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Abstract: In Troschke (2002) the author introduces a linear approach to the

scalar mean square error optimal combination of forecasts for a vector random vari-

able. In this paper it is shown how the optimal combination parameters can be

obtained with the help of linear regression. Thus the application of these combi-

nation methods to empirical data is facilitated. An empirical example illustrating

the performance of the new methods is given. These methods are compared to the

classical univariate treatment of the respective variables.

Keywords: Combination of forecasts, multivariate forecasts, linear combination,

linear regression.
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1 Introduction

Suppose that we are given k forecasts f

1

; : : : ; f

k

for an l-dimensional random vector

variable y. The idea is nearby to combine the information contained in the individual

forecasts f

i

= (f

i;1

; : : : ; f

i;l

)

T

in order to obtain a single improved forecast for the

target variable y = (y

1

; : : : ; y

l

)

T

.

The literature on the combination of forecasts almost exclusively deals with the

combination of forecasts for a univariate random variable y, i.e. l = 1. Compare e.g.

Clemen (1989) or Thiele (1993) for good overviews on the topic.

Troschke (2002) presents approaches for the linear combination of multivariate

forecasts, i.e. l > 1. The single forecasts are stacked in the forecast vector f =

1



(f

T

1

; : : : ; f

T

k

)

T

� (kl � 1). Then the linear combinations under study are of the form

f

comb

= Bf + c, where B is an (l � kl) matrix and c is an (l � 1) vector.

The approaches investigated in Troschke (2002) varied with respect to the re-

strictions imposed on the combination parameters B and c. We refer to Section 3

for details on the employed restrictions and the classes of multivariate linear com-

binations evolving from them. Assuming knowledge of the �rst and second order

moments of the joint distribution of y and f the respective optimal choices for B

and c obeying the respective restrictions were derived. These choices were made

optimal in the sense of the scalar mean square prediction error

SMSPE(

e

f ;y) = E[(y �

e

f)

T

(y �

e

f)] (1.1)

of a forecast

e

f for a target variable y. The optimal SMSPE-values for the respective

combinations were derived. For an exemplary set of realistic �rst and second order

moments the potential of the multivariate methods was compared to the univariate

treatment of each variable involved.

For practical purposes one cannot expect the mentioned moments to be known and

thus they have to be estimated from past data on the variable y and the forecasts

f

i

. In this paper it is shown that instead of estimating the combination parameters

on the basis of the corresponding sample moments one may equivalently perform

appropriate least squares regressions.

This facilitates the application of multivariate combinations. Furthermore, the in-

terpretation of multivariate combinations as linear regression problems constitutes

an analogy to the univariate case. Here Granger and Ramanathan (1984) have

introduced the regression approach as an alternative view on and enhancement of

the classical methods based on sample moments.

Section 2 shortly reviews the regression methods in the case of univariate linear

combinations, whereas the appropriate regression models in the multivariate case

are identi�ed in Section 3. In Troschke (2002) also the case of k = 1 forecast

is investigated, which results in multivariate linear adjustments of single forecasts.

The linear regression approaches cover these adjustments as well. We will compare

the performance of the various multivariate linear adjustments and combinations

of forecasts in a small empirical example (see Section 4). Section 5 concludes the

paper.
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2 Univariate linear combinations

We write univariate linear forecast combinations in the form f

b;c

= b

T

f + c with

f = (f

1

; : : : ; f

k

)

T

� (k � 1), c 2 R and b = (b

1

; : : : ; b

k

)

T

2 R

k

, i.e. we consider the

special case of univariate individual forecasts f

i

, B = b

T

and c = c of our general

notation.

Depending on the situation it may be appropriate to impose restrictions on the

combination parameters b and c. The restrictions that are dealt with in this paper

are b

T

1

k

= 1, i.e. the weights for the single forecasts sum up to one, and c = 0,

i.e. no constant term is included. Each of the two restrictions may or may not be

imposed resulting in a total of four di�erent univariate linear combinations. Here 1

k

denotes the k-dimensional vector of ones.

If each of the single forecasts is unbiased the combined forecast will also be unbiased

if the combination parameters satisfy b

T

1

k

= 1 and c = 0. Since unbiasedness is

often assumed for the individual forecasts this combination is a standard approach

in the literature. The theoretical considerations in Troschke (2002) showed that

inclusion of a constant term guarantees unbiasedness of the combined forecast if the

constant term is chosen adequately.

Granger and Ramanathan (1984) showed that these linear combinations are

closely related to certain linear regression models as summarized in Table 1. Ob-

viously, the unrestricted OLSCO (= ordinary least squares employing a constant

term) combination provides the best �t in the sense of least squares regression, but

as indicated above it might be reasonable to utilize restrictions on the combina-

tion parameters. For empirical data the following two lead to the same results: a)

Performing an ordinary least squares regression of the target variable y on the fore-

casts f

i

; b) Inserting the simple sample moments for the true moments of the joint

distribution of y and f in the formulae for the theoretically optimal combination

parameters derived in Troschke (2002).

The special case of k = 1 forecast results in adjustments of that forecast as de-

scribed in Troschke (2002). The performance of an individual forecast can be

improved by such an adjustment. Naturally, the adjustment parameters b and c are

now real numbers. The corresponding regression models are also shown in Table 1.

Granger (1989, p. 169) emphasizes the usefulness of the OLSCO adjustment and

bias correction is a popular means as well.

The regressions for ERLSCO or ERLS (= equality restricted least squares) combi-

nations may alternatively be carried out as regression of y�f

1

on f

2

�f

1

, : : : , f

k

�f

1

with or without a constant term. Thus the parameters b

2

; : : : ; b

k

are obtained while
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Method Notation Regression

Single forecast f

i

, i 2 f1; : : : ; kg

Adjustments OLSCO-Adj (f

i

)

b;c

= bf

i

+ c y on f

i

with constant term

OLS-Adj (f

i

)

b

= bf

i

y on f

i

ERLSCO-Adj (f

i

)

1;c

= f

i

+ c bias correction

Linear AM f

am

= (1=k)1

T

k

f arithmetic mean

combinations OLSCO f

b;c

= b

T

f + c y on f

1

; : : : ; f

k

with constant

term

OLS f

b

= b

T

f y on f

1

; : : : ; f

k

ERLSCO f

b;c;rest

= b

T

f + c y on f

1

; : : : ; f

k

with constant

term under the restriction

b

T

1

k

= 1

ERLS f

b;rest

= b

T

f y on f

1

; : : : ; f

k

under the

restriction b

T

1

k

= 1

Table 1: Univariate linear adjustment and combination methods

b

1

results from b

1

= 1�

P

k

i=2

b

i

. ERLSCO may be interpreted as the combination of

the bias corrected forecasts subject to the then reasonable restriction of the weights

b

i

summing up to unity, cf. Troschke (2002). For the forecast f

i

the corresponding

bias corrected forecast is given as f

i

� �

i

+ �

0

, where �

i

is the expectation of f

i

and �

0

is the expectation of y. In empirical applications these expectations will be

replaced by the corresponding sample means.

