the model (1.1) is unique and

given by

�

�

a

=

 

�a 0 a

�(a)

2

1� �(a)

�(a)

2

!

(4.1)

where

�(a) =

4 + 2 cos a

4 + 2(1 + cos a)

2

:(4.2)

Proof: The �rst point and the statement of uniqueness in (ii) follows from Theorem 2.3,

which also shows that the E-optimal design is of the form (4.1), whenever 0 < a < �a.

If a is suÆciently small, we can use Theorem 3.2 and Corollary 3.3 and obtain from the

representation of the weights by the �rst part of Lemma 3.1 [x

0

= 1, x

1

= � = cos a,
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q

a0

= �

p

2(1 + �)=(1� �), q

a1

= 2=(1� �)]

1� �(a) =

�

4 + 2(1 + �)

2

(1� �)

2

�

�1

2

�

Z

1

�1

x� �

1� �

n

q

a1

T

1

(x) +

q

a0

p

2

o

dx

p

1� x

2

=

= 2

1 + � + �

2

4 + 2(1 + �)

2

;

where we have used the orthogonality relation for the Chebyshev polynomials of the �rst

kind. The representation (4.2) now follows from a trivial calculation, i.e.

�(a) =

4 + 2�

4 + 2(1 + �)

2

:(4.3)

Note that this formula can also be obtained from the representation w

0

= q

T

a

F

�1

e

0

=q

T

a

q

a

,

where e

0

= (1; 0)

T

and

F =

 

1

p

2

1

p

2

1 �

!

:

A straightforward calculation shows that

�

a

=

(1� �)

2

4 + 2(1 + �)

2

(4.4)

is the minimum eigenvalue ofM

c

(

^

�

a

) and has multiplicity 1. Consequently the critical value

a can be obtained as

a = sup

n

a 2 (0; �a)j�

min

(M

c

(

^

�

a

)) < �

min

(M

s

(

^

�

a

))

o

= inf

n

a 2 (0; �a)j�

min

(M

c

(

^

�

a

)) = �

min

(M

s

(

^

�

a

))

o

;

which gives the equation

�

a

=

(1� �)

2

4 + 2(1 + �)

2

= �(a)(1� �

2

) =

4 + 2�

4 + 2(1 + �)

2

(1� �

2

) =

(1 + �)(4 + 2�)

1� �

�

a

;

where we have used the representation (4.3) and (4.4) for the last equalities. This yields

the equation 2�

2

+ 7�+ 3 = 0, which gives as unique solution in the interval [�1; 1]

cos a = � = �

1

2

; a =

2�

3

:

By Theorem 3.2 and Corollary 3.3 the E-optimal design for the trigonometric regression

model (1.1) on the interval [�a; a] is given by (4.1) and (4.2), whenever a 2 (0; a], which

proves part (ii) of the proposition. 2
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5 E-optimal designs on arbitrary intervals

As it was shown in Section 2 we can restrict the discussion of the E-optimal design problem

to the case of symmetric intervals [�a; a], 0 < a � �. For 0 < a � a = a(m) and

�a = �a(m) � a � � we have already received explicit solutions for the E-optimal design

problem in the trigonometric regression model (1.1) on the interval [�a; a]. Note that the

range (a; �a) not covered by these results is rather small (see Table 1) and consequently

explicit solutions of the E-optimal design problem are available for most cases. Moreover,

in Section 4 we have shown that in the linear trigonometric regression model with m = 1

we have a = �a = 2�=3 and a complete analytic solution is available in this case.

Now we will prove that form � 2 it follows that a < �a and elaborate a technique for the case

a < a < �a, which can be used for the numerical construction of E-optimal designs and is

based on a functional approach described in Dette, Melas and Pepelyshev (2000). Roughly

speaking this method shows that the support points and weights of the E-optimal design

are real analytic functions of the parameter a 2 (a; �a) and provides a Taylor expansion for

these functions, which can be used to �nd the E-optimal designs numerically. The method

will be illustrated for the quadratic and cubic trigonometric regression model at the end of

this section.

We begin with a reformulation of Lemma 2.1. To this end let us introduce the function

	(x) = 	(x; q; p) =

(q

T

f

(1)

(x))

2

+ (1� x

2

)(p

T

f

(2)

(x))

2

q

T

q + p

T

p

;(5.1)

where q = (q

0

; : : : ; q

m

)

T

2 R

m+1

is an arbitrary vector with q

m

= 1, p = (p

0

; : : : ; p

m�1

)

T

2

R

m

is an arbitrary vector and the functions f

(1)

(x) and f

(2)

(x) are de�ned by

f

T

(1)

(x) =

�

1=

p

2; T

1

(x); : : : ; T

m

(x)

�

;(5.2)

f

T

(2)

(x) = (U

0

(x); : : : ; U

m�1

(x)) :(5.3)

Due to Theorem 2.3 we can restrict our consideration to the case a < �a and designs � 2 �

(1)

a

.

The following result is a re�nement of Lemma 2.1 for the model at hand.

Lemma 5.1. For the trigonometric regression model (1.1) on the interval [�a; a] with

0 < a < �a the design

� =

 

�t

m

: : : �t

1

t

0

t

1

: : : t

m

w

m

2

: : :

w

1

2

w

0

w

1

2

: : :

w

m

2

!

