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Abstract

For many problems of statistical inference in regression modelling, the Fisher informa-

tion matrix depends on certain nuisance parameters which are unknown and which enter

the model nonlinearly. A common strategy to deal with this problem within the con-

text of design is to construct maximin optimal designs as those designs which maximize

the minimum value of a real valued (standardized) function of the Fisher information

matrix, where the minimum is taken over a speci�ed range of the unknown parameters.

The maximin criterion is not di�erentiable and the construction of the associated optimal

designs is therefore diÆcult to achieve in practice. In the present paper the relationship

between maximin optimal designs and a class of Bayesian optimal designs for which the

associated criteria are di�erentiable is explored. In particular, a general methodology for

determining maximin optimal designs is introduced based on the fact that in many cases

these designs can be obtained as weak limits of appropriate Bayesian optimal designs.

The approach is illustrated by means of a broad range of examples for which the Bayesian

optimal and hence the maximin optimal designs can be found explicitly.

AMS Subject Classi�cation: Primary 62K05 ; Secondary 62F15

Keywords and Phrases: maximin optimal designs, Bayesian optimal designs, nonlinear regres-

sion models, parameter estimation, least favourable prior
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1 Introduction

In many practical problems in regression modelling the Fisher information for the parameters

of interest depends on certain unknown nuisance parameters. Within the context of design

this problem translates into that of maximizing a concave function of the information matrix,

which depends on the unknown parameters and clearly this cannot be achieved directly. Over

the last forty years a number of strategies have been developed to address this design prob-

lem. Speci�cally, in 1953, Cherno� suggested the simple but elegant expedient of adopting a

best guess for the unknown parameters and termed the resultant designs locally optimal. The

main disadvantage to such an approach is that if the unknown parameters are misspeci�ed

the resulting optimal designs can be highly ineÆcient within the true model setting. An intu-

itively appealing extension to this notion is therefore to construct designs sequentially, using

a best guess to initiate the process and then updating this guess with parameter estimates

obtained from the observed responses after each step of the procedure [see e.g. Ford and Silvey

(1980), Wu (1985)]. There are unfortunately a number of disadvantages to this idea. Thus

in many experimental situations, particularly in agriculture, observations cannot be taken se-

quentially. Furthermore, statistical inference based on observations from sequentially designed

experiments is not a straightforward matter.

A broad and attractive approach to the problem of design when the Fisher information matrix

involves unknown parameters is to, in some sense, quantify the uncertainty in those parameters

and to incorporate this additional information into the formulation of suitable optimality cri-

teria. This has been achieved in practice through the introduction of the concepts of Bayesian

and of maximin optimality. To be speci�c, for Bayesian optimality a prior distribution is

placed on the unknown parameters and criteria involving the average of a concave function

of the Fisher information matrix over that distribution are then maximized. The resultant

designs, termed robust or Bayesian optimal designs, have been extensively studied in the lit-

erature and their properties are well-understood [see for example Pronzato and Walter (1985),

Chaloner and Larntz (1989), Chaloner (1993), Chaloner and Verdinelli (1995)]. In particular

Bayesian optimality criteria are based on criteria in classical design theory and many of the

results from that theory, such as those relating to equivalence theorems and numerical pro-

cedures, can immediately be transferred into the Bayesian context. For maximin optimality,

designs which maximize the minimum of a function of the Fisher information matrix over a

range of parameter values are sought [see e.g. Pronzato and Walter (1985), M�uller (1995),

Dette (1997), M�uller and P�azman (1998)]. The resultant designs, termed maximin optimal

designs, are particularly attractive from a practical point of view in that the experimenter is

only required to specify an appropriate range for the unknown parameters. The major problem

lies in the construction of these designs in the sense that the maximin optimality criterion is

not di�erentiable and that as a consequence results, both algebraic and numeric, are elusive.

Indeed there have been few reports of maximin optimal designs in the literature and strategies

for their construction are somewhat ad hoc [see e.g. Wong (1992), Haines (1995), Dette and

Sahm (1998), Imhof (2001)].

In the present study a general approach to obtaining maximin optimal designs as the limits of

a particular class of Bayesian optimal designs is introduced and explored. Roughly speaking

the powerful tools for constructing Bayesian optimal designs for which the associated criteria

are di�erentiable can be used to obtain maximin optimal designs for which the correspond-
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ing criteria are not di�erentiable. Several applications of this methodology are presented and

maximin optimal designs obtained explicitly. Although interest is centered primarily on the

construction of maximin optimal designs for nonlinear regression models the approach is quite

general and can be applied to optimal designs problems with a similar structure such as model

robust design problems.

The paper is organized in the following way. In Section 2 some preliminary de�nitions are

given and Bayesian optimality criteria analogous to Kiefer's (1974) �

p

-criteria are introduced.

The main results of the study are then presented in Section 3. In particular the relationship

between Bayesian and maximin optimal designs is explored and powerful equivalence theorems

and other associated results are presented. Furthermore, it is shown that under fairly general

conditions the Bayesian optimal designs converge weakly to maximin optimal designs, a result

which mirrors the limiting relationship of the corresponding optimality criteria. A broad range

of applications are considered in Sections 4 and 5. Speci�cally, examples of models for which

the Bayesian optimal designs are available from the literature are presented in Section 4 and

it is shown that maximin optimal designs can be obtained as the limits of these designs. In

Section 5 two weighted polynomial models for which the Bayesian and maximin optimal de-

signs are not known are considered. Bayesian optimal designs for these models are obtained

in analytic form using a method based on the theory of di�erential equations and the results

of Section 3 are then invoked in order to �nd the maximin optimal designs explicitly. Some

broad conclusions and pointers for future research are given in Section 6. For ease of reading

the proofs of all lemmas and theorems in the paper are included in an appendix.

2 Preliminaries

Consider a regression model which depends, possibly nonlinearly, on the parameters � from a

parameter space � � R

k

and on explanatory variables x varying in a compact design space

X � R

`

equipped with a �-�eld, which contains all one point sets. An approximate design �

for this model is a probability measure on the design space X with �nite support x

1

; : : : ; x

n

and weights w

1

; : : : ; w

n

representing the relative proportion of total observations taken at the

corresponding design points [see e.g. Kiefer (1974)]. Let � denote the class of all approximate

designs and � � � some subset of that class. Then, very broadly, an optimality criterion can

be speci�ed as

 : �� �! [0;1) ;

where the function  (�; �) is continuous in the sense that, if a sequence of designs �

n

2 �

converges weakly to a design � 2 � as n!1, then

lim

n!1

 (�

n

; �) =  (�; �)

for all � 2 �. Additionally, for �xed � 2 �, the function  (�; �) is assumed to be continuous

in �. Examples of such a criterion include, inter alia, D- and c-optimality [Pukelsheim (1993)].

In the present study attention is focussed on optimality criteria which accommodate uncer-

tainty in the unknown parameters and, speci�cally, on criteria based on functions of the form

 (�; �). To this end it is �rst necessary to consider a single, �xed parameter value � 2 � and

to introduce a locally  -optimal design over the class of designs � as a design �

�

�

2 � for which
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the condition

 (�

�

�

; �) �  (�; �)

holds for all � 2 �. A standardized maximin  -optimal design in the class � can then be

de�ned as a design which maximizes the criterion

	

�1

(�) = inf

�2�

 (�; �)

 (�

�

�

; �)

(2.1)

over all � 2 � [see Dette (1997)] and a Bayesian  -optimal design with respect to a prior

distribution � on the parameter space � as a design which maximizes

	

0

(�) = exp

Z

�

log (�; �)d�(�) (2.2)

over the set � [see e.g. Pronzato and Walter (1985) or Chaloner and Larntz (1989)]. More gen-

erally, for �xed q such that �1 < q < 0 a Bayesian 	

q

-optimal design for a prior distribution

� on � can be de�ned as a design � 2 � maximizing the criterion

	

q

(�) =

�

Z

�

�

 (�; �)

 (�

�

�

; �)

�

q

d�(�)

�

1

q

(2.3)

over the subclass of designs � [see Dette and Wong (1996)]. Note that the Bayesian  -

optimality criterion (2.2) is obtained from (2.3) in the limit as q ! 0 and that the standardized

maximin criterion (2.1) is recovered as q ! �1 provided the support of the prior � coincides

with the parameter space �, i.e. supp(�) = �.

3 Bayesian and standardized maximin optimal designs

3.1 A general Equivalence Theorem

The results of this subsection relate to a particular form of optimality criterion. Speci�cally,

suppose that the Fisher information matrix for the parameter � 2 � of a design � 2 � can be

expressed as

M(�; �) =

Z

X

f(x; �)f

T

(x; �)d�(x) 2 R

`

�

�`

�

where f(x; �) 2 R

`

�

is a vector-valued function appropriate to the speci�ed regression model

and the dimension l

�

may depend on �. Then the criterion of interest has the form

 (�; �) = �

�

fC

�

(�)g (3.1)

where �

�

(�) is an information function in the sense de�ned by Pukelsheim (1993, page 119)

and

C

�

(�) = C

K

�

(�; �) =

n

K

T

�

M

�

(�; �)K

�

o

�1

:

Here K

�

2 R

`

�

�s

�

represents a matrix of full column rank s

�

� `

�

andM

�

(�; �) denotes a gener-

alized inverse of M(�; �). Here we assume that � 2 � is feasible, that is, R(K

�

) � R(M(�; �))
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for all � 2 �. Note that this formulation is in fact very general and encompasses a broad range

of model speci�cations and optimality criteria. Numerous examples are presented later in the

paper.