Another important linear combination is the arithmetic mean of the individual fore-

casts:

f

am

=

1

k

k

X

i=1

f

i

=

1

k

1

T

k

f : (2.1)

Here no regression is necessary, since the combination parameters are �xed as b

i

=

1=k, i = 1; : : : ; k and c = 0. In spite of (or maybe because of) being so simple the

arithmetic mean proves to be very powerful in empirical applications.

We now turn to the linear approaches to the combination and adjustment of mul-

tivariate forecasts. By considering interactions between the di�erent components of

y and the f

i

additional information is exploited.
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3 Multivariate linear combinations

Multivariate linear combinations are of the general form Bf + c, where c 2 R

l

and

B 2 R

l�kl

. The versions analyzed here have been introduced in Troschke (2002).

They di�er with respect to the restrictions imposed on B and c.

The strong version

f

B;c

= Bf + c =

k

X

i=1

B

i

f

i

+ c (3.1)

is based on a full (l � kl)-matrix B = (B

1

j : : : jB

k

), where

B

i

=

0

B

B

B

@

B

i;11

B

i;12

: : : B

i;1l

B

i;21

B

i;22

: : : B

i;2l

.

.

.

.

.

.

.

.

.

.

.

.

B

i;l1

B

i;l2

: : : B

i;ll

1

C

C

C

A

2 R

l�l

(3.2)

for i = 1; : : : ; k. The medium version

f

D;c

= Df + c =

k

X

i=1

D

i

f

i

+ c (3.3)

uses an (l � kl)-matrix D = (D

1

j : : : jD

k

) with diagonal matrices

D

i

=

0

B

B

B

@

D

i;11

0 : : : 0

0 D

i;22

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : D

i;ll

1

C

C

C

A

2 R

l�l

(3.4)

for i = 1; : : : ; k. Finally, the weak version

f

�;c

=

k

X

i=1

�

i

f

i

+ c (3.5)

can be interpreted as restricting B to the (l � kl)-matrix (�

1

I

l

j : : : j�

k

I

l

) consisting

of scalar multiples of the l � l-identity matrix. The scalar coeÆcients are gathered

in the vector � = (�

1

; : : : ; �

k

)

T

.

The respective choices of the matrix B may be viewed as restrictions on B with the

e�ect that the number of parameters involved is reduced from kl

2

+ l over kl + l to

k+ l. Since the number of observations, from which the unknown parameters are to
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be estimated in empirical applications, is not so large in general, this reduction of

the number of parameters may be reasonable.

Each version strong, medium and weak, may obey additional restrictions similarly

to the univariate case (cf. Section 2): The sum of the matrices giving weight to the

individual forecasts f

i

may or may not be forced to sum to the identity matrix I

l

,

and the constant term may or may not be set to the zero vector 0. If c is set to

zero this will be indicated by cancelling the subscript c in the combined forecast; if

the summation restriction is required it will be indicated by an additional subscript

'rest'. For example f

D;rest

denotes the medium combined forecast with c = 0 and

with the diagonal weight matrices D

i

summing to the identity matrix, i.e.

f

D;rest

=

k

X

i=1

D

i

f

i

with

k

X

i=1

D

i

= I

l

: (3.6)

Obviously, the additional restrictions lower the number of unknown parameters even

further.

Another reason for considering all three approaches is their relation to well-known

methods in the combination of estimators: While strong multivariate linear com-

bination under the restriction

P

k

i=1

B

i

= I

l

is related to the (strong) covariance

adjustment technique introduced by Rao (1966, 1967), weak multivariate linear

combination under the restriction

P

k

i=1

�

i

= 1 is related to the weak covariance ad-

justment technique by Trenkler and Ihorst (1995). Medium multivariate linear

combination is intermediate with respect to the former two and can be viewed as the

univariate treatment of each of the variables involved thus representing the usual

treatment in the literature. Confer also Troschke (2002).

In order to facilitate application of multivariate linear forecast combinations it is

important to note, that we may regard the problem of �nding the respective optimal

combination parameters as linear regression problems just like it is the case with

the univariate linear combination approaches (cf. Section 2).

Thiele (1993, Section 4.2.1 and 4.2.3) shows that using ordinary least squares esti-

mation in the linear regression problems is equivalent to replacing the true moments

� and � by the respective sample moments in the formulae for the optimal combina-

tion parameters. For the problems considered here such formulae have been derived

in Troschke (2002).

We will now identify the appropriate regression models for the various combinations

as well as the corresponding data models.
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3.1 Strong multivariate linear combinations

Subsequently we will deal with the strong multivariate combinations which have full

weight matrices B

i

as coeÆcients of the individual forecasts f

i

. We have to analyze

four cases arising from using or neglecting a constant term or using or neglecting

the restriction of the matrices B

i

summing up to the identity matrix.

Case 1a. Unrestricted combination with constant term f

B;c

= Bf + c:

Setting f = (f

1;1

; : : : ; f

1;l

; f

2;1

; : : : ; f

2;l

; : : : ; f

k;1

; : : : ; f

k;l

)

T

=: (g

1

; : : : ; g

kl

)

T

= g and

B =

0

B

@

B

1;11

: : : B

1;1l

.

.

.

.

.

.

B

1;l1

: : : B

1;ll

�

�

�

�

�

�

�

: : :

�

�

�

�

�

�

�

B

k;11

: : : B

k;1l

.

.

.

.

.

.

B

k;l1

: : : B

k;ll

1

C

A

=:

0

B

@

B

11

: : : B

1(kl)

.

.

.

.

.

.

B

l1

: : : B

l(kl)

1

C

A

2 R

l�kl

(3.7)

we rewrite the SMSPE-function belonging to the strong linear combination without

summation restriction and with constant term as:

SMSPE(f

B;c

;y) = E[(y � f

B;c

)

T

(y � f

B;c

)]

= E[(y�Bf � c)

T

(y �Bf � c)]

= E

"

l

X

j=1

(y

j

� (Bf)

j

� c

j

)

2

#

= E

2

4

l

X

j=1

 

y

j

�

kl

X

s=1

B

js

g

s

� c

j

!