;(5.4)

with t

0

= 0, t

m

= a is E-optimal if and only if there exist vectors q = q(a) = (q

0

; : : : ; q

m

)

T

2

R

m+1

with q

m

= 1 and a vector p = p(a) 2 R

m

, such that the inequality

	(x) = 	(x; q; p) � �

min

(M(�))(5.5)

holds for all x 2 [�; 1]; where the function 	(x; q; p) is de�ned in (5.1).
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Moreover, if a design � of the form (5.4) is E-optimal then these vectors are eigenvectors

of the matrices de�ned by (3.26) and (3.27) corresponding to the minimum eigenvalue

� = �

min

(M(�)) of the matrix M(�), that is

M

c

(�)q = �q; M

s

(�)p = �p;(5.6)

and

	(x

i

) = 	(cos a); ; i = 1; : : : ; m� 1 ;

	

0

(x

i

) = 0; ; i = 1; : : : ; m� 1 ;

(5.7)

where x

i

= cos t

i

, i = 0; 1; : : : ; m� 1.

The polynomial 	(x) is uniquely determined. The vectors p and q can be chosen such that

the polynomials

p

T

f

(2)

(x) and q

T

f

(2)

(x)

have interlacing roots and under this additional condition the vectors p and q are also

uniquely determined. If a 2 [0; a] it follows, that p = 0.

Proof. Let us prove that the inequality (5.5) is a necessary condition for E-optimality. To

this end assume that a design � of the form (5.4) is E-optimal and let A

�

be the matrix,

de�ned in Lemma 2.1, such that the inequality (2.5) is satis�ed.

Consider the function

	(x) = h(arc cosx);

where h(t) = f

T

(t)A

�

f(t), t = arc cosx. Note that due to Theorem 2.3 	(x) 6� const

whenever 0 < a < �a. Since

sin(k arccos x) =

p

1� x

2

U

k�1

(x)

and

cos(k arccos x) = T

k

(x);

it follows that 	(x) is a polynomial of degree 2m [note that 	(x) is not constant and by

Lemma 2.1 has 2m � 1 roots counting multiplicities]. Our polynomial is nonnegative for

�1 � x � 1 due to nonnegative de�niteness of the matrix A

�

. It is known (see Karlin,

Studden, 1966, Ch. 2) that such a polynomial can be represented in the form

	(x) = '

2

1

(x) + (1� x

2

)'

2

2

(x);(5.8)

where '

1

(x) is a polynomial of degree m, '

2

(x) is a polynomial of degree m� 1, i.e.

'

1

(x) = C

1

m

Y

i=1

(x� 

i

); '

2

= C

2

m�1

Y

i=1

(x� Æ

i

);(5.9)

and that the roots of these polynomials are interlacing, i.e.



1

� Æ

1

� 

2

� : : : � Æ

m�1

� 

m

;

22





1

< 

2

< : : : < 

m

; Æ

1

< : : : < Æ

m�1

:

Morover, this representation is unique. Since the polynomials T

0

(x); : : : ; T

m

(x) are linearly

independent and the same is true for the polynomials U

0

(x); : : : ; U

m�1

(x), we have

'

1

(x) = Cq

T

f

(1)

(x);

'

2

(x) = Cp

T

f

(2)

(x);

where C > 0 is a constant and q = (q

0

; : : : ; q

m

)

T

2 R

m+1

, p 2 R

m

are appropriate vectors

with q

m

= 1. Recalling that the functions

p

2f

k

(t), k = 0; 1; : : : ; 2m are orthonormal with

respect to measure

1

2�

dt on the interval [��; �] we obtain

1

�

Z

�

��

f

T

(t)A

�

f(t)dt = trA

�

= 1;

and, therefore,

1 =

2

�

Z

1

�1

	(x)

dx

p

1� x

2

=

2C

�

Z

1

�1

h

(q

T

f

(1)

(x))

2

+ (p

T

f

(2)

(x))

2

(1� x

2

)

i

dx

p

1� x

2

= C(q

T

q + p

T

p):

Consequently, C = 1=(q

T

q + p

T

p) and due to Lemma 2.1 it follows for all t 2 [�a; a]

f

T

(t)A

�

f(t) � �

min

(M(�));

or equivalently

	(x) = 	(x; q; p) =

(q

T

f

1

(x))

2

+ (1� x

2

)(p

T

f

(2)

(x))

2

q

T

q + p

T

p

� �(5.10)

for all x 2 [�; 1], where � = �

min

(M(�)) denotes the minimum eigenvalue of the matrix

M(�). Therefore condition (5.5) follows from the E-optimality of the design �. Due to

Lemma 2.1 the left hand side of the inequality (5.10) attains its maximal value � at the

support points x

i

= cos t

i

, i = 0; : : : ; m (since 	(x) = h(t), t = arccosx) and the system of

equations in (5.7) provides also a necessary condition for E-optimality.

To prove that (5.6) is also a necessary condition for E-optimality we put x = cos t and

integrate the left hand side of (5.10) with respect to the measure �(dt). We receive

q

T

M

c

(�)q + p

T

M

s

(�)p

p

T

p+ q

T

q

� �;(5.11)

where the second term should be replaced by zero if p = 0. Since

min

~q

~q

T

M

c

(�)~q

~q

T

~q

= �

min

(M

c

(�)) � � ;

(5.12)

min

~p

~p

T

M

s

(�)~p

~p

T

~p

= �

min

(M

s

(�)) � � ;
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it follows that q is an eigenvector of the matrix M

c

(�) corresponding to its minimal eigen-

value �, that is

M

c

(�)q = �q:

Similary, p is either equal to 0 2 R

m

or an eigenvector of the matrix M

s

(�) corresponding

to its minimal eigenvalue �. In both cases we have the equation

M

s

(�)p = �p:

Finally, we prove that (5.5) is a suÆcient condition for E-optimality of the design �. To

this end de�ne

A = (qq

T

+ pp

T

)=(q

T

q + p

T

p);

then tr A = 1 and it follows from (5.5) that for all t 2 [�a; a]

f

T

(t)Af(t) � �

min

(M(�)):

Due to Lemma 2.1 the design � is E-optimal.