An Equivalence Theorem for Bayesian 	

q

-optimal and standardized maximin  -optimal de-

signs based on criteria of the form (3.1) is now introduced and holds strictly for classes of

designs � which are convex. The formulation adopted here is that of Pukelsheim (1993) and

relies on the de�nition of the polar function of �

�

(�) given by

�

1

�

(D) = inf

C

n

tr(CD)

�

�

(C)

�

�

�

C > 0

o

where C and D are nonnegative de�nite matrices. The proof of the next theorem follows

essentially the same arguments as those presented in Pukelsheim (1993), Chapter 11, and is

therefore omitted.

Theorem 3.1. Assume that the criterion  (�; �) has the form (3.1) and that the class of

designs � is convex. Assume also that a design denoted �

�

2 � satis�es the condition R(K

�

) �

R(M(�

�

; �)) for all � 2 �:

(a) The design �

�

is Bayesian 	

q

-optimal in the class � with respect to a prior � on � if

and only if for each � 2 � there exists a nonnegative de�nite matrix D

�

which solves the

polarity equation

�

�

fC

K

�

(�

�

)g�

1

�

(D

�

) = trfC

K

�

(�

�

)D

�

g = 1 (3.2)

and a generalized inverse of M(�

�

; �), say G

�

, such that the inequality

Z

�

�

 (�

�

; �)

 (�

�

�

; �)

�

q

trfM(�; �)B(�

�

; �)g d�(�) �

Z

�

�

 (�

�

; �)

 (�

�

�

; �)

�

q

d�(�) � 0 (3.3)

holds for all � 2 �, where

B(�

�

; �) = G

�

K

�

C

�

(�

�

)D

�

C

�

(�

�

)K

T

�

G

�

(b) Let

N (�

�

) :=

n

� 2 � j 	

�1

(�

�

) =

 (�

�

; �)

 (�

�

�

; �)

o

(3.4)

denote the set of all parameter values in �, for which the minimum in (2.1) is attained.

Then the design �

�

is standardized maximin  -optimal in the class � if and only if there

exists a prior �

!

on the set N (�

�

); for each � 2 supp(�

!

) a nonnegative de�nite matrix

D

�

satisfying (3.2) and a generalized inverse of M(�

�

; �), say G

�

, such that the inequality

Z

N (�

�

)

trfM(�; �)B(�

�

; �)g d�

!

(�) � 1 � 0

holds for all � 2 �:
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Note that in the case of di�erentiability the left hand side of the inequality (3.3) is the di-

rectional derivative of the optimality criterion at the point �

�

in the direction of � [see Silvey

(1980)]. The more general formulation of Theorem 3.1 is required for non-di�erentiable crite-

ria. Morover, the second part of this theorem in e�ect states that the standardized maximin

 -optimal design �

�

coincides with the Bayesian 	

0

-optimal design for the prior distribution

�

w

de�ned on the set N (�

�

). The prior �

w

is usually referred to as the least favourable or

\worst" prior, a term which is borrowed from Bayesian decision theory [see Berger (1985),

page 360]. At this point it is useful to introduce an example in order to �x ideas.

Example 3.2. Suppose that K

�

= I

�

for all � 2 � and that � represents the class of all

approximate designs de�ned on the space X , namely �. Then C

�

(�) = M(�; �) and, for any

optimal design �

�

, the information matrixM(�

�

; �) has full rank for all � 2 �: Suppose further

that the optimality criteria of interest are based on the information function

�

�

fM(�; �)g = jM(�; �)j

1=`

�

:

Then G

�

= M

�1

(�; �) and D

�

=

1

`

�

M

�1

(�; �) for all � 2 � [see Pukelsheim (1993), page 154]

and it follows immediately from Theorem 3.1 and from a standard argument in design theory

that the design �

�

is Bayesian 	

q

-optimal, i.e. �

�

maximizes the criterion

	

q

(�) =

n

Z

�

�

jM(�; �)j

jM(�

�

�

; �)j

�

q=`

�

d�(�)

o

1=q

if and only if the inequality

Z

�

�

jM(�

�

; �) j

jM(�

�

�

; �) j

�

q=`

�

f

T

(x; �)M

�1

(�

�

; �)f(x; �)

`

�

d�(�) �

Z

�

�

jM(�

�

; �) j

jM(�

�

�

; �) j

�

q=`

�

d�(�) � 0 (3.5)

holds for all x 2 X : Similarly, a design �

�

maximizes the criterion

	

�1

(�) = min

�2�

n�

jM(�; �)j

jM(�

�

�

; �)j

�

1=`

�

o

and is thus standardized maximin D-optimal if and only if there exists a prior �

!

on the set

N (�

�

) such that the inequality

Z

N (�

�

)

f(x; �)

T

M

�1

(�

�

; �)f(x; �)

`

�

d�

w

(�) � 1 � 0 (3.6)

holds for all x 2 X : Furthermore equality in the conditions (3.5) and (3.6) is attained at

the support points of the Bayesian 	

q

-optimal and of the standardized maximin D-optimal

designs respectively. Note that the Equivalence Theorem for Bayesian 	

q

-optimality relating

to inequality (3.5) is given in Dette and Wong (1996) under the additional assumption that

the dimension `

�

is a constant. �

The next result follows immediately from Theorem 3.1 and provides insight into the nature of

the set N (�

�

) de�ned in (3.4). The proof is given in the Appendix.

Lemma 3.3. Suppose that the parameter space � comprises at least two points and that the

class of designs � is convex. Then, for the standardized maximin  -optimal design �

�

2 �,

the cardinality of the set N (�

�

) de�ned in (3.4) is at least 2.
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In summary therefore, suppose that a candidate standardized maximin D-optimal design, say

�

�

c

, is available. Then the global optimality or otherwise of this design over a class of designs

� which is convex can be con�rmed by invoking Theorem 3.1 together with Lemma 3.3. Note

immediately that a necessary condition for this design to be optimal over the class � is that

the cardinality of the set N (�

�

c

) is at least 2. Note also that it is not straightforward to invoke

the second part of Theorem 3.1 in practice and speci�cally that it is not easy to construct the

least favourable prior �

w

.

The next two results follow directly from Theorem 3.1 and Lemma 3.3. The proofs are straight-

forward and are therefore omitted.

Lemma 3.4. The Bayesian 	

q

-optimal design �

�

with respect to the prior � is Bayesian 	

q

0

-

optimal with respect to the prior ~�

0

, where

d~�

0

(�) =

�

jM(�

�

; �) j

jM(�

�

�

; �) j

�

q�q

0

d�(�)

and q and q

0

are such that �1 < q; q

0

� 0.

Theorem 3.5. The standardized maximin  -optimal design �

�

is Bayesian 	

q

-optimal with

respect to the least favourable prior �

w

on the set N (�

�

) for all q � 0. Conversely, if the design

�

�

is Bayesian 	

q

-optimal for all q such that �1 < q � 0, then it is standardized maximin

 -optimal.

Thus the global optimality or otherwise of a candidate standardized maximin  -optimal design

can be examined by checking whether or not the design is Bayesian 	

q

-optimal for a range of

values of q � 0. Moreover, if a prior which is close to the least favourable prior �

w

is adopted,

then the Bayesian 	

q

-optimal designs for that prior is not expected to change greatly as the

value of q changes from �1 to 0. This latter observation in turn relates to and explains certain

of the numerical results given in Imhof (2001).

3.2 Convergence of Bayesian to standardized maximin designs

The results presented so far, in particular those relating to Theorems 3.1 and 3.5, indicate

that a close relationship exists between Bayesian 	

q

-optimal designs and maximin  -optimal

designs. Furthermore, since the criterion 	

q

(�) converges to the maximin criterion 	

�1

(�)

as q ! �1, it is tempting to surmise that this convergence is mirrored in the corresponding

designs themselves. In fact the following theorem shows that, under fairly general conditions,

standardized maximin  -optimal designs can be obtained as weak limits of Bayesian 	

q

-optimal

designs as q ! �1. The proof is given in the Appendix, while numerous applications can

be found in the next two sections. Note that the result does not require the special structure

 (�; �) = �

�

fC

�

(�)g nor the convexity of the set � � � as was the case for Theorem 3.1.

Theorem 3.6. Let � be compact and let � denote a prior distribution on � with supp(�) = �.

Suppose that the optimality criterion  : � � � ! (0;1) is continuous in each argument.

Suppose that for every q < 0, �

q

is a Bayesian 	

q

-optimal design in the class of designs �

with respect to the prior � and suppose also that the designs �

q

converge weakly to some design

�

�

2 � as q ! �1. Then the design �

�

is standardized maximin  -optimal.
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It should be emphasized that no conditions need be placed on the class of designs � in order for

the above theorem to hold, other than that the optimal designs of interest, f�

q

g and �

�

, should

all belong to the same class. This is in contrast to Theorem 3.1 for which the requirement that

the class of designs � be convex is imposed.

Remark 3.7. In practice it may well be possible to use Theorem 3.6 to construct a maximin

 -optimal design over a class of designs � which is not necessarily convex such as, for example,

a class of designs based on a �xed number of support points. Then the global optimality or

otherwise of this design over a class of designs which is convex and which contains �, such as

the class of all approximate designs �, can be con�rmed by invoking Theorem 3.1 and Lemma

3.3.

4 General applications

Several broad applications of the results developed in Sections 2 and 3 are now presented. In

many cases the form of the Bayesian 	

q

-optimal designs over a particular subclass of designs is

known and the standardized maximin  -optimal design can be identi�ed by invoking Theorem

3.6 and introducing some additional algebra.