2

3

5

=

l

X

j=1

E

2

4

 

y

j

�

kl

X

s=1

B

js

g

s

� c

j

!

2

3

5

: (3.8)

This function is to be minimized with respect to B and c. Since B

js

and c

j

occur

solely in the j-th summand, the sum is minimized by minimizing each summand

separately. Minimization of the j-th summand, however, corresponds to the linear

regression problem of regressing the target variable y

j

on the vector f of all forecasts

for all components using a constant term c

j

for j = 1; : : : ; l, cf. Rao (1965, pp.

222f.). Consequently, minimization of the SMSPE-function may be regarded as l

linear regression problems.
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The regression representation facilitates the application of the strong linear plus

quadratic combination to empirical data: For the j-th regression we consider the

regression model y

j

= X!

j

+ u

j

. Here we construct the regression matrix X from

a column of ones (for the constant term) and kl columns with the observations on

the vector f of the individual forecasts: The �rst observation on f is written into the

�rst row of X, the second observation on f is written into the second row of X, and

so on. The observations on the target variable y

j

yield the vector y

j

. The coeÆcients

!

j

= (!

j

0

; !

j

1

; : : : ; !

j

kl

)

T

are the combination parameters c

j

and (B

j1

; : : : ; B

j(kl)

)

T

=

(B

1;j1

; : : : ; B

1;jl

; B

2;j1

; : : : ; B

2;jl

; : : : ; B

k;j1

; : : : ; B

k;jl

)

T

, i.e. the j-th component of c

together with the j-th row of B. Then we may apply any estimator from linear

regression theory, e.g. the ordinary least squares estimator
b
!

j

= (X

T

X)

�1

X

T

y

j

, to

estimate the regression parameters and thus the combination parameters.

Since the regression matrix X is the same in each of the above l univariate linear

regressions, they may be incorporated into a multivariate regression model Y =

X
 +U. Here Y = (y

1

j : : : jy

l

) contains the observations on the target variable y

with the �rst observation in the �rst row, the second observation in the second row,

and so on. Analogously we get the error matrix U from the vectors u

j

. As already

indicated the regression matrixX is the same as above. Finally the parameter matrix


 is


 = (!

1

j : : : j!

l

) =

0

B

B

B

@

c

1

: : : c

l

B

11

: : : B

l1

.

.

.

.

.

.

B

1(kl)

: : : B

l(kl)

1

C

C

C

A

=

�

c

T

B

T

�

; (3.9)

and its ordinary least squares estimator is given by

b


 = (X

T

X)

�1

X

T

Y.

As mentioned above using the ordinary least squares estimator leads to the same

results as replacing the true moments � and � by the respective sample moments in

the formulae for the optimal combination parameters derived in Troschke (2002).

Compared to the univariate treatment of each of the l variables, where y

j

would solely

be regressed on the corresponding forecasts f

1;j

; : : : ; f

k;j

, additional explanatory

variables have been included in each of the l regressions. Consequently, the strong

multivariate linear combination is superior in theory and, thus, has the potential to

outperform the univariate treatment of each variable in empirical applications.

Case 1b. Unrestricted combination without constant term f

B

= Bf :

This case is completely analogous to the previous one. Minimizing the SMSPE-

function can be viewed as the composition of l univariate linear regressions, where

y

j

is regressed on the vector f without a constant term for j = 1; : : : ; l.

8



In the data model y

j

= X!

j

+u

j

the regression matrixX does not contain a column

of ones, but is the same otherwise. Moreover, !

j

= (B

j1

; : : : ; B

j(kl)

)

T

such that in

the multivariate model Y = X
+U we have 
 = B

T

.

Case 1c. Restricted combination with constant term f

B;c;rest

= Bf+c =

P

k

i=1

B

i

f

i

+

c with

P

k

i=1

B

i

= I

l

:

Similarly to the previous cases we see that minimizing the SMSPE-function under

the restriction

P

k

i=1

B

i

= I

l

is equivalent to l univariate linear regressions with

appropriate restrictions: In the j-th regression y

j

is regressed on f with constant

term c

j

under the restrictions:

B

1;jj

+ : : :+B

k;jj

= 1 ;

B

1;ji

+ : : :+B

k;ji

= 0 for i = 1; : : : ; l; i 6= j : (3.10)

The restrictions (3.10) may be written in matrix form as R

j

!

j

= r

j

, where !

j

=

(!

j

0

; !

j

1

; : : : ; !

j

kl

)

T

= (c

j

; B

j1

; : : : ; B

j(kl)

)

T

, R

j

= (0

l�1

jI

l

j : : : jI

l

) =: R 2 R

l�kl+1

is

row regular and independent of j and r

j

= e

j

is the j-th unit vector in R

l

.

The corresponding data model is y

j

= X!

j

+u

j

, where y

j

contains the observations

on y

j

, X contains a vector of ones in the �rst column and the observations on f in

the next kl columns. !

j

as well as the restrictions R!

j

= r

j

are given above.

For regression parameter and hence combination parameter estimation we may use

the restricted least squares estimator

b
!

j

R

=
b
!

j

� (X

T

X)

�1

R

T

[R(X

T

X)

�1

R

T

]

�1

(R
b
!

j

� r

j

) ; (3.11)

where
b
!

j

= (X

T

X)

�1

X

T

y

j

is the ordinary least squares estimator.

Since not only X, but also R is independent of j, we may write the l univariate

regressions in a more compact way as a multivariate linear regression model Y =

X
 +U under the restriction R
 = I

l

. Here the right hand side stems from I

l

=

(e

1

j : : : je

l

) = (r

1

j : : : jr

l

). Again

Y = (y

1

j : : : jy

l

) and 
 = (!