Note that the polynomial 	(x) is uniquely determined by the conditions (5.7) and (5.5).

Moreover, we proved above that the vectors p and q are uniquely determined under the

additional condition of interlacing roots.

Let 0 < a < a, then �

min

(M

s

(�)) > � and from (5.11) and (5.12) it follows that p = 0. In

the case a = a the equality p = 0 follows from a continuity argument. 2

Lemma 5.1 will be used to obtain a representation for the minimal eigenvalue of the in-

formation matrix of the E-optimal design. This representation will be essential for the

numerical construction of E-optimal designs.

Lemma 5.2. For the trigonometric regression model (1.1) with m � 2 we have for the

quantities a and �a de�ned in (3.48) and (2.11), respectively,

a < �a:

Proof. It is evident that a � �a. Suppose that a = �a, then Theorem 3.2 and Corollary 3.3

show that for a � a the design

^

�

a

de�ned by (3.7) and (3.8) is E-optimal. For a < �a there

exists a unique E-optimal design by Theorem 2.3 and a continuity argument shows that

there also exists a unique E-optimal design in the case a = a = �a, which is of the form

�

�

=

 

�t

m

: : : �t

1

t

0

t

1

: : : t

m

1

2m+1

: : :

1

2m+1

1

2m+1

1

2m+1

: : :

1

2m+1

!

;
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where the support points are given by

t

i

=

�i

m

�

1�

1

2m + 1

�

; i = 0; : : : ; m:

Therefore, �

�

=

^

�

a

and we obtain the equations

cos t

i

= cos

h

�i

m

�

1�

1

2m+ 1

�i

=

1� ��

2

cos

�i

m

+

1 + ��

2

; i = 0; : : : ; m ;

where �� = cos �a, �a = �(1 �

1

2m+1

). In order to prove that this is impossible we note that

for 0 < a < �, 1=2 < u < 1 it follows that

cos au >

1� cos a

2

cos �u+

1 + cos a

2

:(5.13)

This inequality can be proved observing that for a = 0 and a = � we have

cos au�

1� cos a

2

cos �u�

1 + cos a

2

= 0

and verifying that the derivative of the left hand side has only one zero in the interval

(0; �) corresponding to an absolute maximum in this region. Substituting a = �a, u = i=m

in (5.13) we obtain a contradiction, which shows that a < �a, whenever m � 2. 2

Throughout the remaining part of this section we assume m � 2 (the linear case m = 1

was discussed in Section 4), a < a < �a and de�ne

~p(a) = p(a) 2 R

m

;

~q(a) = (q

0

(a); : : : ; q

m�1

(a))

T

2 R

m

;

x(a) = (x

1

(a); : : : ; x

m�1

(a))

T

2 R

m�1

;

w(a) = (w

0

(a); : : : ; w

m�1

(a))

T

2 R

m

;

where p(a) and q(a) = (q

1

(a); : : : ; q

m�1

(a); 1)

T

are the vectors de�ned by Lemma 5.1,

x

i

(a) = cos t

i

(a), i = 1; : : : ; m � 1 and ft

i

(a)g

i=1;:::;m�1

, fw

i

(a)g

i=0;:::;m�1

correspond to

the positive support points and weights of the E-optimal design �

a

on the interval [�a; a].

For arbitrary vectors ~q = (q

0

; : : : ; q

m�1

)

T

, ~p = (p

0

; : : : ; p

m�1

)

T

, x = (x

1

; : : : ; x

m�1

)

T

, w =

(w

0

; : : : ; w

m�1

)

T

, with � = cos a < x

m�1

< : : : < x

1

< 1, w

i

> 0, i = 0; : : : ; m � 1,

P

m�1

i=0

w

i

< 1 we de�ne the vectors

� = (�

0

; : : : ; �

4m�2

)

T

= (~p

T

; ~q

T

; x

T

; w

T

)

T

2 R

4m�1

;

(5.14)

and similary

�(a) = (�

0

(a); : : : ; �

4m�2

(a))

T

= (~p

T

(a); ~q

T

(a); x

T

(a); w

T

(a))

T

2 R

4m�1

25



as the vector containing the support points and weights of the E-optimal design and the

components of the vectors q(a) and p(a) de�ned in Lemma 5.1. Let us introduce the

function

�(�; a) =

m�1

X

i=0

(q

T

f

(1)

(x

i

))

2

+ (1� x

2

i

)(p

T

f

(2)

(x

i

))

2

q

T

q + p

T

p

w

i

+(5.15)

+

(q

T

f

(1)

(�))

2

+ (1� �

2

)(p

T

f

(2)

(�))

q

T

q + p

T

p

(1� w

0

� : : :� w

m�1

);

where x

0

= 1 and the vectors q and p are given by q = (~q

T

; 1)

T

, p = ~p. If �

a

is the E-optimal

design on the interval [�a; a], then

�(a) := �(�(a); a) = �

min

(M(�

a

));

and an immediate di�erentiation of the function �(�; a) shows that the conditions

@

@�

i

�(�; a) j

�=

�

�

= 0; i = 0; : : : ; 4m� 2(5.16)

coincide with conditions (5.6) and (5.7) if

�

� = �(a). Therefore, by Lemma 5.1, these

conditions are necessary conditions for the vector �(a), which gives the support points and

weights of the E-optimal design. We will call the vector equation (5.16) basic equation.