4.1 Nonlinear models

Consider a nonlinear model for which the response variable y follows a distribution from an

exponential family with

E(yjx) = �(x; �) and Var(yjx) = �

2

(x) ; (4.1)

where x represents an explanatory variable in the design space X � R

`

and � is a vector of

unknown parameters in the space � � R

k

. If �(x; �) is continuously di�erentiable with respect

to �, then the Fisher information matrix for � at a single point x is given by

I(x; �) =

1

�

2

(x)

�

@�(x; �)

@�

��

@�(x; �)

@�

�

T

and the information matrix for a design � belonging to a speci�ed class of designs � can be

expressed as

M(�; �) =

Z

X

I(x; �) d�(x)

[see e.g. Silvey (1980)]. For this model setting it is usual to consider criteria �fM(�; �)g, which

are concave functions of the Fisher information matrix. Then the Bayesian 	

q

-optimality

criterion with respect to a prior � on � can be formulated as

	

q

(�) =

�

Z

�

�

�fM(�; �)g

�fM(�

�

�

; �)g

�

q

d�(�)

�

1

q

and, following Dette (1997), the standardized maximin �-optimality criterion can be written

as

	

�1

(�) = min

�2�

n

�fM(�; �)g

�fM(�

�

�

; �)g

o

;

8



where �

�

�

represents the locally �-optimal design maximizing the function �fM(�; �)g [see

Cherno� (1953)] and where all criteria are maximized over the given class of designs �. Note

that these criteria are obtained as a special case from the general theory with K

�

= I

k

and

 (�; �) = �(M(�; �)). The following example involves a �nite parameter space � and helps to

�x ideas.

Example 4.1. Consider the simple exponential model for which the response y is normally

distributed with mean exp(��x) and variance �

2

, where � > 0 and x 2 [0;1). Suppose that

a parameter space comprising two values �

1

and �

2

with 0 < �

1

< �

2

< 1 is of interest,

i.e. � = f�

1

; �

2

g, and that a single-point standardized maximin D-optimal design over that

parameter space is sought. Now I(x; �) = x

2

exp(�2�x) and the single-point locally D-optimal

design is given by x

�

�

= 1=� with I(x

�

�

; �) = 1=(e

2

�

2

). Consequently, for a prior on � which

puts weights � and 1�� on the values �

1

and �

2

respectively, a one-point Bayesian 	

q

-optimal

design with q < 0, say x

q

, maximizes the criterion

	

q

(x) =

�

�

�

e

2

�

2

1

x

2

exp(�2�

1

x)

�

q

+ (1� �)

�

e

2

�

2

2

x

2

exp(�2�

2

x)

�

q

	

1

q

:

By di�erentiating 	

q

(x) with respect to x and setting the result to zero, it then follows that

x

q

satis�es the transcendental equation

log� + log(1� �

1

x)

2q

+ (log �

1

� �

1

x) =

log(1� �) + log(�

2

x� 1)

2q

+ (log �

2

� �

2

x)

with 1=�

2

< x < 1=�

1

. Thus, as q ! �1, the design point x

q

approaches

x

�

=

log(�

2

=�

1

)

(�

2

� �

1

)

;

which, by Theorem 3.6, is a maximin D-optimal one-point design. This result is in agreement

with that derived by Haines (1995) and, independently, by Imhof (2001).

It now follows from Theorem 3.1 and Lemma 3.3 that the design point x

�

is globally maximin

D-optimal if and only if there exists a prior on the two parameters �

1

and �

2

for which that

point is globally Bayesian D-optimal. A candidate least favourable prior can be formulated by

setting x

�

equal to the one-point Bayesian D-optimal design x

0

= 1=f��

1

+ (1� �)�

2

g and is

thus speci�ed by

� =

�

1

�

2

� �

1

�

1

log(�

2

=�

1

)

:

By examining the directional derivative for Bayesian D-optimality with respect to this prior

[see formula (3.6) with `

�

= 1 and M(�

�

; �) = I(x

�

; �)], it can then be shown numerically that

the design point x

�

is globally standardized maximin D-optimal provided �

2

=�

1

� 3:891, a

result in accord with the �ndings of Haines (1995). �

The following corollary speci�es the fairly general conditions under which Theorem 3.6 holds

for the nonlinear models considered in this section. The proof is outlined in the Appendix.

Note that, in the statement of the theorem, the set of all nonnegative de�nite matrices of order

k � k is denoted NND(k)

9



Corollary 4.2. Consider the nonlinear model speci�ed by (4.1) and a local optimality cri-

terion of the form  (�; �) = �fM(�; �)g, where �(�) is a continuous function from NND(k) to

[0;1). Let � be compact and let � represent a prior distribution on � for which supp(�) = �.

Suppose that  (�; �) > 0 on ��� and that I(x; �) is bounded and continuous on X ��. Then,

as q ! �1, the weak limit of the Bayesian 	

q

-optimal designs with respect to the prior � in

the class of designs � is a standardized maximin �-optimal design, provided it belongs to �.

The next example illustrates the use of the above corollary in the construction of standardized

maximin D-optimal designs for a nonlinear model with an associated parameter space which

is not �nite.

Example 4.3. Consider the one-parameter logistic regression model with probability of suc-

cess 1=f1 + exp(�(x� �))g and x 2 IR. Note that the information on � at an observation x is

given by

I(x; �) =

exp(�(x� �))

f1 + exp(�(x� �))g

2

and is bounded and continuous. Note also that the locally D-optimal one-point design is

located at x

�

�

= � with I(x

�

�

; �) = 1=4. Suppose now that a parameter space of the form

� = [�a; a] with a > 0 is of interest and that single-point standardized maximin D-optimal

designs over that space are to be constructed. For a uniform prior on �, the one-point Bayesian

	

q

-optimal design, say x

q

, maximizes the criterion

	

q

(x) =

�

1

2a

Z

a

�a

�

4 exp(�(x� �))

f1 + exp(�(x� �))g

2

�

q

d�

�

1

q

for �1 < q < 0

and it is straightforward to show, either algebraically or by symmetry arguments, that x

q

= 0

for all such q. Thus, since the conditions speci�ed in Corollary 4.2 are satis�ed for this example,

it follows trivially that the one-point standardized maximin D-optimal design is given by

x

�

= 0.

Consider now invoking Theorem 3.1 in order to determine whether or not taking all observations

at the point x

�

= 0 is globally maximin D-optimal. On the basis of the results presented in

Theorem 3.5, the uniform prior on [�a; a] is adopted as a candidate least favourable prior. The

directional derivative for Bayesian D-optimality from x

�

= 0 to a design point x is then given

by

1

2a

Z

a

�a

exp(�x)

�

1 + exp(�)

1 + exp(�(x� �))

�

2

d� � 1

[see formula (3.6) with `

�

= 1 and M(�

�

; �) = I(x

�

; �)] and it can be shown numerically that

this derivative is less than or equal to zero for all x 2 IR provided

3 + a� 3 exp(a) + a exp(a) � 0:

Thus it follows that the single-point design x

�

= 0 is globally standardized maximinD-optimal

on the parameter space [�a; a] provided a satis�es this inequality and hence provided a �

2:5757.
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4.2 Linear heteroscedastic models

An interesting and widely encountered form of nonlinear design problem relates to linear models

with an heteroscedastic error structure. To be precise, assume that the response y follows a

distribution from an exponential family and that

E(yjx) = �

0

f

0

(x) + � � �+ �

d

f

d

(x) and var(yjx) = �

2

=�(x; �) (4.2)

where x 2 X , f

0

(x); : : : ; f

d

(x) are continuous linearly independent regression functions on the

design space X and �(x; �) is an eÆciency function assumed to be known up to the value of the

parameter � 2 � [see e.g. Fedorov (1972)]. The Fisher information matrix for the parameter

� in model (4.2) is given by

M(�; �) =

Z

X

f(x)f

T

(x)�(x; �) d�(x)

where f(x) = (f

0

(x); : : : ; f

d

(x))

T

denotes the vector of regression functions. Criteria of interest

for this model setting are usually of the form  (�; �) = �fM(�; �)g where �(�) is a concave

function of the informationmatrix, such as the (d+1)th root of the determinant. The de�nitions

of Bayesian 	

q

-optimal and standardized maximin  -optimal designs are essentially the same

as those given for the nonlinear models speci�ed by (4.1) and are not repeated here.

In the present setting the mean of the random variable y de�nes a linear model and nonlinearity

is introduced through the dependence of the variance function on the parameter �. In fact,

by including an additional parameter in the variance function of the nonlinear model speci�ed

in (4.1), model (4.2) can be treated as a special case of that nonlinear model [see Atkinson

and Cook (1995)]. The model settings are however fundamentally di�erent and are treated

as such in the present paper. Speci�cally, for the nonlinear model (4.1) the parameter �

is the parameter of interest, while for the linear heteroscedastic model (4.2) the parameter

� = (�

0

; : : : ; �

d

) is of importance and � appears simply as a nuisance parameter. The following

corollary to Theorem 3.6 provides conditions for that theorem to hold in the present setting.

The proof is given in the Appendix.

Corollary 4.4. Suppose that the regression functions f

0

(x); : : : ; f

d

(x) and the eÆciency

function �(x; �) in the linear heteroscedastic model (4.2) are continuous and that  (�; �) =

�fM(�; �)g where �(�) is a continuous function from NND(d+1) to [0;1). Let the parameter

space � be compact and let � represent a prior on � with supp(�) = �. Suppose that  (�; �) > 0

on �� � and that at least one of the following conditions is met.

(i) The design space X is compact.

(ii) X = [a;1), a 2 R, and

lim

x!1

�

f

j

(x)max

�2�

p

�(x; �)

�

= 0; j = 0; : : : ; d:

(iii) X = R and

lim

x!�1

�

f

j

(x)max

�2�

p

�(x; �)

�

= lim

x!1

�

f

j

(x)max

�2�

p

�(x; �)

�

= 0; j = 0; : : : ; d:
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Then the weak limit of the Bayesian 	

q

-optimal designs with respect to the prior � in the class

of designs � as q ! �1 is a standardized maximin  -optimal design, provided it belongs to

�.