1

j : : : j!

l

) =

�

c

T

B

T

�

(3.12)

and the corresponding multivariate restricted least squares estimator is

b




R

=

b


� (X

T

X)

�1

R

T

[R(X

T

X)

�1

R

T

]

�1

(R

b


� I

l

) ; (3.13)

with

b


 = (X

T

X)

�1

X

T

Y.
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Case 1d. Restricted combination without constant term f

B;rest

= Bf =

P

k

i=1

B

i

f

i

with

P

k

i=1

B

i

= I

l

:

Like f

B

is derived from f

B;c

we may now derive f

B;rest

from f

B;c;rest

: Minimizing

the SMSPE-function can be viewed as the composition of l univariate linear re-

gressions, where y

j

is regressed on the vector f without a constant term but obey-

ing the restrictions (3.10) for j = 1; : : : ; l. Since the constant term is missing in

this case the restrictions (3.10) translate to matrix form as R

j

!

j

= r

j

, where

!

j

= (!

j

1

; : : : ; !

j

kl

)

T

= (B

j1

; : : : ; B

j(kl)

)

T

, R

j

= (I

l

j : : : jI

l

) =: R is row regular

and independent of j and r

j

= e

j

is the j-th unit vector in R

l

.

In the data model y

j

= X!

j

+u

j

the regression matrixX does not contain a column

of ones, but otherwise is the same as in Case 1c. Moreover, we have 
 = B

T

in the

multivariate model Y = X
+U with the restriction R
 = I

l

.

3.2 Medium multivariate linear combinations

The medium multivariate linear approaches emerge from restricting the full matrices

B

i

2 R

l�l

in the strong approach to diagonal matrices D

i

. In Troschke (2002) it

is shown that this restriction results in the univariate consideration of each target

variable y

j

and its corresponding forecasts f

1;j

; : : : ; f

k;j

. Consequently, the regression

models suitable for empirical applications are obvious from Table 1, and the following

considerations can be kept short.

We use the additional notation f

j

:= (f

1;j

; : : : ; f

k;j

)

T

, i.e. f

j

is the k� 1 vector with

all forecasts for the target variable y

j

.

Case 2a. Unrestricted combination with constant term f

D;c

= Df + c:

As stated above the medium multivariate approach is equivalent to the univariate

treatment of each of the l variables. This can also be seen from the SMSPE-function

for f

D;c

which is to be minimized with respect to D and c:

SMSPE(f

D;c

;y) = E[(y � f

D;c

)

T

(y � f

D;c

)]

= E[(y�Df � c)

T

(y �Df � c)]

= E

"

l

X

j=1

(y

j

� (Df)

j

� c

j

)

2

#

= E

"

l

X

j=1

(y

j

� (D

1

f

1

+ : : :+D

k

f

k

)

j

� c

j

)

2

#
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= E

"

l

X

j=1

(y

j

� (D

1;jj

f

1;j

+ : : :+D

k;jj

f

k;j

)� c

j

)

2

#

= E

2

4

l

X

j=1

 

y

j

�

k

X

i=1

D

i;jj

f

i;j

� c

j

!

2

3

5

=

l

X

j=1

E

2

4

 

y

j

�

k

X

i=1

D

i;jj

f

i;j

� c

j

!

2

3

5

: (3.14)

The combination parameters D

i;jj

and c

j

only occur in the j-th summand, so that

the sum is minimized by minimizing each summand separately. Furthermore, the

j-th summand only involves the target variable y

j

and the corresponding forecasts

f

i;j

for i = 1; : : : ; k. Consequently, minimization of the j-th summand corresponds

to the linear regression problem of regressing the target variable y

j

on the vector f

j

using a constant term c

j

(OLSCO linear combination in Table 1). Minimization of

the SMSPE-function is achieved by solving these l linear regression problems.

When applying the medium approach to empirical data, for the j-th regression we

consider the model y

j

= X

j

!

j

+u

j

, j = 1; : : : ; l. The regression matrix X

j

contains

a column of ones (for the constant term) and k columns with the observations

on the individual forecasts for the j-th variable. Again, the observations on the

target variable y

j

yield the vector y

j

. The coeÆcients !

j

= (!

j

0

; !

j

1

; : : : ; !

j

k

)

T

are

the combination parameters c

j

and (D

1;jj

; : : : ; D

k;jj

)

T

, i.e. the j-th component of

c together with the respective j-th diagonal elements of the submatrices D

i

. Then

any estimator from linear regression theory may serve to estimate the regression

parameters and thus the combination parameters, e.g. the ordinary least squares

estimator
b
!

j

= (X

jT

X

j

)

�1

X

jT

y

j

. Since the regression matrices in each of the l

regressions are di�erent, we cannot incorporate them into a multivariate regression

model.

Likewise we can identify the regression models for the other three medium multivari-

ate approaches. How the ingredients of the respective data models y

j

= X

j

!

j

+ u

j

should be chosen is obvious. How the restrictions for Cases 2c and 2d can be written

in matrix form R

j

!

j

= r

j

is obvious as well. Like in Case 2a representation via a

multivariate regression model is not possible.

The unrestricted combination set-up without constant term (Case 2b) f

D

= Df

is equivalent to the l univariate linear regressions of regressing y

j

on f

j

without

constant term (OLS linear combination in Table 1).

The restricted combination set-up with constant term (Case 2c) f

D;c;rest

= Df + c

11



with

P

k

i=1

D

i

= I

l

is equivalent to the l univariate linear regressions of regressing

y

j

on f

j

with constant term and with the restriction that the coeÆcients D

i;jj

,

i = 1; : : : ; k, of the f

i;j

should sum up to 1 (ERLSCO linear combination in Table

1).

Finally, the restricted combination set-up without constant term (Case 2d) f

D;rest

=

Df with

P

k

i=1

D

i

= I

l

is equivalent to the l univariate linear regressions of regressing

y

j

on f

j

without constant term and with the restriction that the coeÆcients D

i;jj

,

i = 1; : : : ; k, of the f

i;j

should sum up to 1 (ERLS linear combination in Table 1).

3.3 Weak multivariate linear combinations

In the weak linear plus quadratic approaches the full matrices B

i

from the strong

approach are restricted to scalar multiples of the l� l identity matrix �

i

I

l

. It should

be pointed out again, that as a consequence the weak multivariate linear combina-

tion reduces the number of combination parameters substantially with respect to

the medium and strong approaches. Considering the fairly small amount of data

generally available in empirical applications this might be an important advantage.

Naturally, there is a price to pay for this reduction in number of parameters as we

will discuss in the following. In order to present our results conveniently we will

consider the variants without constant term �rst.

Case 3b. Unrestricted combination without constant term f

�

=

P

k

i=1

�

i

f

i

:

The scalar mean square prediction error of such a combined forecast is given as

SMSPE(f

�

;y) = E[(y � f

�

)

T

(y � f

�

)]

= E

" 

y �

k

X

i=1

�

i

f

i

!