In order to study the Jacobi matrix of this equation we will present a couple of auxiliary

results, which are of independent interest. To this end denote with

� =

 

x

0

: : : x

m

w

0

: : : w

m

!

(5.17)

a design on the interval [�; 1] (with x

0

= 1) and let

�

�

=

 

�t

m

: : : �t

1

t

0

t

1

: : : t

m

w

m

2

: : :

w

1

2

w

0

w

1

2

: : :

w

m

2

!

(5.18)

be the design corresponding to � by the transformation (3.17), where t

i

= arc cosx

i

, i =

0; : : :m. Similary, for any symmetric design � of the form (5.18) on the interval [�a; a] we

denote by

�

�

=

 

x

0

: : : x

m

w

0

: : : w

m

!

;

with x

i

= cos t

i

, i = 0; : : : ; m, the design on the interval [�; 1] obtained by the transforma-

tion (3.17). Finally, v = v(a) denotes the multiplicity of the minimum eigenvalue of the

matrix M

c

(�

a

) and u = u(a) is the multiplicity of the minimum eigenvalue of the matrix

M

s

(�

a

), where �

a

denotes the E-optimal design for the trigonometric regression model (1.1)

on the interval [�a; a] and the matrices M

c

(�

a

) and M

s

(�

a

) have been de�ned in (3.26) and

(3.27), respectively.
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Lemma 5.3. Let 0 < a � �. A design �

a

of the form (5.18) is an E-optimal design for

the trigonometric regression model (1.1) on the interval [�a; a], if and only if

�

a

= �

�

�

;(5.19)

where �

�

is an E-optimal design for the Chebyshev regression model (3.18) on the interval

[�; 1] and � = cos a.

Moreover, the quantities a

(1)

and a

(2)

in (3.50) are equal, i.e.

a

(1)

= a

(2)

and the multiplicities v(a) and u(a) of the minimal eigenvalues of the matrices M

c

(�

a

) and

M

s

(�

a

) of the E-optimal design �

a

satisfy

v(a) = u(a) + 1;

whenever v(a) > 1.

Proof. Let us begin with the last assertion, denote with �

a

the E-optimal design, by

q

(1)

; : : : ; q

(v)

the eigenvectors of the matrix M

c

(�

a

) corresponding to its minimal eigenvalue

�

min

(M

c

(�

a

)) and de�ne the coordinates of q

(j)

by q

(j)i

, i = 0; : : : ; m, j = 1; : : : ; v. Without

loss of generality we can choose q

(1)

such that q

(1)m

= 1, q

(2)

such that q

(2)m

= 0, q

(3)

such

that q

(3)m

= q

(3)m�1

= 0 etc. For v � 2 we introduce the polynomials

'

2

1

(x) =

�

q

T

(1)

f

(1)

(x)

�

2

q

T

(1)

q

(1)

;

'

2

2

(x) =

�

q

T

(i)

f

(1)

(x)

�

2

q

T

(i)

q

(i)

; i 6= 1

g(x) =

'

2

1

(x) + '

2

2

(x)

2

;

where the vectors f

(1)

(x) and f

(2)

(x) have been de�ned in (5.2) and (5.3), respectively. Note

that the polynomial g is nonnegative, of degree m and

Z

g(cos t)�

a

(dt) = �

min

(M

c

(�

a

)):(5.20)

As in the proof of Lemma 5.1 we can �nd appropriate vectors q 2 R

m+1

and p 2 R

m

such

that the polynomial g(x) can be represented in the form

g(x) = �'

2

1

(x) + (1� x

2

) �'

2

2

(x);(5.21)

where �'

1

(x) = q

T

f

(1)

(x), �'

2

(x) = p

T

f

(2)

(x), Substituting x = cos t, integrating both sides

of (5.21) with respect to the measure �

a

(dt) and taking into account the identitiy (5.20) we
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receive

�

min

(M

c

(�

a

)) = q

T

M

c

(�

a

)q + p

T

M

s

(�

a

)p

(5.22)

� �

min

(M

c

(�

a

))q

T

q + �

min

(M

s

(�

a

))p

T

p:

A further integration of the function g(cos t) with respect to the uniform distribution dt=2�

on the interval [��; �] yields [observing the representation (5.21)]

q

T

q + p

T

p = 1:(5.23)

In Section 3 we proved that

�

min

(M

s

(�

a

)) � �

min

(M

c

(�

a

));

and consequently (5.22) and (5.23) imply that one of the following conditions holds

(i) v = 1, p = 0, �

min

(M

c

(�

a

)) = �

min

(M(�

a

)) < �

min

(M

s

(�

a

)),

(ii) v > 1, p 6= 0 is an eigenvalue of the matrix M

s

(�

a

), �

min

(M

c

(�

a

)) = �

min

(M

s

(�

a

)).

The second part (ii) is an immediate consequence of the previous discussion. For a proof

of the �rst case (i) assume that

� = �

min

(M

c

(�

a

)) = �

min

(M

s

(�

a

))

and let p and q be vectors such that p 6= 0 and

M

c

(�

a

)q = �q; M

s

(�

a

)p = �p :

We introduce the polynomial

g(x) = �'

2

1

(x) + (1� x

2

) �'

2

(x);

where �'

1

(x) = q

T

f

(1)

(x), �'

2

(x) = p

T

f

(2)

(x). This polynomial can be represented in the

form

�

q

T

1

f

(1)

(x)

�

2

+

�

q

T

2

f

(1)

(x)

�

2

and a similar calculation as given in previous discussion shows that q

1

and q

2

should be

eigenvectors, corresponding to �

min

(M

c

(�

a

)). Therefore it follows that v � 2 and this proves

that (i) is correct.