Finally, if the class of designs � is convex, Theorem 3.1 can be invoked to con�rm the global

optimality or otherwise of a candidate design. Speci�cally, if �(M(�; �)) = jM(�; �)j

1

d+1

, a

design �

�

is Bayesian 	

q

-optimal in the class of all designs if and only if the inequality

Z

�

�

jM(�

�

; �)j

jM(�

�

�

; �)j

�

q

d+1

�(x; �)f

T

(x)M

�1

(�

�

; �)f(x) d�(�) � (d+ 1)

Z

�

�

jM(�

�

; �)j

jM(�

�

�

; �)j

�

q

d+1

d�(�)

holds for all x 2 X and standardized maximin D-optimal if and only if there exists a least

favourable prior �

w

on the set N (�

�

) de�ned in (3.4) such that

Z

N (�

�

)

�(x; �)f

T

(x)M

�1

(�

�

; �)f(x) d�

w

(�) � (d+ 1)

is satis�ed, again for all x 2 X . The application of the above results to the construction of stan-

dardized maximin D-optimal designs for a particular class of weighted polynomial regression

models is now explored in the following example.

Example 4.5. Consider the weighted polynomial model de�ned by

y = �

0

+ �

1

x + : : :+ �

d

x

d

+ �; x 2 [0;1); (4.3)

where the regression parameters � = (�

0

; : : : ; �

d

) are of interest and the error term � is assumed

to be normally distributed with mean 0 and variance �

2

=�(x; �). The eÆciency function is

taken to be of the form �(x; �) = x

v

exp(��x), with the parameter � deemed to be a nuisance

parameter and the power v either positive or zero and assumed known. Then the Fisher

information matrix for a design � belonging to a speci�ed class of designs � can be written as

M(�; �) =

Z

1

0

x

v

exp(��x)f(x)f

T

(x) d�(x)

where f(x) = (1; x; : : : ; x

d

)

T

. Suppose that the criterion of interest is D-optimality and thus

that  (�; �) = jM(�; �)j

1=(d+1)

. Suppose also that � belongs to a compact parameter space

� = [�

min

; �

max

] with 0 � �

min

< �

max

<1 and that attention is restricted to prior distributions

� on � for which supp(�) = �. Then all the broad assumptions of Corollary 4.4 hold and, in

addition, since x 2 [0;1) and

lim

x!1

�

f

j

(x)max

�2�

p

�(x; �)

�

= lim

x!1

�

x

j+v=2

exp(�

max

x=2)

�

= 0

condition (ii) of that corollary is satis�ed. Thus, in summary, the design problem presented

here is precisely that for a linear heteroscedastic model described above, Corollary 4.4 can be

invoked and standardized maximinD-optimal designs obtained as the limits of the appropriate

Bayesian 	

q

-optimal designs.

Consider now optimal designs which are restricted to belong to the class of all (d + 1)-point

designs. Then it follows immediately from the results of Dette and Wong (1996) that designs
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which are Bayesian 	

q

-optimal over this class for �1 < q < 0 put equal masses at the zeros

of the polynomials

xL

(1)

d

f�F

q

(qz

q

)xg for v = 0

and

L

(v�1)

d+1

f�F

q

(qz

q

)xg for v > 0:

Here L

(�)

n

(u) denotes the generalized Laguerre polynomial of degree n orthogonal with respect

to the measure u

�

exp(�u) du for u � 0 [see Szeg�o (1975)] and z = z

q

is the unique solution of

the equation

z = �

(d+ 1)(d+ v)

F

q

(qz)

;

where

F

q

(qz) = �

R

�

�e

��qz

�

(d+1)(d+v)q

d�(�)

R

�

e

��qz

�

(d+1)(d+v)q

d�(�)

:

In order to determine the weak limit of these Bayesian 	

q

-optimal designs, that is to determine

the limit of F

q

(qz) as q ! �1, the following lemma is introduced. The proof is intricate and

is given in the Appendix.

Lemma 4.6. Let � be a prior distribution with support � = [�

min

; �

max

] where 0 � �

min

< �

max

.

Let

F

q

(x) = �

R

�e

��x

g(�)

�q

d�(�)

R

e

��x

g(�)

�q

d�(�)

; �1 < q < 0; x 2 R;

where g is a continuous log-convex function on �. For every q < 0, let z

q

be such that

z

q

= hf�F

q

(qz

q

)g; (4.4)

where h(�) is a strictly decreasing function on �. If there exists a parameter value t

�

2 � such

that

h(t

�

) = �

logfg(�

max

)=g(�

min

)g

�

max

� �

min

; (4.5)

then lim

q!�1

F

q

(qz

q

) = �t

�

.

In the present case g(�) = �

�(d+1)(d+v)

, which is log convex, and h(t) = (d+1)(d+ v)=t, which

is decreasing. Thus Lemma 4.6 holds and

lim

q!�1

F

q

(qz

q

) = �t

�

= �

�

max

� �

min

log (�

max

=�

min

)

provided that �

min

� t

�

� �

max

. In fact, since logu � u � 1 for all u > 0, the inequalities

involving t

�

do indeed hold and the following result is thus established.

Theorem 4.7 The standardized maximin D-optimal (d + 1)-point design for the weighted

polynomial regression model (4.3) with

Var(yjx) =

�

2

�(x; �)

= �

2

x

�v

exp(��x) ; x � 0
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and � 2 [�

min

; �

max

] puts equal masses at the zeros of the polynomials

xL

(1)

d

�

�

max

� �

min

log (�

max

=�

min

)

x

�

for v = 0;

and

L

(v�1)

d+1

�

�

max

� �

min

log (�

max

=�

min

)

x

�

for v > 0:

Note that this theorem extends the results for the case of v = 0 given in Theorem 5.1 of Imhof

(2001).

Remark 4.8. Consider the generalized exponential model de�ned by

y = x

v

exp(��x)f�

0

+ �

1

x + : : : �

d�1

x

d�1

g+ �; x 2 [0;1); (4.6)

where the error terms � are normally distributed with mean zero and constant variance �

2

;

the parameters � = f�

0

; : : : ; �

d�1

g and � are of interest and the parameter v is assumed

to be known. Then, following Dette and Wong (1996), it can readily be shown that the

problem of constructing Bayesian 	

q

-optimal designs for this model is equivalent to that of

�nding such designs for the weighted polynomial regression model with eÆciency function

�(x; �) = x

2v

exp(�2�x). Thus it follows immediately that standardized maximin D-optimal

designs for the exponential model (4.6) can be derived from the corresponding optimal designs

given in Example 4.5.

4.3 Model robust and discrimination designs

It is not uncommon for a practitioner to identify a set of plausible models, rather than a single

model, as being appropriate for a particular data set. In order to accommodate such model

uncertainty within the context of optimal design, criteria which are robust to the choice of

model have been developed [see e.g. L�auter (1974)] and certain of these are explored here. To

be speci�c, consider a class of linear models with means

E(yjx) = g(x; �) = �

0

f

0

(x; �) + : : :+ �

`

�

f

`

�

(x; �);

where x belongs to some design space X and the regression functions f

i

(x; �); i = 0; : : : ; `

�

,

are known, and with constant variances �

2

, i.e. �(x; �) � 1. Each model is indexed by a

parameter � taken from a �nite set of indices � and the class of such models is denoted

F = fg(x; �) j � 2 �g. Note that in many applications the models in the set F are nested but

this is not necessary for the development of the robust design criteria described here.

The Fisher information matrix for the regression parameters (�

0

; : : : ; �

`

�

) in the model speci�ed

by g(x; �) at a design � 2 � can be expressed as

M(�; �) =

1

�

2

�

Z

X

f

i

(x; �)f

j

(x; �)d�(x)

�

`

�

i;j=0
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for � 2 �. Thus an optimal design which is robust to choice of model over the class F should

maximize an appropriate real valued function of the matrices fM(�; �) j � 2 �g over the set

of designs � [see e.g. L�auter (1974)]. In particular, suppose that a prior � on the index set

� puts probability �(�) on the parameter �, where �(�) � 0 and

P

�2�

�(�) = 1. Suppose

also that for each model g(x; �) in the class F , a criterion of the form  (�; �) = �

�

fM(�; �)g,

where �

�

(�) is an information function, is of interest and that �

�

�

is the locally �

�

-optimal design

associated with this criterion. Then, following L�auter (1974), a 	

q

-optimal robust design with

respect to the prior � for the class of models F maximizes the criterion

	

q

(�) =

"

X

�2�

�(�)

�

�

�

fM(�; �)g

�

�

fM(�

�

�

; �)g

�

q

#

1

q

(4.7)

over the set of designs �. Furthermore, following Dette (1997), a standardized maximin optimal

robust design for the class F maximizes the function

min

�2�

n

�

�

fM(�; �)g

�

�

fM(�

�

�

; �)g

o

again over the set �. In view of Theorem 3.6, the standardized maximin robust designs can

be found as weak limits of 	

q

-optimal robust designs. Furthermore, if the class of designs � is

taken to be convex, Theorem 3.1 can be invoked in order to ascertain whether or not a candidate

design is in fact globally optimal. These ideas are illustrated by means of the following example,

which discusses the problem of identifying the degree of a polynomial regression.