T

 

y �

k

X

i=1

�

i

f

i

!#

= E

2

4

l

X

j=1

0

@

y

j

�

 

k

X

i=1

�

i

f

i

!

j

1

A

2

3

5

= E

2

4

l

X

j=1

 

y

j

�

k

X

i=1

�

i

f

i;j

!

2

3

5

(3.15)

=

l

X

j=1

E

2

4

 

y

j

�

k

X

i=1

�

i

f

i;j

!

2

3

5

(3.16)

and this function has to be minimized with respect to � = (�

1

; : : : ; �

k

)

T

. Since

the coeÆcients �

i

occur in each of the l summands it is not possible to reduce the

12



problem by minimizing each summand separately like it could be done in the two

preceding subsections. The same coeÆcients �

i

are used to simultaneously �t the

forecasts f

1;j

; : : : ; f

k;j

to the target variable y

j

for j = 1; : : : ; l.

From representation (3.15) it can be seen, however, that minimization of this func-

tion corresponds to a linear regression problem nevertheless: Regarding all com-

ponents y

1

; : : : ; y

l

as one variable, y

�

say, and all components f

i;1

; : : : ; f

i;l

as one

forecast f

�

i

for that variable (i = 1; : : : ; k), we have to regress y

�

on the vector

f

�

= (f

�

1

; : : : ; f

�

k

)

T

without constant term. I.e. we perform only one univariate re-

gression. Considering all variables as one is the announced price we have to pay for

the reduction in the number of combination parameters (cf. the introduction to this

subsection). A discussion of this feature follows at the end of this subsection.

For empirical applications we consider the data model y

�

= X

�

! + u

�

, where we

obtain the regression vector y

�

from stacking all observations on the target vector

variable y atop of each other; i.e. below the �rst observation on y we write the

second observation on y, then the third observation on y and so on. Likewise we

obtain the i-th column of the regression matrix X

�

from stacking the observations

on f

i

for i = 1; : : : ; k. The vector ! of regression coeÆcients equals the vector of

combination parameters �. It may be estimated e.g. by the ordinary least squares

estimator
b
! = (X

�T

X

�

)

�1

X

�T

y

�

.

Case 3d. Restricted combination without constant term f

�;rest

=

P

k

i=1

�

i

f

i

with

P

k

i=1

�

i

= 1:

The SMSPE-function for this case is the same as that given in (3.15) for Case 3b.

Here it has to be minimized with respect to � = (�

1

; : : : ; �

k

)

T

under the restriction

P

k

i=1

�

i

= 1. The corresponding univariate linear regression problem is that of

regressing y

�

on f

�

1

; : : : ; f

�

k

under the above restriction. Using ! = � we may write

the restriction in matrix form R! = r with R = 1

T

k

and r = 1 2 R.

For empirical applications we may use the data model y

�

= X

�

! + u

�

with y

�

,

X

�

and ! as in Case 3b. To take the restriction into account we have to use the

restricted least squares estimator for parameter estimation:

b
!

R

=
b
! � (X

�T

X

�

)

�1

1

k

[1

T

k

(X

�T

X

�

)

�1

1

k

]

�1

(1

T

k

b
! � 1) ; (3.17)

where
b
! = (X

�T

X

�

)

�1

X

�T

y

�

.

It might be conjectured that the regression models corresponding to the remaining

two cases could be obtained from those of the preceding two cases by adding a

constant term to the identi�ed models. But this is not true, as we will see in the

following.
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Case 3a. Unrestricted combination with constant term f

�;c

=

P

k

i=1

�

i

f

i

+ c:

Like in Case 3b we can derive the SMSPE-function as

SMSPE(f

�;c

;y) = E[(y � f

�;c

)

T

(y � f

�; xc

)]

= E

" 

y �

k

X

i=1

�

i

f

i

� c

!

T

 

y �

k

X

i=1

�

i

f

i

� c

!#

(3.18)

= E

2

4

l

X

j=1

 

y

j

�

k

X

i=1

�

i

f

i;j

� c

j

!

2

3

5

=

l

X

j=1

E

2

4

 

y

j

�

k

X

i=1

�

i

f

i;j

� c

j

!

2

3

5

; (3.19)

which has to be minimized with respect to � = (�

1

; : : : ; �

k

)

T

and c. Obviously, the

situation is di�erent from that in Cases 3b and 3d, since �

1

; : : : ; �

k

occur in each

of the l summands whereas c

j

only occurs in the j-th summand. For this reason, we

can not interpret the above minimization problem as the univariate linear regression

of y

�

on f

�

1

; : : : ; f

�

k

including a constant term. (We will, however, take this idea into

account in our empirical investigations in Section 4.)

FromTroschke (2002) it is known that the SMSPE-optimal choice for the constant

term c in this case is

c

opt

= �

0

�

k

X

i=1

�

i;opt

�

i

; (3.20)

where �

i;opt

denotes the optimal choice for �

i

, �

i

denotes the expectation of the i-th

forecast f

i

and �

0

denotes the expectation of the target variable y. Consequently,

the above minimization problem is equivalent to minimizing the function

E

" 

(y � �

0

)�

k

X

i=1

�

i

(f

i

� �

i

)

!

T

 

(y � �

0

)�

k

X

i=1

�

i

(f

i

� �

i

)

!#

= E

2

4

l

X

j=1

 

(y

j

� �

0;j

)�

k

X

i=1

�

i

(f

i;j

� �

i;j

)

!

2

3

5

=

l

X

j=1

E

2

4

 

(y

j

� �

0;j

)�

k

X

i=1

�

i

(f

i;j

� �

i;j

)

!

2

3

5

(3.21)

with respect to �. This can be seen by inserting c = �

0

�

P

k

i=1

�

i

�

i

into Equation

(3.18).
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As in Case 3b we may now conclude that the univariate linear regression problem

for this case is that of regressing (y � �

0

)

�

onto (f

1

� �

1

)

�

; : : : ; (f

k

� �

k

)

�

, where

the

�

indicates that all components of the vector are regarded as a single variable.

No constant term is included in this regression and no restriction is placed on the

regression coeÆcients �

1

; : : : ; �

k

. The remaining combination parameter vector c is

obtained from Equation (3.20).