In the �rst case �

min

(M(�

a

)) is simple. In the second case v � 2 and for each eigenvector

q

(i)

there exists an eigenvector p

(i)

of the matrix M

s

(�

a

). It can be easily checked that the

vectors p

(i)

, i = 2; : : : ; v are of the form

(p

(2)0

; : : : ; p

(2)m�1

)

T

;

(p

(3)0

; : : : ; p

(3)m�2

; 0)

T

;

.

.

.

(p

(v)0

; : : : ; p

(v)m�v+1

; 0; : : : ; 0)

T

:
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Consequently, these vectors are linearly independent, which gives v(a) � u(a) + 1. In a

similar way we can prove that v(a) � u(a) + 1 and we obtain for the case v(a) > 1 that

v(a) = u(a) + 1:

From (5.22) and (5.23) it also follows that v(a) > 1 in the case �

min

(M

c

(�

a

)) = �

min

(M

s

(�

a

)).

Recalling the de�nition of a

(1)

and a

(2)

in (3.50) it thus follows that

a

(1)

= inffa j v(a) > 1g;

a

(2)

= inffa j �

min

(M

c

(�

a

)) = �

min

(M

s

(�

a

))g ;

and the previous remarks yield

a

(1)

= a

(2)

= a

In order to prove the �rst assertion of Lemma 5.3 let �

a

be a symmetric E-optimal design

of the form (5.18) for the trigonometric regression model (1.1) on the interval [�a; a], then

it follows from the previous discussion that

�

min

(M(�

a

)) = �

min

(M

c

(�

a

)):

From the de�nition of the transformation (3.17) we have

M

c

(�

a

) =M

1

(�

�

a

);

where

M

1

(�) =

Z

f

(1)

(x)f

T

(1)

(x)�(dx)

denotes the information matrix of the design � in the Chebyshev regression model (3.18).

Therefore a design �

a

is an E-optimal design for the regression function f

c

(t) on the interval

[�a; a] if and only if the design �

�

a

is an E-optimal design in the Chebyshev regression model

(3.18) on the interval [�; 1], where � = cos a. Now it is easy to verify that any E-optimal

design of the form (5.18) for the regression function f

c

(t) on the interval [�a; a] is also an

E-optimal design for trigonometric regression model (1.1) on the interval [�a; a] and vice

versa. Thus a design �

�

�

of the form (5.18) is an E-optimal design for the trigonometric

regression model (1.1) on the interval [�a; a] if and only if the corresponding design �

�

is

an E-optimal design for the Chebyshev regression model (3.18) on the interval [�; 1] 2

Throughout this paper we denote by �(a) the number of common roots of the polynomials

'

1

(x) = q

T

f

(1)

(x) and '

2

(x) = p

T

f

(2)

(x) de�ned by Lemma 5.1. The following result

provides the basis for the implementation of the functional approach.

Theorem 5.4. Consider the trigonometric regression model (1.1) on the interval [�a; a],

where 0 < a � � and m � 2. Then a < �a and there exists a number � 2 N and real

quantities

a = a

1

< a

2

< a

3

< : : : < a

�

= �a
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such that the vector-function

�

�

:

(

(a; �a) ! R

4m�1

a ! �(a)

(5.24)

is uniquely determined, real analytic on the set

��1

[

j=1

(a

j

; a

j+1

)(5.25)

and satis�es the system of equations

@

@�

i

�(�; a)

�

�

�

�=�(a)

= 0; i = 0; : : : ; 4m� 2;(5.26)

where the function �(�; a) is de�ned in (5.15).

Proof. We have already proved above that the vector-function �

�

is uniquely determined

and satis�es (5.26). It is also obviously continuous. In order to study its analytic properties

we de�ne

G(�; a) =

�

@

2

@�

i

@�

j

�(�; a)

�

4m�2

i;j=0

;

as the Jacobi matrix of the system (5.26) and denote by

J = J(a) = G(�(a); a);(5.27)

the corresponding value at the point � = �(a). A straightforward but tedious di�erentia-

tion shows that this matrix is of the form

J = h

0

B

B

@

S B

T

(1)

B

T

(2)

B

(1)

D 0

B

(2)

0 0

1

C

C

A

;(5.28)

where h = 1=(q

T

q + p

T

p), q = q(a), p = p(a). The matrices in the block matrix (5.28) are

given by

S =

 

M

(1)

0

0 M

(2)

!

;

where

M

(1)

=M

s

(�

a

)� �I

m

:

Similary, if A

�

denotes the matrix A with deleted last row and last column, M

(2)

is de�ned

by

M

(2)

= (M

c

(�

a

)� �I

m+1

)

�

;

D = diag fd

11

; : : : ; d

m�1;m�1

g;
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where the elements of the matrix D are given by

d

ii

=

�

(q

T

f

(1)

(x))

2

+ (p

T

f

(2)

(x))

2

(1� x

2

)

�

00

�

�

�

x=x

i

(a)

; i = 1; : : : ; m� 1 ;

and

B

T

(1)

=

�

B

T

(1)1

.

.

.B

T

(1)2

�

;

B

T

(1)1

=

�

(f

(1)

(x)

�

q

T

f

(1)

(x))

0

w

i

�

�

�

x=x

i

(a)

�

i=1;:::;m�1

;

B

(1)2

=

�

(f

(1)

(x)(1� x

2

))

0

w

i

�

�

�

x=x

i

(a)

�

i=1;:::;m�1

;

B

T

(2)

=

�

B

T

(2)1

.