Example 4.9. Consider the class of nested polynomial models with means

g(x; �) = �

0

+ �

1

x+ : : :+ �

�

x

�

;

where x 2 X = [�1; 1] and � 2 � = f1; : : : dg. Note that the regression functions are given by

f

i

(x; �) = x

i

; i = 0; : : : ; �, and that the information matrix for the model of degree � can be

expressed as

M(�; �) =

�

Z

X

x

i+j

d�(x)

�

�

i;j=0

:

In order to obtain eÆcient designs for identifying the appropriate degree of the polynomial

regression, Spruill (1990) proposed that a function of the criteria

 (�; �) = �

�

fM(�; �)g =

jM(�; �)j

jM(�; � � 1)j

for � 2 f1; : : : ; dg should be maximized. The rational behind this proposal is that the power

of the t-test for the hypothesis that the highest coeÆcient in the model of degree � vanishes,

H

0

: �

�

= 0, is an increasing function of  (�; �) and consequently that a good discrimination

design should make these quantities as large as possible [for more details see Spruill (1990)].

Suppose now that a uniform prior � is placed on the index set �; i.e. �(�) =

1

d

for � 2 f1; : : : ; dg:

Then the 	

q

-optimal (discrimination) design with respect to the prior �, say �

�

q

, maximizes

(4.7) and can be characterized explicitly in terms of its canonical moments [see Dette and

Studden (1997)]. In particular, by using results in Dette (1994) it can be shown that the
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canonical moments (p

1

; : : : ; p

2d

) of the 	

q

-optimal (discrimination) design �

�

q

are given by

p

2d

= 1, p

2j�1

=

1

2

for j = 1; : : : ; d, and by the system of equations

2

2(d�`)

(

d�1

Y

i=`+1

p

1+1=q

2i

q

1�1=q

2i

)

(1� p

2`

)

1�1=q

(2p

2`

� 1)

1=q

= 1 ; ` = 1; : : : ; d� 1 ;

where q

2i

= 1 � p

2i

and

Q

d�1

d

is interpreted as unity. As q ! �1 this latter system reduces

to the recursion

p

2`

= 1� 2

�2(d�`)

d�1

Y

i=`+1

(p

2i

q

2i

)

�1

and consequently �

�

q

converges weakly to the design �

�

with canonical moments p

2d

= 1; p

2j�1

=

1

2

for j = 1; : : : ; d, and

p

2`

=

d� `+ 2

2(d� `) + 2

for ` = 1; : : : ; d� 1. It now follows immediately from Theorem 3.6, and more speci�cally from

the general discussion of this section, that the design �

�

is standardized maximin optimal.

Moreover, by invoking Corollary 4.3.3 in Dette and Studden (1997), it is readily shown that

the design �

�

puts equal masses at the zeros of the ultraspherical polynomial C

(2)

d�1

(x) [see Szeg�o

(1975)] and masses 1.5 times larger at the boundary points +1 and �1.

The 	

q

-optimal and the maximin optimal discrimination designs described here are in fact

globally optimal in the sense that they are optimal over the class of all approximate designs,

�. Thus there exists a least favorable prior �

w

on the index set � for which �

�

is 	

0

-optimal.

Furthermore this prior can be obtained explicitly from the canonical moments of the optimal

design �

�

by invoking Theorem 6.2.3 of Dette and Studden (1997) and puts weights

�

w

(�) =

2(d� � + 1)

d(d+ 1)

on the parameters � 2 f1; : : : ; dg. For example, consider the case of d = 4. Then the stan-

dardized maximin optimal discrimination design is given by

�

�

=

(

�1 �

p

3

2

p

2

0

p

3

2

p

2

1

1

4

1

6

1

6

1

6

1

4

)

and the least favourable prior associates weights 2/5, 3/10, 1/5 and 1=10 with the polynomial

models of degree 1; 2; 3 and 4, respectively. �

4.4 Designs for estimating nonlinear functions

Consider the homoscedastic linear regression model with mean

E(yjx) = �

0

f

0

(x) + �

1

f

1

(x) + : : :+ �

d

f

d

(x) (4.8)

and variance �

2

. Suppose that the parameters � belong to a space B and that a nonlinear

function of those parameters, denoted h(�), is of interest. Then the approximate asymptotic

variance of such a function is proportional to

�(�)

T

M

�

(�)�(�);
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where �(�) represents the vector of derivatives of h(�) with respect to �,M

�

(�) is a generalized

inverse of the information matrix and �(�) 2 R(M(�)). Optimal designs which in some sense

minimize this variance are now sought. For ease of notation, consider the induced parameter

space � = f[�(�)

T

�(�)]

�

1

2

�(�) : � 2 Bg. Then an appropriate optimality criterion can be

formulated as

 (�; �) =

(

�

�

T

M

�

(�)�

	

�1

for � 2 R(M(�))

0 otherwise

and the locally optimal design �

�

�

maximizes this criterion. The design problem so described

occurs, for example, when the turning point of a quadratic regression function is of interest [see

e.g. Chaloner (1989)] and also in the context of constructing optimal extrapolation designs for

an interval [see e.g. Spruill (1987)].

The de�nitions of Bayesian 	

q

-optimal and of standardized maximin  -optimal designs based

on the above criterion follow directly from the general formulations given in Section 2. Further-

more Theorem 3.6 holds under the conditions speci�ed in the following corollary. The proof is

given in the Appendix.

Corollary 4.10. Let � denote a prior distribution on � with supp(�) = �. Suppose that

the functions f

0

(x); : : : ; f

d

(x) in model (4.8) are continuous and bounded and that the locally

optimal criterion value  (�

�

�

; �) is continuous in �. Then the weak limit of the Bayesian 	

q

-

optimal designs in the class of designs � as q ! �1 is a standardized maximin  -optimal

design, provided the limiting design belongs to � and is non-singular, i.e. its Fisher information

matrix is non-singular.

5 New designs for heteroscedastic polynomial models

The potential application and usefulness of the results presented in this paper are now explored

and illustrated for two heteroscedastic polynomial models for which the Bayesian 	

q

-optimal

and standardized maximin  -optimal designs are not available in the literature. In particular

the construction of standardized maximin D-optimal designs for these models is considered

[see Example 3.2] and a suite of new and interesting results derived. To be speci�c, the models

of interest are de�ned by

y = �

0

+ �

1

x+ �

2

x

2

+ : : :+ �

d

x

d

+ � ; (5.1)

where � is an error term with mean 0 and variance �

2

=�(x; �) and the eÆciency functions and

design spaces are of the form

�(x; �) = (1 + x

2

)

��

for � > d and x 2 IR

and

�(x; �) = (1 + x)

��

for � > 2d and x 2 [0;1):

Attention is restricted to the class of designs based on exactly d + 1 points. Bayesian 	

q

-

optimal designs are �rst constructed and standardized maximin D-optimal designs are then

obtained as weak limits of these designs.
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5.1 Bayesian 	

q

-optimal (d+1)-point designs

Dette and Wong (1996) derived Bayesian 	

q

-optimal (d+ 1)-point designs for weighted poly-

nomial regression models with a wide range of eÆciency functions using arguments based on

canonical moments [see Dette and Studden (1997)]. Their approach is not in fact completely

general and speci�cally does not hold for the models under consideration here. However it is

possible to determine Bayesian 	

q

-optimal designs based on exactly d+1 points explicitly for

these models using arguments based on the theory of di�erential equations. The steps involved

in this approach and the attendant results are now presented.

First observe that any D-optimal (d+1)-point design necessarily puts equal masses at its sup-

port points, say x

1

; : : : ; x

d+1

[see Fedorov (1972)]. The determinant of the information matrix

for the regression parameters of model (5.1) can thus be written as

jM(�; �) j =

1

(d+ 1)

d+1

j X

R

j

2

d+1

Y

i=1

�(x

i

; �) ;

where X

R

is the Vandermonde matrix with ith row f1 x

i

x

2

i

: : : x

d

i

g (i = 1; : : : ; d+1). It then

follows immediately that

f	

q(d+1)

(�)g

q(d+1)

=

Z

�

�

jM(�; �)j

jM(�

�

�

; �)j

�

q

d�(�) =

1

(d+ 1)

d+1

j X

R

j

2

Z

�

d+1

Y

i=1

�(x

i

; �)

q

d~�(�);

where

d~�(�) =

d�(�)

jM(�

�

�

; �)j

q

(5.2)

and �

�

�

denotes the appropriate locally D-optimal design. The design �

�

�

for the eÆciency

functions of interest, and certain key properties of that design including the determinant,

jM(�

�

�

; �)j, are summarized in the following two lemmas. Proofs are given in the Appendix.

Lemma 5.1. Suppose that �(x; �) = (1 + x

2

)

��

with x 2 IR and � > d. Then the locally

D-optimal design �

�

�

in the class of all approximate designs � puts equal weights on the roots

of the ultraspherical polynomial C

(���

1

2

)

d+1

(

p

�x

2

),

d+1

Y

i=1

(1 + x

2

i

) =

d

Y

j=1

(d� 2� � j)

2

(2d+ 1� 2� � 2j)

2

and

jM(�

�

�

; �) j =

d

Y

j=1

j

j

d

Y

j=1

(2� � 2j + 1)

2��2j+1

(2� � j + 1)

2��j+1

:

Lemma 5.2. Suppose that �(x; �) = (1 + x)

��

with x 2 [0;1) and � > 2d. Then the locally

D-optimal design �

�

�

in the class of all approximate designs � puts equal weights on the roots

of the Jacobi polynomial xP

(1;���1)

d

(2x+ 1),

d+1

Y

i=1

(1 + x

i

) =

d

Y

j=1

(� � j + 1)

(� � d� j)
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and

jM(�

�

�

; �) j=

d

Y

j=1

j

2j

(� � d� j)

��d�j

(� � j + 1)

��j+1

:

The derivation of the required Bayesian 	

q

-optimal (d+1)-point designs, based on the theory

of di�erential equations can be found in the Appendix. The results are summarized in the next

two theorems.