For empirical applications we use the data model
e
y =

e

X!+
e
u. To obtain

e
y we �rst

calculate the estimate
b
�

0

of the expectation of y as the mean of all observations on

y. Then we adjust all observations on y by subtracting
b
�

0

and stack these vectors

atop of each other thus arriving at
e
y. Likewise we adjust the observations on the

forecasts f

i

by subtracting the corresponding mean
b
�

i

. If we stack these adjusted

vectors we obtain the i-th column of

e

X. The regression coeÆcients ! equal the

combination parameters � and they may be estimated by the ordinary least squares

estimator
b
! =

b
� = (

e

X

T

e

X)

�1

e

X

T

e
y. Finally, the parameter vector c is estimated by

b
c =

c
�

0

�

k

X

i=1

b�

i

b�

i

: (3.22)

Case 3c. Restricted combination with constant term f

�;c;rest

=

P

k

i=1

�

i

f

i

+ c with

P

k

i=1

�

i

= 1:

This case follows from Case 3a like Case 3d follows from Case 3b. Again we may use

c = �

0

�

P

k

i=1

�

i

�

i

and, thus, we have to regress (y��

0

)

�

onto (f

1

��

1

)

�

; : : : ; (f

k

�

�

k

)

�

but now under the restriction that the regression parameters sum up to 1.

The corresponding data model
e
y =

e

X! +
e
u is built in exactly the same way as in

Case 3a. In order to heed the restrictions we now have to use the restricted least

squares estimator

b
!

R

=
b
! � (

e

X

T

e

X)

�1

1

k

[1

T

k

(

e

X

T

e

X)

�1

1

k

]

�1

(1

T

k

b
! � 1) (3.23)

with
b
! = (

e

X

T

e

X)

�1

e

X

T

e
y. Thus the estimate for the combination parameters � is

obtained:
b
� =

b
!

R

. Again the parameter vector c is estimated by

b
c =

c
�

0

�

k

X

i=1

b�

i

b�

i

: (3.24)

Since the sum of the �

i

equals 1 we may write

�

0

=

k

X

i=1

�

i

�

0

(3.25)

15



and hence we may alternatively interpret this combination as the regression of y

�

on the bias-corrected (f

i

� �

i

+ �

0

)

�

under the then reasonable restriction of the

regression parameters summing up to 1, compare Equation (3.21).

In the weak combinations without constant term (Cases 3b and 3d) the target

variables y

1

; : : : ; y

l

are treated as one single target variable y

�

and the forecasts

f

i;1

; : : : ; f

i;l

are treated as a single forecast f

�

i

for y

�

. In the case of weak combina-

tions with constant term (Cases 3a and 3c) the possibly di�erent expectations of the

y

j

and the f

i;j

are corrected for in the �rst place.

It is obvious that in general the weak approach is only reasonable if the (possibly

corrected) target variables are similar enough so that their treatment as one single

target variable seems justi�ed. This may be the case if, e.g., all components of y

are relative changes of certain quantities with respect to the preceding period. If

the above treatment is justi�ed, i.e. if all components follow the same regression

equation, application of the weak multivariate linear combination approach is very

advantageous: We do not try to estimate several regression relationships where there

only is one. Furthermore, we have l times the number of observations to estimate

that one relationship, so that the relationship can be determined more precisely.

3.4 Multivariate linear adjustment

In Troschke (2002) the above combination models are also applied to the special

case of only k = 1 forecast. The results are improvements of this individual forecast,

named adjustments. The corresponding regression models can be derived from the

results of the preceding subsections. Again the medium adjustments are equivalent

to the corresponding univariate adjustments, whereas for the weak adjustments we

have to consider each component of the target variable as one variable and each

component of the forecast as forecasts for that one variable.

It should be noted that there are only seven di�erent adjustments since for k = 1

Cases 1c, 2c and 3c coincide, while Cases 1d, 2d and 3d coincide with the individual

forecast.

In Section 4 we will report an empirical example comparing the performance of the

above linear adjustments and combinations in the case of k = 2 forecasts for l = 2

variables.
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Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

y

1

5.6 2.8 3.2 4.6 1.9 0.1 -1.0 1.0 2.6 2.6 2.6

y

2

3.6 3.1 3.4 3.2 1.7 -1.2 -2.2 1.1 0.6 1.8 4.3

f

1;1

5 5.5 3 4 2 -1 0.5 -0.5 2 2 3

f

1;2

3 4.5 3 3.5 2 1 -0.5 -0.5 0 1.5 3.5

f

2;1

4 4.5 3 4 2 -1 1 -0.5 2.25 2.25 3

f

2;2

2.5 4.5 3 3.5 1.5 1 0 -0.5 1 1.5 3

Year 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

y

1

1.9 3.7 3.3 4.7 3.7 1.6 -1.7 2.4 1.9 1.4

y

2

3.5 2.7 1.7 4.7 3.6 1.7 0.2 0.6 1.8 1.3

f

1;1

1.5 1 2.5 3.5 3.5 1 -1 -0.5 2 1

f

1;2

3 3 2 3.5 3.5 2 0 -1.5 0.5 2

f

2;1

2.25 1 2.25 3 3.25 1.5 -0.5 1 3 1.75

f

2;2

3.5 2.5 2.5 4 3 2 0 -1 0.5 2.5

Table 2: Real change of German gross national product (y

1

) and real change of

German private consumption (y

2

) together with corresponding DIW and Ifo forecasts

(f

1

, f

2

) for the period from 1976 to 1996

4 An empirical example

In this section we will present an empirical example illustrating the various adjust-

ments of single forecasts as well as the combination of k = 2 forecasts for l = 2

variables on the basis of the new methods. It should be pointed out, however, that

this example is only meant to provide a �rst impression of the possible usefulness of

the multivariate linear approaches. Detailed analyses are bound to follow, and they

will be presented in a future paper.

The data for the numerical example are taken from a larger data set of German

macro economic variables and corresponding forecasts investigated by Klapper

(1998). See Klapper (1999) for a multivariate treatment of these data by means

of rank based methods and Wenzel (1999) for a treatment on the basis of a

multivariate Pitman closeness criterion. We selected the DIW (Deutsches Institut

f�ur Wirtschaftsforschung, f

1

= (f

1;1

; f

1;2

)

T

) and Ifo (Ifo-Institut f�ur Wirtschafts-

forschung, f

2

= (f

2;1

; f

2;2

)

T

) forecasts for the target variables 'real change of gross

national product' (y

1

) and 'real change of private consumption' (y

2

). These yearly

data are available for a period of 21 years from 1976 to 1996. They are given in

Table 2.
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When evaluating the data it is important to take their availability into account:

The forecasts f

1

and f

2

for year t, say, are made at the end of year t � 1 and

the true value of the target variable y for the year t � 2 is not published by the

Statistisches Bundesamt before the end of year t � 1. Consequently, at the time

when the individual forecasts for year t are to be combined, namely at the end of

year t� 1, we can only use the past data up to year t� 2.