.

.B

T

(2)2

�

;

B

T

(2)1

=

�

f

(1)

(x

i

) q

T

f

(1)

(x

i

)

�

i=0;:::;m�1

;

B

T

(2)2

=

�

f

(2)

(x

i

)p

T

f

(2)

(x

i

)(1� x

2

)

�

i=0;:::;m�1

;

where b

�

denotes the vector b with deleted last element. Let ~a 2 (a; �a) such that the

following condition is satis�ed:

(A) there exists a neighbourhood

~

U of the point ~a such that for all a 2

~

U we have

� = �(~a) = �(a):

Denote by Æ

1

; : : : ; Æ

�

the common roots of the polynomials

'

1

(x) = q

T

(a)f

(1)

(x);

'

2

(x) = p

T

(a)f

(2)

(x);

by 

1

; : : : ; 

m��

the remaining roots of the polynomial '

1

(x) and by �

1

; : : : ; �

m�1��

the

remaining roots of the polynomial '

2

(x), that is

'

1

(x) =

�

Y

i=1

(x� Æ

i

)

m��

Y

i=1

(x� 

i

);

'

2

(x) = �

m��

�

Y

i=1

(x� Æ

i

)

m���1

Y

i=1

(x� �

i

)
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(recall, that it was shown in the proof of Lemma 5.1 that '

1

and '

2

have simple roots,

which are interlacing and note that �

m��

denotes not a root of the polynomial '

2

but its

leading coeÆcient). De�ne the vector

^

�(a) =

^

� = (

1

; : : : ; 

m��

; �

1

; : : : ; �

m��

; Æ

1

; : : : ; Æ

�

; ~x(a); ~w(a))

T

= (

^

�

0

; : : : ;

^

�

4m�1��

)

T

:

and note that in a neighbourhood of the point ~a there exists essentially a one to one

correspondence between the points

^

�(a) and �(a). Consider the matrix

~

J = H

T

JH;(5.29)

with

H =

�

@

^

�

i

=@�

j

�

4m�1��;4m�2

i=0;j=0

:

We will prove below that the matrix

~

J is nonsingular for any point ~a satisfying the condition

(A). Because �(a) 2 f1; 2; : : : ; mg it therefore follows that all points a 2 (a; �a) except for a

�nite set denoted with fa

1

; : : : ; a

�

g satisfy condition (A). Therefore the vector-function

�

+

: a!

^

�(a)

is a real analytic vector-function on the set (5.25) due to the well known Implicit Function

Theorem (Gunning, Rossi, 1965). Because the coeÆcients of a polynomial are analytic

functions of its zeros it follows that the vector-function �

�

is also real analytic on the same

set.

The proof of the nonsingularity of the matrix

~

J is tedious and we indicate the main steps.

Denote by P the eigenspace of the matrix M

c

(�

a

) corresponding to its minimal eigenvalue

�

min

(M

c

(�

a

)) and by P

�

the subspace of all vectors r = (r

0

; r

1

; : : : ; r

m

)

T

such that the

polynomial

P

m

j=0

r

j

x

j

has the form

�

Y

i=1

(x� Æ

i

)

m��

X

j=0

~r

j

x

j

for some vector ~r = (~r

0

; : : : ; ~r

m��

)

T

of size m � � + 1. For the sake of tranparency we

introduce the notation F (x) = (1; x; : : : ; x

m

)

T

and de�ne for vectors r, s 2 R

m+1

:

< r; s > =

Z

1

�1

�

r

T

F (x)

� �

s

T

F (x)

�

�

�

a

(dx) �

�

2

�

Z

1

�1

�

r

T

F (x)

� �

s

T

F (x)

�

dx

p

1� x

2

�

�1

;

A straightforward calculation shows that the condition

@�(

^

�; a)

@

i

= 0
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is equivalent to the condition

< q



i

; q >= �(

^

�; a);

where the vector q



i

2 P

�

is de�ned by

q

T



i

F (x) =

1

x� 

i

q

T

F (x) =

d

dx

q

T

F (x)

�

�

�

x=

i

for any i = 1; : : : ; m� � . This means that

q



i

2 P ; i = 1; : : : ; m� �

[note that the vectors q



1

; : : : ; q



m��

are linearly independent]. Note that a direct calculation

gives

@

2

@

j

@

i

�(

^

�; a) =

�

q

T



i

M(�

a

)q



i

q

T



j

q



i

� �(

^

�; a)

�

1

q

T



j

q



i

; i; j = 1; : : : ; m� �:

Since q



j

2 P we obtain

@

2

@

i

@

i

�(

^

�; a) = 0 ; i; j = 1; : : : ; m� �;

In a similar way it follows that

p

�

i

2 P

(2)

; i = 1; : : : ; m� �;

where P

(2)

is the eigenspace, corresponding to �

min

(M

(s)

(�

a

)), and we obtain by the same

arguments

@

2

@�

i

@�

j

�(

^

�; a) = 0 ; i; j = 1; : : : ; m� �:

It is easy to check that for a 2 (a; �a) it follows that � � 1. Moreover, using the above

formulas we receive that the matrix

~

J has the structure indicated in Table 2, where A is a

nonnegative de�nite matrix and D is the negative de�nite matrix, de�ned above.

If b 6= 0 and the matrices C = (C

1

.

.

.C

2

), B

2

and B

1

have full rank it follows by similar

arguments as given in Dette, Melas and Pepelyshe� (2001) with the help of the Frobenius

formula that det

~

J 6= 0. The veri�cation of the listed conditions is equivalent to the

veri�cation that certain polynomials are not identically zero. This can be done by the

standard technique of counting zeros and is left to the reader. Thus det

~

J 6= 0 for any point

a satisfying condition (A). 2
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Table 2: Structure of the matrix

~

J de�ned in (5.29)

1 m� � m� 1 m� 1 m

1 0 b

T

m� � 0 V

T

B

T

1

C

T

1

m� 1 V A B

T

2

C

T

2

b

m� 1 B

1

B

2

D 0

m C

1

C

2

0 0

Since the vector function �(a) = �(arc cos�) is real analytic on the set de�ned by (5.25)

it can be expanded into Taylor series in a neighbourhood of any point ~a 6= a

j

, j = 1; : : : ; �,

a < ~a < �a and we obtain for its components an expansion of the form

�

i

(a) =

1

X

k=0

�

i;k

(�� ~�)

k

; i = 0; : : : ; 4m� 2;

where ~� = cos ~a; � = cos a: For the determination of the coeÆcents f�

i;k

g the general

recurrent formulas introduced in Dette, Melas, Pepelyshev (2000) can be applied provided

that initial conditions �

i;0

, i = 0; : : : ; 4m � 2 are known. To �nd such initial coeÆcients

�

(0)

= (�

0;0

; : : : ; �

4m�2;0

)

T

we solve the equation

Q(�

(0)

) : =

4m�2

X

i=0

�

@

@�

i

�(�; ~a)

�

�

�

�=�

(0)

�

2

= 0

for some ~a, which can be done by standard numerical algorithms. To obtain an approxi-

mation of the function �(a) with a given precision we have to �nd one or several points

~a

1

; : : : ; ~a

k

, construct the corresponding Taylor series and verify that the calculated design is

E-optimal with suÆcient precision (note that �(a) contains also the vectors p(a) and q(a)

for the equivalence theorem in Lemma 5.1). In the following examples we will illustrate

34



this approach for the quadratic and cubic trigonometric regression model on the interval

[�a; a].

Table 3: CoeÆcients in the Taylor expansion (5.30) for the quadratic trigonometric regres-

sion model (m = 2), where 0:741 < a=� < 4=5 = 0:8

0 1 2 3 4 5 6 7

p

0

0.4771 -0.0781 -1.3312 -1.9692 1.2116 3.8592 8.7587 -2.8454

p

1

-0.4928 2.0781 -0.5175 0.0124 1.9268 -1.7913 0.9055 -7.3152

q

0

-0.3532 -2.7276 11.4353 -92.0212 896.9923 -9.90e+03 1.18e+05 -1.46e+06

q

1

-0.3794 -2.5761 15.1122 -109.6045 1.05e+03 -1.15e+04 1.36e+05 -1.69e+06

1� x

1

0.7588 -1.2582 1.5801 3.9027 0.3966 -11.1756 -20.1314 6.0409

w

1

0.1862 0.1994 0.5826 0.2185 -2.1883 -5.1277 0.2418 30.3188

w

2

0.2289 -0.4732 -0.3163 0.5386 -0.2008 0.5346 3.5705 -0.3601

Example 5.5. Consider the quadratic trigonometric regression model (1.1) on the interval

[�a; a]

�

T

f(t) = �

0

=

p

2 + �

1

cos t + �

2

sin t+ �

3

cos 2t+ �

4

sin 2t:

By the discussion of Section 2 it follows that for �a = 0:8� � a � � an E-optimal design is

given by

 

�

4�

5

�

2�

5

0

2�

5

4�

5

1

5

1

5

1

5

1

5

1

5

!

:

Similary, Corollary 3.3 and Theorem 3.2 show that for 0 < a � a � 0:741� the unique

E-optimal design is given by

 

�a �t(a) 0 t(a) a

w

2

2

w

1

2

w

0

w

1

2

w

2

2

!

where

t(a) = arccos

�

1 + cos a

2

�

and the weights w

0

, w

1

and w

2

can be found by fomula (3.8). In the intermediate case

a = 0:741� < a < 0:8� = �a
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we will construct the E-optimal design by the functional approach. Note that due to

Theorem 2.3 an E-optimal design is of the form

 

�t

2

�t

1

t

0

t

1

t

2

w

2

2

w

1

2

w

0

w

1

2

w

2

2

!

;

where t

0

= 0; t

2

= a: Since w

0

+w

1

+w

2

= 1 it is enough to consider the weights w

1

and w

2

and the point x

1

= arc cos t

1

. We take ~a = 0:77� � (�a+ a)=2. The �rst Taylor coeÆcients

for the parameters

q

0

= q

0

(arccos�);

q

1

= q

1

(arccos�);

p

0

= p

0

(arccos�);

p

1

= p

1

(arccos�);

1� x

1

= 1� x

i

(arccos�);

w

1

= w

1

(arccos�);

w

2

= w

2

(arccos�);

in the expansion

�(arccos�) =

1

X

n=0

�

(n)

(�� cos ~a)

n

(5.30)

are listed in Table 3. The dependence of the support points and weights of the E-optimal

design in the trigonometric regression model from the parameter a 2 (a; �a) is illustrated in

Figure 1. In the present case it follows that a

1

= a < a

2

= �a and for a

1

< a < a

2

we have

�(a) = 1; u(a) = 1; v(a) = 2:

It is also interesting to note that for 0 < a < a

1

= a we have

u(a) = 0; v(a) = 1;

while for the case �a = a

2

< a < � it follows that

u(a) = 2; v(a) = 3:

In other words, if the parameter a is increased from 0 to � the multiplicity of the minimum

eigenvalue of the information matrix of the E-optimal design changes from 1 to 5 by steps

of size 2.