Theorem 5.3 Consider model (5.1) with �(x; �) = (1+x

2

)

��

, x 2 IR and � > d. Assume that

the condition

Z

�

a

�q�

d~�(�) <1 holds for all a > 1 . Then the Bayesian 	

q(d+1)

-optimal (d+1)-

point design with respect to the prior � puts equal weights on the roots of the ultraspherical

polynomial

C

(F (qz)�

1

2

)

d+1

(

p

�x

2

) ;

where

F (qz) = �

Z

�

�e

��qz

d~�(�)

Z

�

e

��qz

d~�(�)

;

the prior ~� is given by

d~�(�) =

�

d

Y

j=1

(2� � j + 1)

2��j+1

(2� � 2j + 1)

2��2j+1

�

q

d�(�);

and z is a solution to the equation

z = 2

d

X

j=1

log

�

d+ 2F (qz)� j

2d+ 1 + 2F (qz)� 2j

�

:

Theorem 5.4 Consider model (5.1) with �(x; �) = (1+ x)

��

, x 2 [0;1) and � > 2d. Assume

that the condition

Z

�

a

�q�

d~�(�) < 1 holds for all a > 1 . The Bayesian 	

q(d+1)

-optimal

(d + 1)-point design with respect to the prior � puts equal weights on the roots of the Jacobi

polynomial

xP

(1;F (qz)�1)

d

(2x+ 1) ;

where the function F (�) is de�ned in Theorem 5.3, the prior ~� is given by

d~�(�) =

�

d

Y

j=1

(� � j + 1)

��j+1

(� � d� j)

��d�j

�

q

d�(�) ;

and z satis�es the equation

z =

d

X

j=1

log

�

�F (qz)� j + 1

�F (qz)� d� j

�

:
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Remark 5.5. Note that the solutions to the equations involving z in the above theorems are

unique, a result which is based on standard arguments. Morover, it follows immediately from

Lemmas 5.1 and 5.2 that the Bayesian 	

q(d+1)

-optimal (d+1)-point designs given in Theorems

5.3 and 5.4 respectively coincide with the locally D-optimal designs for a best guess of the

parameter � = �F (qz). Furthermore for Bayesian D-optimality with q = 0 this best guess is

the mean of the parameter � over the prior �, i.e. �F (qz) = �F (0) = E

�

(�).

Remark 5.6. Bayesian 	

q

-optimal (d+1)-point designs for weighted polynomial models with

eÆciency functions �(x; �) = exp(��x) and �(x; �) = exp(��x

2

) are presented in Theorem

3.2 and 3.5 of Dette and Wong (1996). These designs can also be derived using the approach

based on di�erential equation discussed here and the attendant proofs follow closely those for

Theorems 5.3 and 5.4 given in the Appendix.

5.2 Standardized maximin D-optimal designs

Consider the standardized maximin D-optimality criterion for the weighted polynomial model

(5.1) formulated as

min

�2�

�

jM(�; �) j

jM(�

�

�

; �) j

�

1=(d+1)

where the parameter � relates to the eÆciency functions (1 + x

2

)

��

and (1 + x)

��

and is

assumed to belong to a speci�ed parameter space of the form � = [�

min

; �

max

]. Then, following

arguments similar to those used in Example 4.5, the (d + 1)-point designs which maximize

this criterion can be obtained as weak limits of the Bayesian 	

q

-optimal (d+ 1)-point designs

derived above. The relevant results are presented formally in the next two theorems and the

attendant proofs are given in the Appendix. Note that for these examples it is straightforward

to show that Corollary 4.4 holds but the derivation of the required limiting designs is more

intricate.

Theorem 5.7. The standardized maximin D-optimal (d+1)-point design for model (5.1) with

�(x; �) = (1 + x

2

)

��

, x 2 IR, � 2 � = [�

min

; �

max

] and �

min

> d puts equal weights on the roots

of the ultraspherical polynomial

C

(

��

0

�

1

2

)

d+1

(

p

�x

2

);

where �

0

falls in the interior of � and satis�es the equation

2

d

X

j=1

log

�

d� 2�

0

� j

2d+ 1� 2�

0

� 2j

�

=

� log fm(�

max

)=m(�

min

)g

�

max

� �

min

with

m(�) =

d

Y

j=1

(2� � 2j + 1)

2��2j+1

(2� � j + 1)

2��j+1

:
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Theorem 5.8. The standardized maximin D-optimal (d+1)-point design for model (5.1) with

�(x; �) = (1 + x)

��

, x 2 [0;1), � 2 � = [�

min

; �

max

] and �

min

> 2d puts equal weights on the

roots of the Jacobi polynomial

xP

(1;��

0

�1)

d

(2x+ 1) ;

where �

0

falls in the range � and satis�es the equation

d

X

i=1

log

�

�

0

� j + 1

�

0

� j � d

�

=

� log(m(�

max

)=m(�

min

)))

�

max

� �

min

with

m(�) =

d

Y

j=1

(� � d� j)

��d�j

(� � j + 1)

��j+1

:

Remark 5.9.

(a) Note that the equations involving �

0

in the two theorems presented above have unique

solutions in the range �. Note also however that these equations must be solved numerically,

at least in general.

(b) The standardized maximin D-optimal (d + 1)-point designs derived in Theorems 5.7 and

5.8 clearly coincide with the corresponding locally D-optimal designs with a best guess of the

parameter � equal to �

0

and thus, following Remark 5.5, with Bayesian D-optimal designs with

E

�

(�) = �

0

. This observation can be helpful in constructing candidate least favourable priors

�

w

on the set N (�

�

) which can in turn be used together with Theorem 3.1 to explore the global

optimality or otherwise of the standardized maximin D-optimal (d+ 1)-point designs.

Example 5.10. Consider the weighted quadratic regression model with eÆciency function

�(x; �) = (1 + x)

��

and x 2 [0;1). Note that d = 2 and thus that the parameter � must

be strictly greater than 4. Suppose now that � belongs to a speci�ed parameter space � =

[�

min

; �

max

]. Then the standardized maximin D-optimal design based on exactly 3 points, say

�

�

, puts equal weights on the zeros of the polynomial xP

(1;��

m

�1)

2

(2x + 1), where �

m

belongs

to the parameter space � and satis�es

�

m

(�

m

� 1)

(�

m

� 3)(�

m

� 4)

=

�

m(�

min

)

m(�

max

)

�

1

�

max

��

min

= c

with

m(�) =

(� � 3)

��3

(� � 4)

��4

�

�

(� � 1)

��1

:

In fact it can be shown by a tedious but straightforward calculation that �

m

is unique and is

given explicitly by

�

m

=

7c� 1 +

p

1 + 34c+ c

2

2(c� 1)

;

and that the support points of the standardized maximin D-optimal 3-point design �

�

are

located at 0,

3(�

m

� 3)�

p

3(�

m

� 1)(�

m

� 3)

(�

m

� 3)(�

m

� 4)

and

3(�

m

� 3) +

p

3(�

m

� 1)(�

m

� 3)

(�

m

� 3)(�

m

� 4)

:
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Suppose now that the eÆciency of the standardized maximin D-optimal design relative to the

locally D-optimal design, de�ned by

R(�

�

; �) =

�

jM(�

�

; �)j

jM(�

�

�

; �)j

�

1=3

;

attains its minimum over the parameter space at the end-points of that space, �

min

and �

max

.

Then N (�

�

) = f�

min

; �

max

g and a candidate worst prior based on the two points �

min

and

�

max

can be constructed. Furthermore, following Remark 5.8, the maximin optimal design �

�

coincides with the three-point Bayesian D-optimal design associated with a prior distribution

on � for which E(�) = �

m

. Thus the candidate worst prior puts weights � and (1� �) on the

parameter values �

min

and �

max

where � satis�es

��

min

+ (1� �)�

max

= �

m

:

It then follows from Theorem 3.1 that the 3-point maximin D-optimal design, �

�

, is globally

optimal provided it is Bayesian D-optimal for the candidate worst prior and thus provided the

directional derivative

d(x; �

�

) = �trfM(x; �

min

)M

�1

(�

�

; �

min

)g+ (1� �)trfM(x; �

max

)M

�1

(�

�

; �

max

)g � 1

is less than or equal 0 for all x 2 [0;1). For the parameter space � = [5; 6], the value of

�

m

is 5:4665 and the standardized maximin D-optimal 3-point design, �

�

, puts equal weights

on the points 0; 0:4563 and 3:6350. The eÆciency R(�

�

; �) is a minimum at the end points of

�, i.e. at 5 and 6, and the worst prior associates weights 0:5335 and 0:4665 respectively with

those values. A plot of the directional derivative d(x; �

�

) against x for this setting shows, at

least numerically, that the design �

�

is globally optimal. For the parameter space � = [5; 10],

the maximin D-optimal 3-point design, �

�

, has support at the points 0; 0:2909 and 1:6893,

the eÆciency R(�

�

; �) is again a minimum at the end-points of � and the candidate worst

prior puts weights of 0:5940 and 0:4060 on the parameter values 5 and 10 respectively. A plot

of d(x; �

�

) against x indicates that, in contrast to the case with � = [5; 6], the standardized

maximin D-optimal 3-point design �

�

is not globally optimal.