These past data serve to estimate the optimal combination parameters at each time

point on the basis of the regression models for empirical data from the previous sec-

tions. Due to structural changes in the data set the optimal combination parameters

may not be stable over time. A common procedure in this situation is to use only

the latest observations for parameter estimation. Of course the amount of past data

should not be too small either so that the regression �t is at least fairly reasonable.

As a compromise we chose a history of 10 data points for parameter estimation.

Altogether we will use the data from 1976 to 1985 to estimate the combination

parameters for the 1987 forecasts, the data from 1977 to 1986 to estimate the com-

bination parameters for the 1988 forecasts, and so on. This leads to a time span of 10

years (1987 to 1996) in which the performance of the various methods is evaluated

with the average sum of the squared forecast errors

\

SMSPE(f

�

;y) =

1

10

1996

X

t=1987

(y

t

� f

�;t

)

T

(y

t

� f

�;t

) ; (4.1)

where the subscript t indicates the considered year. This is the empirical counterpart

of the scalar mean square prediction error

SMSPE(f

�

;y) = E[(y � f

�

)

T

(y � f

�

)] ; (4.2)

hence the denotation

\

SMSPE.

When dealing with the weak multivariate linear combinations we will not only con-

sider the combinations without constant term (Cases 3b and 3d) and with individ-

ual constant terms for each component (Cases 3a and 3c) but also the intermediate

choice of one single constant term for all l components. It arises from regressing y

�

on f

�

1

; : : : ; f

�

k

including a constant term c

�

either with or without the restriction

that the coeÆcients of the f

�

i

sum up to one. Then the combined forecasts are given

as

f

�;c

�

1

=

k

X

i=1

�

i

f

i

+ c

�

1

l

(4.3)
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or

f

�;c

�

1;rest

=

k

X

i=1

�

i

f

i

+ c

�

1

l

with

k

X

i=1

�

i

= 1 ; (4.4)

respectively. Compare Section 3.3.

Projections: A feature of the linear approaches to the univariate combination of

forecasts is that the linearly combined forecasts can lie outside the range of the

individual forecasts. This feature is desirable because even if every single individual

forecast underestimates, say, the target variable, the combined forecast can still hit

the target variable. On the other hand, in some empirical applications it has been

observed that linear combinations do not perform too well, because they produce

combined forecasts far out of the range of the individual forecasts. Consequently,

the mentioned feature is desirable as well as critical for the linear approaches at the

same time. These facts apply to the linear combination of multivariate forecasts as

well.

We will try to �nd a compromise between the good and the bad side of this fea-

ture by considering three projections of each combined forecast: The �rst projection

will restrict each component f

comb;j

of the combined forecast to the range of the

corresponding individual forecasts

[ min

i2f1;::: ;kg

f

i;j

; max

i2f1;::: ;kg

f

i;j

] =: [f

min;j

; f

max;j

] ;

i.e. if f

comb;j

is smaller than the minimum it is set to the minimum and if f

comb;j

is

larger than the maximum it is set to the maximum. Likewise the second projection

restricts the j-th component of the combined forecast to the interval

[f

min;j

� 0:1(f

max;j

� f

min;j

); f

max;j

+ 0:1(f

max;j

� f

min;j

)]

such that the combined forecast is allowed to lie slightly (by ten percent of the range)

outside the range of the individual forecasts. Finally, the third projection restricts

the j-th component of the combined forecast to the interval

[f

min;j

� 0:3(f

max;j

� f

min;j

); f

max;j

+ 0:3(f

max;j

� f

min;j

)]

thus allowing the combined forecast to leave the range of the individual forecasts by

thirty percent of the range.

A very simple strategy for the combination of the single forecasts is their arithmetic

mean. Since it is easy to apply and also quite successful in empirical investigations,
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any other combination technique is measured against the arithmetic mean. There-

fore we decided to present all

\

SMSPE-values relative to the

\

SMSPE-value of the

arithmetic mean, which is 2.3900 in the considered time period. All decimals have

been deleted following the fourth decimal such that methods outperforming the

arithmetic mean can be identi�ed immediately.

The results of this evaluation are presented in Table 3. Values in brackets are those

belonging to the �rst, second and third projection, respectively. It can be seen that

in this example the weak combination including a full constant term but without

restriction on the �

i

is the best of all combination methods. It outperforms the

arithmetic mean by 10% and the medium approaches which are equivalent to the

classical univariate treatment by 13% or more. Also both individual forecasts are

outperformed. The strong combinations all perform worse than the arithmetic mean

and also worse than both individual forecasts. The strong combinations without

restriction on the combination weights perform far worst of all methods. A projection

substantially improves their results but they are still worse than the arithmetic

mean. We can observe that all weak combinations perform better than their medium

counterparts which in turn outperform their strong counterparts.

The adjustment Bf

i

+c of individual forecasts is very e�ective for the DIW forecast

but not advantageous for the Ifo forecast. For the DIW forecast the medium and weak

versions produce the best forecasts among all considered methods outperforming the

arithmetic mean by 24% and the DIW forecast by even 34%. For the Ifo forecast

the strong and weak versions at least do not attenuate the result of the Ifo forecast

very far.

It is interesting to note that the combinations without constant term and with re-

striction on the sum of the forecast weights perform relatively bad. These are the

standard combinations under the often assumed unbiasedness of the individual fore-

casts. The linear unrestricted adjustments and combinations without constant term

perform worst in their respective groups. The latter is especially remarkable, since

these methods exhibit an undesired theoretical behaviour as outlined in Troschke

(2002).