Example 5.6. Consider the cubic trigonometric regression model on the interval [�a; a],

i.e. m = 3. Then, similar to the preceding example an E-optimal design can be found in

an explicit form whenever 0 < a � a � 0:794� and �a � a � �, �a = 6=7� � 0:857�. In the

case a > �a the design

 

�

6�

7

�

4�

7

�

2�

7

0

2�

7

4�

7

6�

7

1

7

1

7

1

7

1

7

1

7

1

7

1

7

!

:
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is E-optimal (but not necessarily unique), while in the case a < a the support points of

the unique E-optimal design are given by

�a ; � arccos

�

3 + cos a

4

�

; � arccos

�

1 + 3 cos a

4

�

and the weights are obtained from formula (3.8). It was found numerically that

a

1

= a < a

2

� 0:8113� < a

3

= �a = 6=7� � 0:857�:

and for a 2 (a

1

; a

2

) the �rst coeÆcients for the Taylor expansion at the point �a

1

= 0:81�

are presented in Table 4, while Table 5 contains the corresponding coeÆcients for the case

a 2 (a

2

; a

3

) (for the expansion at the point �a

2

= 0:83�). Note that the multiplicities of the

minimal eigenvalues of the matrices M

s

(�

a

) and M

c

(�

a

) are given by

u(a) = 0 ; v(a) = 1 if a 2 (0; a

1

)

u(a) = 1 ; v(a) = 2 if a 2 (a

1

; a

2

)

u(a) = 2 ; v(a) = 3 if a 2 (a

2

; a

3

)

u(a) = 3 ; v(a) = 4 if a 2 (a

3

; �) ;

where a

1

= a and a

3

= �a.

The behaviour of the optimal design points and weights is presented in Figure 2. It can

be veri�ed numerically that the points and weights can be determined with high precision,

which is illustrated in Figure 3. This �gure shows the extremal polynomial

(p

T

f

(1)

(x))

2

+ (q

T

f

(2)

(x))

2

p

T

p+ q

T

q

in the equivalence theorem for various values of a (note that by Lemma 5.1 this function

has be less or equal than the minimum eigenvalue of the information matrix corresponding

to the E-optimal design with equality at the support points).
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Table 4: CoeÆcients in the Taylor expansion (5.30) for the cubic trigonometric regression

model (m = 3), where 0:794 < a=� < 0:8113

0 1 2 3 4 5 6 7

p

0

-0.3965 4.0928 -0.3055 -12.3495 -11.4981 761.5907 2.99e+05 1.21e+08

p

1

0.6477 -1.8835 -3.2233 -5.1845 1.6191 811.6268 3.06e+05 1.24e+08

p

2

-0.5608 1.6899 3.0650 3.2670 -2.9128 -928.5566 -3.66e+05 -1.48e+08

q

0

0.1501 2.0088 -28.2704 430.0770 -8.39e+03 1.96e+05 -3.60e+06 6.06e+08

q

1

0.2599 4.2543 -37.1810 612.9954 -1.27e+04 2.96e+05 -7.06e+06 3.19e+08

q

2

0.2219 3.4819 -34.7987 534.1822 -1.11e+04 2.56e+05 -7.21e+06 -1.42e+08

1� x

1

0.4047 -1.4247 2.2884 9.9250 15.0767 -48.0838 -405.3233 -1.19e+03

1� x

2

1.3565 0.3121 0.7705 2.0655 2.2545 -12.2375 -83.8545 -224.4858

w

1

0.0966 0.4030 1.2655 1.5036 -9.9210 -81.2046 -281.6821 -1.1661

w

2

0.1397 -0.3048 1.2041 5.8567 -1.1242 -68.7337 -146.2008 467.5664

w

3

0.2164 -0.4311 -2.8260 -3.6782 21.5715 101.4223 64.3300 -810.3346

Table 5: CoeÆcients in the Taylor expansion (5.30) for the cubic trigonometric regression

model (m = 3), where 0:8113 < a=� < 6=7 = 0:857

0 1 2 3 4 5 6 7

p

0

-0.0674 9.6717 12.2522 43.8534 -2.67e+03 6.11e+04 -1.65e+06 4.47e+07

p

1

0.8655 5.9768 -7.3377 1.8819 -2.75e+03 6.44e+04 -1.71e+06 4.64e+07

p

2

-0.7126 -3.5536 9.0726 -65.9985 3.11e+03 -7.76e+04 2.07e+06 -5.59e+07

q

0

0.6670 9.0433 -68.2559 962.3302 -1.87e+04 4.10e+05 -9.68e+06 2.41e+08

q

1

0.5298 5.6016 -35.9075 387.2603 -6.62e+03 1.30e+05 -2.86e+06 6.81e+07

q

2

0.0868 -0.7658 22.7645 -454.2934 9.99e+03 -2.39e+05 5.93e+06 -1.52e+08

1� x

1

0.3917 -0.3409 -1.0703 2.8779 38.4908 158.1277 27.2050 -3.51e+03

1� x

2

1.2958 -1.9386 1.7869 25.6580 62.2862 -124.9227 -1.40e+03 -3.53e+03

w

1

0.1197 0.6556 -1.8890 -4.5152 46.8271 18.8599 -223.6196 -876.7235

w

2

0.1383 0.0358 1.8823 1.6989 -29.6814 -78.2035 -40.4011 1.61e+03

w

3

0.1826 -1.0283 0.8572 5.4231 -35.5716 57.4784 271.3875 -1.15e+03
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