6 Conclusions

This study provides a cohesive approach to the construction of standardized maximin optimal

designs for a broad range of nonlinear model settings. It is demonstrated that under fairly

general conditions Bayesian 	

q

-optimal designs converge to standardized maximin optimal de-

signs. In Section 4 it is shown that these conditions hold for a number of design problems,

including those involving nonlinear models, weighted polynomial models and nonlinear func-

tions of the parameters of a linear model. Before the results can be implemented, Bayesian

	

q

-optimal designs for the model, the optimality criterion and the class of designs of interest

must necessarily be constructed and in the study of this paper the emphasis is on obtaining

these designs explicitly. In some cases, as for example those in Section 4, such designs are

available in the literature. In other modelling situations, new methods for the construction of
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Bayesian 	

q

-optimal designs must be devised, as is done for the weighted polynomial models

of Section 5. Finally, in implementing Theorem 3.6, it is necessary to �nd the requisite stan-

dardized maximin optimal design as the limit of the appropriate Bayesian 	

q

-optimal designs

and, as indicated in Sections 4 and 5, the mathematics involved in deriving such a limiting

design analytically can be somewhat intricate.

On the other hand for many nonlinear model settings it is possible that Bayesian 	

q

-optimal

designs cannot be obtained in an explicit algebraic form. In such cases these Bayesian optimal

designs can usually be calculated numerically for a range of increasingly negative q values and

the limiting and hence the standardized maximin optimal design identi�ed, at least approxi-

mately. This strategy and its dependence on the choice of model, criterion and prior are clearly

of interest and comprise an attractive area for further research.

A secondary but nevertheless important feature of the present study is the suite of results for

convex classes of designs presented in Section 3.1 and based on the Equivalence Theorem, The-

orem 3.1. These results provide considerable insight into the nature of standardized maximin

optimal designs and their relation to the Bayesian 	

q

-optimal designs and in addition provide

tools for con�rming the global optimality or otherwise of candidate designs. However it should

immediately be emphasized that, while a standardized maximin optimal design is globally

optimal provided it is Bayesian 	

0

-optimal for some least favourable prior, the identi�cation

of that prior is not straightforward. The results of the present study provide further inside

in the problem of constructing standardized maximin optimal designs (either analytically or

numerically) and also, in cases where the class of designs is convex, for �nding the associated

least favourable priors.
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APPENDIX

Proof of Lemma 3.3. Let �

�

denote the standardized maximin optimal design and assume

that N (�

�

) = f�

0

g is a singleton. Then the Equivalence Theorem 3.1 for standardized maximin

optimality shows that �

�

is locally D-optimal for the parameter �

0

in the class �: Therefore

1 =

 (M(�

�

; �

0

))

 (M(�

�

�

0

; �

0

))

= min

n

 (M(�

�

; �))

 (M(�

�

�

; �))

�

�

�

� 2 �

o

� 1;

which implies N (�

�

) = � contradicting the hypothesis that #N (�

�

) = 1: �

Proof of Theorem 3.6. Note �rst that the continuity of  implies that the normalizing

function

�(�) :=  (�

�

�

; �) ; � 2 �;

is lower semicontinuous. For if � 2 � and f�

j

g

1

j=1

� � is a sequence that converges to �, then

lim inf

j!1

�(�

j

) = lim inf

j!1

 (�

�

�

j

; �

j

) � lim inf

j!1

 (�

�

�

; �

j

) =  (�

�

�

; �) = �(�):

Let � > 0, and let �

0

2 � be such that

 (�

�

; �

0

)

�(�

0

)

� 	

�1

(�

�

) + �:

Then, since � is lower semicontinuous and  is continuous, there is a relatively open neighbor-

hood U � � of �

0

such that

 (�

�

; �)

�(�)

� 	

�1

(�

�

) + 2� for all � 2 U:

As supp(�) = �, �(U) > 0. Since �

q

converges weakly to �

�

,

 (�

q

; �)

�(�)

!

 (�

�

; �)

�(�)

for every � 2 �. It therefore follows from Egorov's theorem [see e.g. Hewitt and Stromberg

(1965), page 158] that there exist a measurable set V � � with �(V ) > 1 �

1

2

�(U) and a

number q

0

< 0 such that

�

�

�

�

 (�

q

; �)

�(�)

�

 (�

�

; �)

�(�)

�

�

�

�

� � for all � 2 V and all �1 < q � q

0

:

Thus for all �1 < q � q

0

,

f	

q

(�

q

)g

q

�

Z

U\V

�

 (�

q

; �)

�(�)

�

q

d�(�) � f	

�1

(�

�

) + 3�g

q

�(U \ V ):

Obviously, �(U \ V ) > 0, and it follows that

lim sup

q!�1

	

q

(�

q

) � f	

�1

(�

�

) + 3�g lim sup

q!�1

f�(U \ V )g

1

q

= 	

�1

(�

�

) + 3�:
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As � > 0 was arbitrary, one has

lim sup

q!�1

	

q

(�

q

) � 	

�1

(�

�

):

Consequently, if � 2 � is any competing design, then

	

�1

(�) = lim

q!�1

	

q

(�) � lim sup

q!�1

	

q

(�

q

) � 	

�1

(�

�

):

This proves that �

�

is indeed a standardized maximin optimal design in the class �. �

Proof of Corollary 4.2. The assumption that I(x; �) is continuous and bounded implies

that for every �xed �, the criterion  (�; �) = �fM(�; �)g is continuous in �. The assumption

also implies by Lebesgue's convergence theorem that for every �,  (�; �) is continuous in �.

The assertion now follows from Theorem 3.6. �

Proof of Corollary 4.4. Under any one of the three conditions stated in the theorem,

f

i

(x)f

j

(x)�(x; �) is bounded and continuous on X � � for i; j = 0; : : : ; d. The assertion now

follows along the lines of the proof of Corollary 4.2. �

Proof of Lemma 4.6. Set

G

q

(t) = t+ F

q

fqh(t)g; t 2 �;

and t

q

= �F

q

(qz

q

). It follows from (4.4) that G

q

(t

q

) = 0. As F

0

q

(x) � 0 for all x, G

q

is strictly

increasing. Thus t

q

is the only zero of the function G

q

. It has to be shown that lim

q!�1

t

q

= t

�

.

Assume �rst that t

�

< �

max

. Let " > 0 be such that t

�

+ " � �

max

. Setting

�(�) = expf�h(t

�

+ ")gg(�);

one has

F

q

fqh(t

�

+ ")g = �

R

�

��(�)

�q

d�(�)

R

�

�(�)

�q

d�(�)

: (A.1)

As �h(t

�

+")+log g(�) is convex, so is �(�). Since h is strictly decreasing, it follows from (4.5),

�(�

max

)

�(�

min

)

= exp f(�

max

� �

min

)h(t

�

+ ")g

g(�

max

)

g(�

min

)

< exp f(�

max

� �

min

)h(t

�

)g

g(�

max

)

g(�

min

)

= 1:

Thus �(�

max

) < �(�

min

), and so �(�) < �(�

min

) for all � > �

min

. Consequently, for every

�

0

2 int�,

lim

q!�1

n

R

[�

0

;�

max

]

�(�)

�q

d�(�)

o

�

1

q

�
R

�

�(�)

�q

d�(�)

	

�

1

q

=

max

�2[�

0

;�

max

]

�(�)

max

�2�

�(�)

< 1;
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and so

lim

q!�1

R

[�

0

;�

max

]

�(�)

�q

d�(�)

R

�

�(�)

�q

d�(�)

= 0; lim

q!�1

R

[�

min

;�

0

)

�(�)

�q

d�(�)

R

�

�(�)

�q

d�(�)

= 1:

In view of (A.1),

G

q

(t

�

+ ") = t

�

+ "�

R

�

��(�)

�q

d�(�)

R

�

�(�)

�q

d�(�)

� t

�

+ "�

�

0

R

[�

min

;�

0

)

�(�)

�q

d�(�) + �

max

R

[�

0

;�

max

]

�(�)

�q

d�(�)

R

�

�(�)

�q

d�(�)

:

It follows that

lim inf

q!�1

G

q

(t

�

+ ") � t

�

+ "� �

0

for all �

0

2 int�. Thus

lim inf

q!�1

G

q

(t

�

+ ") � ";

so that G

q

(t

�

+ ") > 0 for q � q

0

= q

0

("), say. Since G

q

is increasing, this implies that

t

q

< t

�

+ " for q � q

0

. As " > 0 was arbitrarily small, lim sup

q!�1

t

q

� t

�

, which is trivially

true if t

�

= �

max

. A similar argument shows that lim inf

q!�1

t

q

� t

�

, completing the proof of

Lemma 4.6. �

Proof of Corollary 4.10. Let �

q

be the 	

q

-optimal designs in the class �, so that as

q ! �1, �

q

converges weakly to a non-singular design �

�

. Then lim

q!�1

M(�

q

) = M(�

�

), in

particularM(�

q

) is non-singular for q � q

0

, say. Hence  (�

q

; �) converges to  (�

�

; �) for each �.

Thus for q � q

0

,  (�

q

; �)= (�

�

�

; �) is continuous and for q ! �1, converges to  (�

�

; �)= (�

�

�

; �).

An inspection of the proof of Theorem 3.6 shows that this is suÆcient to ensure that �

�

is a

standardized maximin optimal design. �

Proof Lemma 5.1. It was shown in Theorem 3.1 of Dette, Haines and Imhof (1999) that for

� > d the locally D-optimal design has equal masses at the roots �1 < x

1

< : : : < x

d+1

< 1 of

the polynomial

C

(���1=2)

d+1

(

p

�x

2

):

For a proof of the representation of

Q

d+1

`=1

(1 + x

2

`

) put � = �� � 1=2 and note that

C

(�)

d+1

(

p

�x

2

) = C

(�)

d+1

(ix) = c

d+1

d+1

Y

`=1

(x� x

`

) ; (A.2)

where c

d+1

denotes the leading coeÆcient of the ultraspherical polynomial, i.e.

c

d+1

= (2i)

d+1

�

d+ �

d+ 1

�

(A.3)

[see e.g. Szeg�o (1975), formula (4.7.9)]. Therefore the identity (A.2) implies

d+1

Y

`=1

(1 + x

2

`

) =

d+1

Y

`=1

(i� x

`

)(�i� x

`

) =

C

(�)

d+1

(1)C

(�)

d+1

(�1)

c

2

d+1

= (�1)

d+1

n

C

(�)

d+1

(1)

o

2

c

2

d+1

;
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where the last identity follows from the symmetry of ultraspherical polynomials [see Szeg�o

(1975), formula (4.7.4)]. From formula (4.7.3) in the same reference and (A.3) it therefore

follows that

d+1

Y

`=1

(1 + x

2

`

) =

n

1

2

d+1

d+1

Y

j=1

j

d+ 1 + �� j

�

d+ 2�+ 1� j

j

o

2

(A.4)

=

n

d

Y

j=1

d� 2� � j

2d+ 1� 2� � 2j

o

2

;

which proves the �rst equation asserted in Lemma 5.1.

For a proof of the second one note that

jM(�

�

; �)j =

�

1

d+ 1

�

d+1

d+1

Y

`=1

(1 + x

2

i

)

��

Y

1�`<k�d+1

(x

`

� x

k

)

2

and it is therefore suÆcient to calculate the value of the last factor. To this end again put

� = �� � 1=2 and de�ne

P

d+1

(x) =

C

(�)

d+1

(ix)

c

d+1

i

d+1

as the ultraspherical polynomial with parameter �; argument ix and leading coeÆcient 1: Then

it follows by a straightforward calculation

Y

1�`<k�d+1

(x

`

� x

k

)

2

= (�1)

d(d+1)=2

d+1

Y

`=1

Y

k 6=`

(x

`

� x

k

) = (�1)

d(d+1)=2

d+1

Y

`=1

P

0

d+1

(x

`

):

From formula (4.7.27) in Szeg�o (1975) we obtain that for any ` 2 f1; : : : ; d+ 1g

(1 + x

2

)

d

dx

P

d+1

(x)

�

�

�

x=x

`

=

1 + x

2

i

d+1

c

d+1

d

dx

C

(�)

d+1

(ix)

�

�

�

x=x

`

=

i(d+ 2�)

i

d

c

d+1

C

(�)

d

(ix

`

) =

(d+ 2�)

c

d+1

c

d

P

d

(x

`

) =

d+ 1

2

d+ 2�

d+ �

P

d

(x

`

);

where the notation (A.3) is used in the last equality. Observing that the recursive relation for

the polynomial P

j

(x) is given by

P

k+1

(x) = xP

k

(x) +

(k � 1 + 2�)k

4(k + �� 1)(k + �)

P

k�1

(x)

(P

�1

(x) = 0; P

0

(x) = 1) it now follows from formula (6.71.2) in Szeg�o (1975) that [a

n

= 1; c

n

=
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�(n� 1)(n� 2 + 2�)=4(n� 2 + �)(n� 1 + �)]

d+1

Y

`=1

(1 + x

2

`

)

Y

1�`<k�d+1

(x

`

� x

k

)

2

= (�1)

d(d+1)=2

d+1

Y

`=1

�

d+ 1

2

��

d+ 2�

d+ �

�

P

d

(x

`

)

= (�1)

d(d+1)=2

�

d+ 1

2

�

d+1

�

d+ 2�

d+ �

�

d+1

d+1

Y

j=1

n

(j � 1)(j � 2 + 2�)

4(j � 2 + �)(j � 1 + �)

o

j�1

=

d+1

Y

j=1

j

j

�

d

Y

j=1

(2� � j + 1)

j+1

(2� � 2j + 1)

2j+1

:

Combining this identity with (A.4) yields

d+1

Y

`=1

(1 + x

2

`

)

��

Y

1�`<k�d+1

(x

`

� x

k

)

2

=

d+1

Y

j=1

j

j

�

d

Y

j=1

(2� � 2j + 1)

2��2j+1

(2� � j + 1)

2��j+1

and the second equation asserted in Lemma 5.1 follows. �

Proof of Lemma 5.2. It follows by similar arguments to those given in Dette, Haines and

Imhof (1999) that the locally D-optimal design is supported at d+1 points including the point

0; say 0 = x

1

< x

2

< : : : < x

d+1

; and that the supporting polynomial f(x) = �

d+1

i=1

(x� x

i

) is a

solution of the di�erential equation

x(1 + x)y

00

(x)� �xy

0

(x) + (d+ 1)(� � d)y(x) = 0:

The polynomial solution of this equation is given by the hypergeometric series

xF (�d; d+ 1� �; 2;�x) ;

which is proportional to the Jacobi polynomial

f(x) = xP

(1;���1)

d

(2x+ 1)

[see formula (4.21.2) in Szeg�o (1975)]. The remaining assertions of Lemma 5.2 now follow by

similar arguments to those given in the proof of Lemma 5.1 but are omitted for the sake of

brevity. �

Proof of Theorem 5.3. The determinant of the information matrix for the parameters �

of model (5.1) from a (d + 1)-point design � which puts equal masses at the support points

x

1

; : : : ; x

d+1

can be written as

jM(�; �) j =

�

1

d+ 1

�

d+1

j X

R

j

2

d+1

Y

i=1

(1 + x

2

i

)

��

where X

R

is the Vandermonde matrix with ith row f1 x

i

x

2

i

: : : x

d

i

g (i = 1; : : : ; d+ 1). Thus

observing the de�nition of ~� in (5.2)

(	

q(d+1)

(�))

d+1

=

1

(d+ 1)

d+1

j X

R

j

2

(

Z

�

d+1

Y

i=1

(1 + x

2

i

)

�q�

d~�(�)

)

1=q
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and di�erentiating log	

q(d+1)

(�) with respect to x

j

and setting the result to 0 in turn gives

2

j X

R

j

@ j X

R

j

@x

j

�

2x

j

1 + x

2

j

Z

�

�

d+1

Y

i=1

(1 + x

2

i

)

�q�

d~�(�)

Z

�

d+1

Y

i=1

(1 + x

2

i

)

�q�

d~�(�)

= 0:

It then follows by arguments similar to those used in Dette, Haines and Imhof (1999) that the

required points are the roots of the polynomial

Q

d+1

j=1

(x � x

j

); which satis�es the di�erential

equation

(1 + x

2

)f

00

(x) + 2xF (qz)f

0

(x)� (d+ 1)(d+ 2F (qz))f(x) = 0;

where f(x) is a polynomial of degree d+ 1 in x, z =

P

d+1

i=1

log(1 + x

2

i

) and

F (qz) = �

Z

�

�e

��qz

d~�(�)

Z

�

e

��qz

d~�(�)

with �F (qz) > d. The support points of the Bayesian 	

q(d+1)

-optimal design are thus the

roots of the ultraspherical polynomial

C

(F (qz)�

1

2

)

d+1

(

p

�x

2

)

and z =

P

d+1

i=1

log(1+x

2

i

) is obtained by invoking expression for

Q

d+1

i=1

(1+x

2

i

) given in Lemma

5.1. Note that for q = 0 the criterion corresponds to Bayesian D-optimality and that for a one

point prior the locally D-optimal design is recovered. �

Proof of Theorem 5.4. This follows along the lines given in the proof of Theorem 5.3. �

Proof of Theorem 5.7 and 5.8. Both theorems can be proved by similar arguments and

attention is restricted to the proof of Theorem 5.7. For j = 0; : : : ; d,

lim

x!�1

x

j

max

�2�

p

�(x; �) = lim

x!�1

x

j

(1 + x

2

)

1

2

�

min

= 0:

Thus condition (iii) of Corollary 4.4 is satis�ed and the maximin design can therefore be

obtained as the limit of 	

q

-optimal designs. Suppose d is even; the case where d is odd is

similar. Let � be any prior distribution with support � and write

F

q

(x) = �

R

�e

��x

m(�)

�q

d�(�)

R

e

��x

m(�)

�q

d�(�)

; q < 0; x 2 R;

h(�) = 2

d

2

X

j=1

log

2� � 2j + 2

2� � d� 2j + 1

= 2

d

X

j=1

log

d� 2� � j

2d+ 1� 2� � 2j

; � 2 �:
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If z

q

denotes the solution of the equation z

q

= h(�F

q

(qz

q

)), then, by Theorem 5.3, the Bayesian

	

q(d+1)

-optimal (d+ 1)-point design puts equal weights on the roots of the polynomial

C

(

F

q

(qz

q

)�

1

2

)

d+1

(

p

�x

2

):

It remains to show that lim

q!�1

F

q

(qz

q

) = ��

0

. To see that there indeed exists �

0

2 int� as

de�ned in the theorem, set

H(x; �) =

d

2

X

j=1

log

(2x� d� 2j + 1)

2��d�2j+1

(2x� 2j + 2)

2��2j+2

; x; � 2 �:

Then

@H(x; �)

@x

= 2(d+ 1)

d

2

X

j=1

� � x

(2x� d� 2j + 1)(x� j + 1)

;

so that H(�; �

max

) is strictly increasing and H(�; �

min

) is strictly decreasing on �. Hence, in

view of Lemma 5.1,

� log fm(�

max

)=m(�

min

)g

�

max

� �

min

=

H(�

min

; �

min

)�H(�

max

; �

max

)

�

max

� �

min

<

H(�

min

; �

min

)�H(�

min

; �

max

)

�

max

� �

min

= h(�

min

)

and, similarly,

� log fm(�

max

)=m(�

min

)g

�

max

� �

min

> h(�

max

):

This ensures the existence of �

0

. It is easily veri�ed that h(t) is strictly decreasing and that

logm(�) is convex. It now follows by Lemma 4.6 that lim

q!�1

F

q

(qz

q

) = ��

0

; which completes

the proof of Theorem 5.7. �
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