Concerning the three types of projections we may state that the projection works the

better the narrower the projection interval is. In general, restricting the combined

forecast to the range of the individual forecasts works best, but the di�erences be-

tween the results of the projections are not very large in this example. Compared to

the original combination we may say that for a bad original combination it is advan-

tageous to project, whereas for a good original combination it is not advantageous

to project.
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Forecast f

�

\

SMSPE(f

�

; y)

DIW forecast f

1

= f

DIW

1.1548

Adjustments: f

DIW;

b

B

opt

;
b
c

opt

0.8248

f

DIW;

b

B

opt

1.2170

f

DIW;I;
b
c

opt

0.9457

f

DIW;

b

D

opt

;
b
c

opt

0.7631

f

DIW;

b

D

opt

1.2352

f

DIW;b�

opt

;
b
c

opt

0.7669

f

DIW;b�

opt

1.2399

Ifo forecast f

2

= f

Ifo

0.9916

Adjustments: f

Ifo;

b

B

opt

;
b
c

opt

0.9950

f

Ifo;

b

B

opt

1.0775

f

Ifo;I;
b
c

opt

1.0383

f

Ifo;

b

D

opt

;
b
c

opt

1.1038

f

Ifo;

b

D

opt

1.1358

f

Ifo;b�

opt

;
b
c

opt

1.0212

f

Ifo;b�

opt

1.1138

Strong combinations: f

b

B

opt

;
b
c

opt

1.8465 (1.1805, 1.2287, 1.3403)

f

b

B

opt

1.8980 (1.1727, 1.2216, 1.3160)

f

b

B

opt

;
b
c

opt

;rest

1.1746 (1.1511, 1.1599, 1.1691)

f

b

B

opt

;rest

1.2344 (1.2106, 1.2308, 1.2513)

Medium combinations: f

b

D

opt

;
b
c

opt

1.0300 (1.0784, 1.0790, 1.0881)

f

b

D

opt

1.2010 (1.1627, 1.1680, 1.1734)

f

b

D

opt

;
b
c

opt

;rest

1.0834 (1.0720, 1.0762, 1.0913)

f

b

D

opt

;rest

1.1399 (1.1314, 1.1290, 1.1317)

Weak combinations: f

b
�

opt

;
b
c

opt

0.9015 (0.9644, 0.9695, 0.9754)

f

b
�

opt

1.1808 (1.1034, 1.1148, 1.1251)

f

b
�

opt

;
b
c

opt

;rest

0.9653 (0.9784, 0.9858, 1.0004)

f

b
�

opt

;rest

1.0577 (1.0626, 1.0590, 1.0577)

Weak combinations with f

b
�

opt

;bc

�

opt

1

0.9204 (0.9825, 0.9861, 0.9971)

scalar constant term c

�

: f

b
�

opt

;bc

�

opt

1;rest

0.9917 (0.9813, 0.9750, 0.9708)

Table 3:

\

SMSPE-values of adjusted and combined forecasts in an empirical applica-

tion (all values relative to the

\

SMSPE of the arithmetic mean)
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The weak combinations utilizing the constant c

�

1

l

work better than the arithmetic

mean but a little worse than their respective counterparts utilizing a full constant

vector c.

The forecasts for the years 1987 to 1996 produced by the weak combination f

b
�

opt

;
b
c

opt

of f

1

and f

2

are given by 1.5511, 1.2330, 2.9409, 4.2146, 4.0524, 1.5098, -0.4429,

0.4665, 2.6490 and 2.1205 for target variable y

1

and by 2.3581, 2.5069, 1.7916, 2.9704,

3.5148, 2.1468, 0.4856, -0.2157, 0.6412 and 2.6437 for target variable y

2

. Together

with the respective target variable, individual forecasts and their arithmetic mean

they are visualized in Figure 1.

In Troschke (2002) we have conducted an analysis of the potential of the various

combination techniques in terms of expected scalar squared error loss (SMSPE).

That analysis was based on known �rst and second order moments of the joint

distribution of y and f = (f

T

1

; f

T

2

)

T

. It constitutes the theoretical counterpart of the

current empirical example in that the moments considered in that analysis are the

sample moments obtained from all 21 observations in Table 2.

Comparing the results of the current empirical investigation to the theoretical coun-

terparts we observe that only the results for the weak combinations and adjust-

ments come close to their expected values. The medium and especially the strong

approaches perform far worse than could have been expected for known �rst and

second order moments. The extraordinary results for the medium and weak adjust-

ments of the DIW forecast are far better than could have been expected, especially

when taking into consideration that the necessity to estimate the optimal combina-

tion parameters leads to an even worse theoretical SMSPE.

A possible reason for the results observed is the very small amount of data available

for parameter estimation: only 10 data points seem to be a small basis and favor

the methods with only few parameters.

It can be seen that some of the new approaches are able to outperform the arith-

metic mean. How good their performance is in general will depend on how good the

regression reects the future relationship between target variable y and forecasts

f

i

. Clearly, the more suitable data are available for that regression, the better. Also

the data should not be subject to extreme structural changes during the considered

period. Consequently, the multivariate linear approaches should be more valuable

for monthly, weekly or even daily data (e.g. from the stock market) than they are

for yearly data.
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Figure 1: Target variables real change of gross national product (top) and real change

of private consumption (bottom), together with their DIW and Ifo forecasts, their

arithmetic mean and their weak multivariate linear combination f

b
�

opt

;
b
c

opt

.
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5 Conclusions

In this paper we have introduced the linear regression approach for the multivari-

ate linear combination of forecasts. We have also considered the classical univariate

linear approaches as competitors to the new set-up as well as adjustments of indi-

vidual forecasts which emerge from the special case k = 1. The advantage of the

regression approach is that it facilitates empirical application of the new methods

by making use of standard software packages possible. Moreover, the identi�cation

of appropriate regression models constitutes an analogy to the univariate case.

We found out that the strong multivariate linear combination may be interpreted

as the l regressions of the target variables y

j

on the vector of all forecasts for all

variables. These regressions may be incorporated into a multivariate linear regression

model. For the medium multivariate linear combination the y

j

are solely regressed

on the vector of all forecasts for the j-th variable. This approach corresponds to

the standard univariate treatment of each of the components. Finally, the weak

multivariate linear combination results in the treatment of all components y

j

as a

single variable y

�

. Then in two cases y

�

is regressed on the f

�

i

, while in the other

two cases (y � �

0

)

�

is regressed on the (f

i

� �

i

)

�

.

Furthermore, we have reported an empirical example comparing the classical and the

new approaches. We have seen that employing multivariate linear adjustments and

combinations may be bene�cial, but also that this is not always the case. Due to the

smaller number of parameters involved the weak multivariate linear combinations

and adjustments seem to be suitable if only a small amount of data is available for

parameter estimation.

A much more detailed analysis of the possible bene�ts of the multivariate linear

approaches has to follow, as was explained in Section 4. It will be carried out in

the dissertation thesis of the author. A point of special interest would be to �nd a

guideline for potential users identifying situations beforehand in which multivariate

linear combination of forecasts is promising. Especially the question of how much

data should be available is interesting. Another point is to �nd out how large the

number of forecasts k and the number of variables l should be chosen depending on

the amount of data available for the multivariate linear approaches.
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