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� Introduction and Summary

Testing for unit roots has been among the most heavily researched topics

in Econometrics for the last quarter of a century	 Much less researched is

the equally important issue of the appropriate transformation 
if any� of the

variable of interest which should preceed any such testing	

In macroeconometrics and empirical �nance 
stock prices� exchange rates��

there are often compelling arguments in favor of a logarithmic transformation	

Elsewhere� for instance in the modelling of interest rates� a levels speci�cation

automatically suggests itself	 In many applications� however� it is not a priori

clear� given that one suspects a unit root� whether this unit root is present in

the levels or the logs� so there is certainly some interest in the testing for unit

roots in the context of an incompletely speci�ed nonlinear transformation of

the data	

This issue can be approached from various angles	 One is to check which trans�

formations leave the I
��property of a time series intact� the presumption

being that any such transformation could then do little damage to the null

distribution of a test for unit roots 
Granger and Hallmann ����� Ermini and

Granger ����� Corradi �����	 A related one is to use tests whose null dis�
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tribution is robust to monotonic transformations� whether the transformed

data are I
�� or not 
Granger and Hallmann ����� Burridge and Guerre �����

Gourieroux and Breitung ������ or to embed the levels and log speci�cations�

respectively� in a general Box�Cox�framework and to estimate the transforma�

tion parameter before testing 
Franses and McAleer ����� Franses and Koop

����� Kobayashi and McAleer �����	

The present paper continues along the lines of Granger and Hallmann 
����� by

focussing on a conventional test procedure � the standard Dickey�Fuller�test

� and by investigating its properties under a misspeci�ed nonlinear trans�

formation 
in particular� investigating whether an existing unit root is still

detected� i	e	 the null hypothesis of an existing unit root is not rejected when

an inappropriate transformation is applied�	 Given that this test is widely em�

ployed� and given that the choice between a linear and a log linear speci�cation

is often rather haphazardly done in applications� it is important to know the

degree to which the acceptance of the null hypothesis depends on the correct�

ness of the data transformation	

Granger and Hallmann 
����� �nd through Monte Carlo that the standard

Dickey�Fuller�test overrejects a correct null hypotheses of a random walk in

the logs� when the test is instead applied to the levels	 Below we prove ana�

lytically that the rejection probability can take arbitrary values between zero

and one for any sample size	 An analogous result obtains when the levels fol�

low a random walk� but the Dickey�Fuller�test is applied to the logs	 Again�

the rejection probability is shown to be depend on both the sample size and

the innovation variance� so the null distribution of the DF�test is extremely

non�robust to improper data transformations	
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� The null distribution of the Dickey�Fuller�

test as applied to levels when the random

walk is in the logs

This section is concerned with the case where the true data generating process


DGP� is a random walk in the logs� but the Dickey�Fuller�test is inadver�

tantly applied to the levels of the data 
i	e	 to a multiplicative random walk�	

The common wisdom� as pronounced by Granger and Hallmann 
����� or

																																		� is that that the null distribution of the DF�test is �mo�

re spread out�� inducing overrejections of the null hypothesis	 Below we show

that this is only partially true� as the rejection probability under H� depends

crucially on the interplay between the innovation variance and the sample size	

Let yt be the time series under study� let zt �� ln
yt�� and assume that

zt � ��zt����t� �t � nid
�� ���� t � �� � � � � T� z� � �� constant�
��

The standard Dickey�Fuller�test� as applied to the levels yt �� exp
zt�� is given

by T 
��� ��� where

�� �

PT
t�� yt��ytPT
t�� y

�
t��


��

is the OLS�estimator for � in the model

yt � �yt�y � ut� 
��

It assumes that there is no drift component in the data	 Its asymptotic critical

values� which can by now be found in many textbooks� are c � ��� �
� � ����

c � ��� �
� � ��� and c � ���� �
� � ����	 They are based on the null

hypothesis that in eq	 
��� � � � and ut � iid
�� ��� 
which� of course� is not

quite correct if the true DGP is given by 
���	

The objects of our study are the true rejection probabilities under H�� i	e	

P 
T 
�� � �� 	 c�	 As the joint distribution of 
z�� � � � � zT � and therefore also

