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Abstract

This report extends the technique of testing single variance components with gen�

eralized �xed�level tests � in situations when nuisance parameters make exact testing

impossible � to the more general way of testing hypotheses on linear forms of vari�

ance components� An extension of the de�nition of a generalized test variable leads to

a generalized �xed�level test for arbitrary linear hypotheses on variance components

in balanced mixed linear models of the ANOVA�type� For point null hypotheses an

alternative for the known method is given� which ist straightforward in contrast to the

classic form� An example �	�way nested classi�cation with random e
ects� illustrates

the way how to use the results and simulation studies are carried out to prove the

quality of the presented methods�

Key Words� Variance components	 generalized 
xed�level test	 mixed linear models	 nui�

sance parameters	 linear hypotheses	 approximate testing�

� Introduction

For various statistical models there do not exist exact tests for the hypotheses of interest

because of nuisance parameters� Such situations can always occur if the model includes two

or more random eects� Typical representatives of this class of models are the mixed linear

models�

Literature is widely available for approximative and asymptotic tests for many very special

situations� A classical example is the approximative test by Satterthwaite ������	 an F�test

with adapted degrees of freedom for hypotheses on single variance components� In a paper

�This research was supported by the Deutsche Forschungsgesellschaft �DFG�� Sonderforschungsbereich

���
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by Thursby ������	 a number of approximative tests is compared� All of these procedures

are only of restricted usability�

The concept of testing with generalized p�values was introduced by Tsui and Weerahandi

������� Weerahandi ������ and Zhou and Mathew ������ used generalized p�values for tests

on variance components in their papers	 where the hypotheses were usually only formulated

for single variance components�

In this paper the test with generalized p�values is extended to the case of arbitrary linear

hypotheses in balanced mixed linear models� In order to do this	 the de
nition of a gen�

eralized test variable which was 
rst introduced by Tsui and Weerahandi ������ has to be

extended	 because it proves to be too restrictive� The new procedure is demonstrated on the

example of the hierarchical two�way classi
cation� Simulation studies show that the new

method usually holds the nominal signi
cance level quite well	 even in the case of small data

sets�

Two�sided hypotheses which are to be tested against composite alternatives are a problem

mostly unregarded up to now� Weerahandi ������ proposed a solution	 but he did not

formulate a concrete construction principle for the test procedure� This paper will show up

a straightforward procedure which	 as far as the signi
cance level is concerned	 is comparable

to tests for one�sided hypotheses�

In variance component models the problem of a quite small power may occur for some parts

of the alternative for any kind of test� For some constellations of parameters the empirical

power functions are given for a special testing problem in the above mentioned hierarchical

two�way classi
cation� A detailed analysis of the power function will be a subject of further

research�

The restriction to balanced models can be abandoned in some situations� Khuri ������

showed that generalized p�values can be applied if the model in unbalanced on the last stage

only� An application of this procedure to testing linear hypotheses and a generalization to

arbitrary forms of unbalancedness is desirable�

� General testing principle

Consider an observable random vector Y with the cumulative distribution function F �y� ��	

where � � ��� �T �T is a vector of unknown parameters	 � being the parameter of interest	

and � a vector of nuisance parameters� Let � be the sample space of possible values of Y

and � be the parameter space of �� An observation of Y is denoted by y�

�



De�nition ���

A random variable of the form T � T �Y� y� �� is said to be a generalized test variable if it

has the following three properties�

�� tobs � T �y� y� �� does not depend on unknown parameters�

�� When � is speci
ed	 T has a probability distribution that is free of nuisance parameters�

�� For 
xed y and �	 Pr�T � tj�� is a monotone function in � for any given t�

Without loss of generality the 
rst property can be considered to be redundant	 because if

it is not satis
ed we can cross over to the transformation �T �� T �Y� y� �� � T �y� y� �� and

impose properties � and � on �T �

Property � is imposed to ensure that p�values based on generalized test variables are com�

putable when � is speci
ed� Property � ensures that the sample space can be stochastically

ordered on the basis of the generalized test variable� If Pr�T � t� is a nondecreasing function

in �	 then T is said to be stochastically increasing in ��

Consider the problem of testing one�sided hypotheses of the form

H� � � � �� vs� H� � � � �� ����

where �� is a prespeci
ed value of the parameter ��

De�nition ���

Let T � T �Y� y� �� be a stochastically increasing �in the parameter of interest �� test variable

according to de
nition ���� Then	 the subset of the sample space de
ned by

Cy��� � fY � �jT �Y� y� �� � tobsg���

is said to be a generalized extreme region for testing H� against H��

De�nition ���

If Cy��� is a generalized extreme region according to ���	 then

p�tobs� � sup
����

Pr�Y � Cy���j�����

is said to be its generalized p�value for testing H��

�



Corollary ���

The generalized p�value according to ��� is equivalent to

p�tobs� � Pr�Y � Cy���j� � ��� ����

which is easy to determine�

Proof�

This follows directly from property � of a generalized test variable� if T is stochastically

increasing in �	 the supremum over �� � f�j� � ��g is obtained on the upper boundary of

��� �

De�nition ���

Let p�tobs� be a generalized p�value on a continuous generalized test variable T � T �Y� y� ���

Let H� � � � �� be the null hypothesis being tested against the alternative H� � � � ���

Then	 the rule de
ned as

reject H� if p�tobs� � ����

is said to be a generalized �xed�level test of level ��

Corollary ��	

The generalized p�value according to ��� as a function of the observed value tobs resp� y is

not uniformly distributed over the interval ��� ��� For that reason	 the generalized 
xed�level

test according to ��� is not an exact test of level �	 but an approximate one�

Proof�

Assume a continuous generalized test variable T � The generalized p�value

p�tobs� � Pr�T �Y� y� �� � tobsj� � ��� � �� FT �tobs� ���

is a function of the observed value of T � Considering the observed tobs � T �y� y� �� as a

random variable T � � T �Y� Y� �� leads in general to dierent distributions for T and T �	

because only the distribution of T depends on the observed value tobs� From the probability

integral transform it follows	 that FT �T � has a uniform distribution over the interval ��� ���

Because of

p�T �� � Pr�T �Y� y� �� � T �Y� Y� ��j� � ���

� �� FT �T
�� ���

�� �� FT �T �

it follows	 that p�T �� in general does not have an uniform distribution over ��� ��� �

�



De�nition ��


Let ��y� �� �� Pr�Y � Cy���j�� be the data�based power function of T � A test based on a

generalized extreme region Cy��� is said to be p�unbiased if

��y� �� � ��y� ��� for all � � �� ����

and p�similar �on the boundary� if	 given any y � �	

��y� ��� � p�tobs����

does not depend on the nuisance parameters �	 where p�tobs� ist the generalized p�value

according to ����

This concept of testing with generalized p�values was 
rst introduced by Tsui and Weera�

handi ������ and is presented in detail in Weerahandi �������

� Testing point null hypotheses

Consider point null hypotheses and composite alternative hypotheses of the form

H� � � � �� vs� H� � � �� �����

where �� is a particular value of the parameter that has been speci
ed�

In such situations Weerahandi extends de
nition ��� by substituting

�� Given any 
xed tobs and �	 the probability Pr�T � Cy���� is a nondecreasing function

of �i� �� �� when � � ��	 and �ii� �� � � when � 	 ���

for property � of a generalized test variable�

By this de
nition the data�based power function ��y� �� increases on �� with the distance to

��� Particularly the resulting generalized 
xed�level test is p�unbiased� A problem occurs

when the generalized extreme region is to be constructed	 because the construction is not as

obvious and clearly determined as in the case of one�sided null hypotheses�

A possibility to avoid the problem of constructing a generalized extreme region is to use

the same generalized test variable for one�sided and point null hypotheses and de
ne the

generalized p�value for the point null hypothesis in the usual way by

p�tobs� � � �minfPr�T �Y� y� �� � tobs��Pr�T �Y� y� �� 	 tobs�g���

� � �minfPr�Y � Cy����� �� Pr�Y � Cy����g

�



This proceeding also guarantees the p�unbiasedness of the resulting generalized 
xed�level

test� Moreover	 there cannot be problem�immanent reasons against the incidentally assumed

symmetry of the generalized extreme region� Nevertheless by using ��� for point null hy�

potheses it is no longer possible to construct extreme regions of maximal length or other

optimality properties�

� Linear hypotheses

Consider testing problems on linear hypotheses of the form

HI
� � dT � � c vs� HI

� � dT � �� c �

HII
� � dT � � c vs� HII

� � dT � � c �

HIII
� � dT � � c vs� HIII

� � dT � 	 c �

����

where d � IRn	 c � IR and n is the dimension of the parameter space ��

In the case of testing linear hypotheses	 the classi
cation of the parameter vector � into

the parameter of interest � and the vector of nuisance parameters � has to be modi
ed�

In general	 all parameters now are of interest	 but all parameters also function as nuisance

parameters�

So we transform the hypotheses ����	 leaving an arbitrary single parameter on the left side

of the special null hypothesis�

HI
� � �i �

�

di

�
�c�X

j ��i

dj�j

�
A vs� HI

� � �i ��
�

di

�
�c�X

j ��i

dj�j

�
A �

HII
� � �i �

�

di

�
�c�X

j ��i

dj�j

�
A vs� HII

� � �i �
�

di

�
�c�X

j ��i

dj�j

�
A �

HIII
� � �i �

�

di

�
�c�X

j ��i

dj�j

�
A vs� HIII

� � �i 	
�

di

�
�c�X

j ��i

dj�j

�
A �

����

Now by de
nition �i takes the role of the parameter of interest ��� and all other �j �j �� i�	

collected in the vector

�� �� ���� 
 
 
 � �i��� �i��� 
 
 
 � �n�
T �

function as nuisance parameters�

It will be necessary to modify the de
nition of a generalized test variable	 because property

� in the case of testing linear hypotheses will prove to be too restrictive� So we come to an

adjustment of de
nition ����

�



De�nition ���

A random variable of the form T � T �Y� y� �� is said to be a generalized test variable if it

has the following three properties�

�� tobs � T �y� y� �� does not depend on unknown parameters�

�� When �i is speci
ed	 and under the assumption of HI
� �according to �����	 the random

variable T has a probability distribution that is independent of the vector of nuisance

parameters ���

�� For 
xed y and ��	 Pr�T � tj�i� is a monotonic function of �i for any given t�

The other de
nitions in section �	 related to the new de
nition of a generalized test variable	

are no further aected and can be kept in the original form�

Without loss of generality let a generalized test variable be de
ned as stochastically in�

creasing rather than stochastically monotonic in the parameter of interest� In the case of a

stochastically decreasing random variable T it is either possible to invert the inequalities in

���� or	 for example	 to cross over to the transformation T � �� ��T which then once again

is stochastically increasing in the parameter of interest�

So	 the generalized p�values for the three testing problems ���� resp� ���� are given for

HI
� � p�tobs� � � �min

�
Pr�T �Y� y� �� � tobsjH

I
� � � Pr�T �Y� y� �� � tobsjH

I
� �
�

HII
� � p�tobs� � Pr�T �Y� y� �� � tobsjd

T � � c�

HIII
� � p�tobs� � Pr�T �Y� y� �� � tobsjd

T � � c� 


����

Calculating p�tobs� under the assumption dT � � c is equivalent to determining the special

supremum over H�� Because of the monotonic property of T 	 the supremum in all cases is

placed on the boundary�

�



� Mixed linear models

Consider mixed linear models of the form

z �

�
X��

mX
i��

�
i Ui

�
� i�e� E �z� � X� � Cov �z� �

mX
i��

�
i Ui �����

with

X� �
qX

i��

Xi�i � �n��
qX

i��

Xi�i and Um � In 


If we cross over to a reduced model that is invariant with respect to mean value transforma�

tions	 we get

y � Proj R�X��z �Mz with M � In �XX� �

where R�X� is the range of the matrix X and X� is the Moore�Penrose inverse of X� So	 y

is the projection of z onto the complement of R�X� and it follows that

y �

�
��

mX
i��

�
i Vi

�
with Vi �MUiM 
����

In ANOVA�models V�� 
 
 
 � Vm are linearly independent and there always exists a basis of

pairwise orthogonal projectors P�� 
 
 
 � Pm which span the same vector space as V�� 
 
 
 � Vm�

So	 the basis transformation matrix � � ��ij�i�j�������m is determined by

Vi �
mX
i��

�ijPj � i � �� 
 
 
 � m 
����

The sum of squares Si and mean squares Mi are given by

Si � zTPiz � i � �� 
 
 
 � m �

Mi � �
trPi

zTPiz � i � �� 
 
 
 � m 

����

Under the assumption of normality of the random vector z is follows	 that the mean squares

Mi are stochastically independent with expectation

E �Mi� �
mX
���

�
���i � i � �� 
 
 
 � m �����

�



and the following terms have central ���distributions�

trPi �
Mi

E �Mi�
� ��

trPi

����

For some special null hypotheses � if two mean squares have the same expectation under

H� � ���� can be used to construct exact F�tests� In general a construction of exact F�tests

is impossible�

For more detailed information about balanced mixed linear models see Hartung et al� ������

or Khuri and Sinha ������ for the unbalanced case�

For the problem of testing an arbitrary linear hypothesis of variance components �cf� �����

consider the following random variable

T �Y� y� �� �

X
l�L

�l � E �Ml�
sl
Sl

� ��c

��A
si
Si

�
X
k�K

�k � E �Mk�
sk
Sk

�����

with � � ��
� � 
 
 
 � 

�
m�

T 	 si the observed value of Si	 K�L � f�� 
 
 
 � i � �� i � �� 
 
 
 � mg	

constants �k� �l � IR and

A � E �Mi�� �
i�ii � �ii

�
	 �
di

�
�c�X

j ��i

dj
�
j

�
A


� �����

so that

��A �
X
k�K

�k � E �Mk� �
X
l�L

�l � E �Ml� � ��c �����

and all added terms shall be nonnegative�

�k E �Mk� � � 	 k � K � ��A � � �

�l E �Ml� � � 	 l � L � ��c � � 

����

�



Theorem ���

The random variable T �Y� y� �� from ���� with assumptions ���� and ���� possesses the

three properties of a generalized test variable according to de
nition ����

Proof�

�� The observed value of T

tobs � T �y� y� ��
����
�

X
l�L

�l � E �Ml� � ��c

��A �
X
k�K

�k � E �Mk�

����
� �

is constant and therefore especially independent of any parameters�

�� Since �k� �l and si are constant and due to ����

X
k�K

�k � E �Mk�
sk
Sk

and
X
l�L

�l � E �Ml�
sl
Sl

are linear combinations of independent �����expressions	 free of any unknown para�

meter� �� and c are constant� Finally	 for the left term in the denominator of T in ����

we get

��A
si
Si

� ��si
A

E �Mi�

E �Mi�

Si

HI

�� ��si
E �Mi�

Si
�����

also a �����expression	 which at least under the assumption of HI
� is free of nuisance

parameters�

�� By construction the parameter of interest �
i �the former �i in section �� in T only

appears in E �Mi� in the denominator of ����	 which again only appears in the de�

nominator of T in ����� With respect to the vector of variance components � we

have

T �Y� y� �� 

q�

q�
A

E �Mi�
� q	




Because of ���� it follows that q�� q�� q	 � IR�
� 	 and for that reason T is stochastically

increasing in �
i �

With ��	 �� and �� T indeed is a generalized test variable in the sense of de
nition ���� �

The question that occurs is how to get the constants �k and �l� This can be done by an

iterative proceeding�

��



Construction principle for generating generalized test variables for testing linear hypothe�

ses in balanced mixed linear models�

�� Formulate and transform the linear hypothesis of interest	 so that a single parameter

�
i is isolated on one side of the hypothesis as it is done in �����

�� For generating T iteratively start with the expression ���A which yields all variance

components except for �
i and A is given by �����

�� The aim now is to set tobs equal to �� Therefore we have to add �����expressions in

the numerator and denominator of T �

�� To 
nd an admissible set of �k and �l	 the easiest way is to eliminate the variance

components according to their appearance in the model ���� from left to right� For

example� If the leftmost variance component in the numerator �that is not yet egalized

in the denominator� is to be egalized	 take that �����expression according to ���� with

an expectation ���� whose leftmost variance component is the one to be egalized�

�� The last step is to set �� which is clearly determined as �� �� ���ii�di by the former

proceeding�

	 An illustrative example

The balanced ��way nested classi
cation model with random eects is given by

yijk � �� ai � bij � eijk i � �� 
 
 
 � r j � �� 
 
 
 � s k � �� 
 
 
 � t

with E�yijk� � � � ai � ��� �
a� � bij � ��� �

b � � eijk � ��� �
e�����

ai� bij and eijk stochastically independent 


Under the assumption of normally distributed random eects ai	 bij and eijk	 we have the

following distribution statements for the sums of squares �cf� ������

Sa � �st�
a � t�

b � �
e� � �

�
r��

Sb � �t�
b � �

e� � �
�
r�s���

Se � �
e � �

�
rs�t��� 


��



A generalized test variable for arbitrary linear hypotheses �under the restriction of d� �� ��

is

T �Y� y� �� �

�
��

s � d�
d�

�
�t�

b � �
e�
sb
Sb

�
s � d�
d�

�
e

se
Se

�
st

d�
c

�
st

�

d�
�c� d�

�
b � d	

�
e� � t�

b � �
e


sa
Sa

�
st � d	
d�

�
e

se
Se

����

�

�
��

s � d�
d�

�
sb

��
r�s���

�
s � d�
d�

se
��
rs�t���

�
st

d�
c

�
st

�

d�
�c� d�

�
b � d	

�
e� � t�

b � �
e


st�

a � t�
b � �

e

sa
��
r��

�
st � d	
d�

se
��
rs�t���

HI

��

�
��

s � d�
d�

�
sb

��
r�s���

�
s � d�
d�

se
��
rs�t���

�
st

d�
c

sa
��
r��

�
st � d	
d�

se
��
rs�t���

Because no assumptions about d � IR	 except for d� �� � have been made	 negative terms can

occur in T� Should this be the case	 these negative terms have to be added to the numerator

and the denominator of T	 which neither in�uences tobs � � nor leads to a dependence of the

generalized test variable on nuisance parameters�

Suppose the hypotheses of interest are for example

HI
� � 

�
a � �

b vs� HI
� � 

�
a �� �

b����

and

HII
� � �

a � �
b vs� HII

� � �
a � �

b 
����

This means d � ������ ��T and c � �	 and the generalized test variable T is

T �Y� y� �� �

�� � s� sb
��
r�s���

� s se
��
rs�t���

st�
b � t�

b � �
e

st�
a � t�

b � �
e

� sa
��
r��




Since it is not obvious whether T is a monotone function in �
a	 the function

T �Y� y� �� �

�� � s� sb
��
r�s���

st�
b � t�

b � �
e

st�
a � t�

b � �
e

� sa
��
r��

� s se
��
rs�t���

��



is regarded and then T obviously is a stochastically increasing function in �
a� This necessary

transformation is not a consequence of the general construction principle �cf� section ��	 but

caused by using ���� with an arbitrary d � IR	� In the case of starting with a certain

hypothesis and a 
xed d � IR	 the problem of negative term in T does not occur�

Provided HI
� is true	 then

T �Y� y� �� �

�� � s� sb
��
r�s���

sa
��
r��

� s se
��
rs�t���




The generalized 
xed�level test is given by the rule

Reject
HI

�

HII
�

at the nominal level �� if

�
� �minfPr�T � ���Pr�T 	 ��g

Pr�T � ��

�
	 � 


The probabilities P �T � �� and P �T 	 �� are determined by simulation�

For various constellations of the parameters r� s� t and �
a � �

b 	 with 
�
e � � and the nominal

signi
cance level of � � �
�� the following generalized p�values resulted from simulation

studies ����� runs in each simulation��

p�tobs� p�tobs�

r s t �
a � �

b HI
� HII

� r s t �
a � �

b HI
� HII

�

� � � �
� �
��� �
��� � � � �
� �
��� �
���

� � � � �
��� �
��� � � � � �
��� �
���

� � � � �
��� �
��� � � � � �
��� �
���

� � � �� �
��� �
��� � � � �� �
��� �
���

� � � �
� �
��� �
��� � � � �
� �
��� �
���

� � � � �
��� �
��� � � � � �
��� �
���

� � � � �
��� �
��� � � � � �
��� �
���

� � � �� �
��� �
��� � � � �� �
��� �
���

The simulations show	 that even with small sample sizes the approximative tests have an es�

timated signi
cance level near to the nominal one� With rising r the approximation becomes

even better� In general the one�sided test for problem ���� tends to be more conservative

than the two�sided test �����

��



For s � �	 t � �	 b � �	 e � � and a nominal signi
cance level of � � �
�� the following

data�based power�functions ��tobs� 
�
a� are computed by simulation in dependence on r�
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Figure �� Estimated power of the two�sided test �cf� ��� as a function of a
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Figure �� Estimated power of the one�sided test �cf� ��� as a function of a

a

��tobs� 
�
a�

��



For the estimated data�based power�functions ��tobs� 
�
b � in dependency of �

b 	 with a � �

and under the same parameter constellation we get the following result�
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Figure �� Estimated power of the two�sided test �cf� ��� as a function of b
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Figure �� Estimated power of the one�sided test �cf� ��� as a function of b
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