�




y�� � � � � yt� is uniquely determined by �� 
given the distribution of the ��s��

these probabilities are functions of �� and T 	 We consider the limits of these

probabilities for �� � � and �� �� 
T �xed� and for T �� 
�� �xed�	

To determine the limiting probabilities for a given sample size as �� � � or

�� �� we �rst consider the limiting behaviour of ��	

Theorem � If the data are generated by ���� and �� is the OLS�estimator for

� in ���� we have�

a� �� � � implies ��
d
� �	

b� �� � � implies that �� has a limiting distribution with mass

P 
maxt�������T�� y
�

t 
 yTyT��� at zero and mass P 
maxt�������T�� y
�

t 	

yTyT��� at in
nity	

The proof of the theorem is in the appendix	 It does not make any use of the

iidproperty of the innovations and holds for quite arbitrary joint distributions

of 
��� � � � � �T �	

Theorem � immediately gives the limiting rejection probability for the stan�

dard DW�test� for one sided�tests and arbitrary critical values less than zero�

Rejection probabilities tend to zero as the innovation variance becomes small


as T 
��� ��� ��� and they tend to P 
maxt�������T�� y
�

t 
 yTyT��� as the inno�

vation variance increases 
assuming that the critical value is larger than �T ��

since T 
��� ����� whenever maxy�t 
 yTyT��	

The probability for the latter event depends only on the sample size T 	 It

is easily seen to tend to the probability that the maximum absolute value of

the random walk fztg exceeds its �nal value zT � which in turn converges to

																		

Given T � the true rejection probabilities approach their limits 
as � � ��

from below� they are an increasing function of �� as shown in our Monte Carlo

experiments in section �	 This is intuitively obvious� since 																				

The next theorem gives the limiting rejection probabilities as T �� and ��

�xed	

�



				

� The null distribution of the Dickey�Fuller�

test as applied to logs when the random

walk is in the levels

This section considers the case where the true DGP is given by 
��� and the

time series to which the DickeyFuller test is applied is given yt �� ln
zt�	 This

type of misspeci�cation appears to be less serious in practice� if only because

of possible negative values of zt	 It can therefore occur only if z� is rather large

and�or a sizable drift component 
to be considered later� prevents this from

happening	

The next theorem therefore assumes that zt 
 � 
t � �� � � � � T �� it considers

the limiting behaviour of

��
c� ��
�ln
czt���ln
czt�

��ln
czt�����

��

as c� � and as c��	

Theorem � If the data are generated by ���� we have ��
c�
d
�� �� both as

c� � and as c��	

The proof is in the appendix	

Theorem � implies that the conditional rejection probability of the DW�test


given that 			� tends to zero when the DW�test is inadvertantly applied to the

logs of a random walk	 It possibly explains why Nelson and Plosser 
������

in their seminal paper on unit roots in USmacroeconomic time series� found

unit roots in logtransformed time series although� as argued by Franses and

McAleer 
����� p	 ����� the �true� unit root is in the levels rather than in the

logs� If the levels series has a unit root� this unit root might even appear more

signi�cant if the test is incorrectly applied to logs instead and the innovation

variance is extreme enough	

�



The situation is more complicated if � is �xed and T ��	 First of all� if the

drift component � in 
�� is � �� zt will with probability � eventually become

negative� so there is no point in investigating the limiting conditional rejection

probability when the conditioning event has vanishing probability	 If � 
 ��

					

� Some �nite sample Monte Carlo evidence

�
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A Appendix� Proof of Theorems

Proof of Theorem ��

Consider the distribution of

�� �

PT
t�� yt��ytPT
t�� y

�

t��


A	��

for some given � 
 �	 The distribution of ��� when � is replaced by !� �� c�� is

then identical to the distribution of

��
c� ��

PT
t��
yt��yt�

cPT
t��
y

�
t���

c
� 
A	��

As both the numerator and the denominator in 
A�� tend to T as c � ��

part
a� of the theorem follows	

To determine the limiting distribution of ��
c� as c��� keep y� � � � � yT �xed

and let y�k�� � maxt�������Ty
�

t��	 Then

��
c� �

TP
t��

�
yt��yt

y�k��

�c

TP
t��

�
y�t��
y�k��

�c � 
A	��

and this expression can have only two limits as c � � 
assuming without

loss of generality that y�k�� �� yTyT���	 If y
�

k�� 
 yTyT��� then y�k�� 
 ytyt��

for all t � �� � � � � T � so the numerator tends to zero as c � �	 Since the

denominator tends to unity 
neglecting the possibility that k is not unique��

we have ��
c�� �	

If y�k�� 	 yTyT��� the denominator still tends to unity� but the numerator

tends in�nity� so ��
c���	 This implies that the limiting distribution of ��
c�

as c�� is degenerate� with mass P 
y�k�� 
 yTyT��� at zero� and the rest at

�



in�nity 
in the sense that� for all m � IN� � 
 �� and � 
 � there is an n� such

that

P 
� � ��
c� 	 � or ��
c� 
 m� 
 �� � for all n 
 n�� 
A	��

Proof of Theorem ��

We have

��
c� �
�ln
czt���ln
czt�

��ln
czt�����

�
�lnzt��lnzt � lnc
�lnzt�� � lnzt� � T ln
c��

�
lnzt���� � �ln
c��ln
zt��� � T ln
c��
�

and this expression tends to � both as c� � and c��	

�


