~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Ligges, Uwe; Machler, Martin

Working Paper
Scatterplot3d - an R package for visualizing multivariate
data

Technical Report, No. 2002,22

Provided in Cooperation with:

Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Ligges, Uwe; Mdchler, Martin (2002) : Scatterplot3d - an R package for visualizing
multivariate data, Technical Report, No. 2002,22, Universitat Dortmund, Sonderforschungsbereich
475 - Komplexitatsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/77160

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/77160
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Scatterplot3d —

an R package for Visualizing Multivariate Data

Uwe Ligges and Martin Machler

Fachbereich Statistik Seminar fir Statistik
Universitat Dortmund ETH Ziirich
44221 Dortmund CH-8092 Ziirich
Germany Switzerland

Abstract Scatterplot3d is an R package for the visualization of multivariate data in
a three dimensional space. R is a “language for data analysis and graphics”. In this
paper we discuss the features of the package. It is designed by exclusively making
use of already existing functions of R and its graphics system and thus shows the
extensibility of the R graphics system. Additionally some examples on generated
and real world data are provided, as well as the source code and the help page of

scatterplot3d.

1 Introduction

Scatterplot3d is an R package for the visualization of multivariate data in a three
dimensional space. R itself is a “language for data analysis and graphics” (Thaka and
Gentleman, 1996) and a freely available statistical software package implementing

that language, see http://www.R-project.org/.

Basically scatterplot3d generates a scatter plot in the 3D space using a parallel
projection. Higher dimensions (fourth, fifth, etc.) of the data can be visualized to

some extent using, e.g. different colors, symbol types or symbol sizes.

The following properties of scatterplot3d will be further described and discussed
in the present paper: A plot is generated entirely by using interpreted R graphics
functions, so the appearance of the plot is consistent with other R graphics. Such a
behavior is important for publications. Most features of the R graphics system can
be applied in scatterplot3d, among them are vectorizing of colors or plotting symbols
and mathematical annotation (Murrell and Thaka, 2000). The latter means whole
formulas with e.g. greek letters and mathematical symbols inside can be added into
plots using a IXTEX like syntax. Scatterplot3d can be easily extended e.g., by adding
additional points or drawing regression lines or planes into an already generated
plot (via function closures, see below). The package is platform independent and

can easily be installed, because it only requires an installed version of R.

This paper is structured as follows: In Section 2 the design of scatterplot3d will
be described, followed by remarks on the extensibility of the function in Section 3.
Some examples (including code and results) on generated and real world data are
provided in Section 4. We present other R related 3D “tools” in Section 5, followed
by the conclusion in Section 6. In the Appendix the source code as well as the help

page of scatterplot3d are printed.

A colored version of this paper can be downloaded from http://www.statistik.
uni-dortmund.de/sfb475/en/index-e.html. R and scatterplot3d are available
from CRAN (Common R Archive Network), i.e. http://CRAN.R-Project.org or

one of its mirrors.

2 Design

Scatterplot3d is designed to plot three dimensional point clouds by exclusive usage of
functions in the R base package. Advantages of this “R code only” design are the well
known generality and extensibility of the R graphics system, the similar behavior
of arguments and the similar look and feel with respect to common R graphics, as
well as the quality of the graphics, which is extremely important for publications.

Drawbacks are the lack of interactivity, and the missing 3D support (2D design).

While the function persp for plotting surfaces (cf. Section 5) applies a perspective
projection, in scatterplot3d a parallel projection for a better comparison of distances

between different points is used.

The final implementation of the function and the building of the package was done
according to the “R Language definition” and “Writing R Extensions” manuals of
the R Development Core Team (in short, ‘R core’), 2002b and 2002c.

2.1 Arguments

The scatterplot3d function has been designed to accept as many common arguments
to R graphics functions as possible, particularly those mentioned in the help pages
of the function par and plot.default (R core, 2002a). In principle, arguments of
par with a particular 2D design are replaced by new arguments in scatterplot3d.
Regularly, values of the corresponding arguments in par for the first two dimensions
are read out, and scatterplot3d either “guesses” the value for the third dimension or

has an appropriate default.

A few graphical parameters can only be set as arguments in scatterplot3d but not in
par. For details on which arguments have got a non common default with respect
to other R graphics functions see the “Usage” and “Arguments” sections of the help
page in appendix C. Other arguments of par may be split into several arguments in
scatterplot3d, e.g. for specification of the line type. Finally, some of the arguments
in par do not work, e.g. some of those for axis calculation. As common in R, addi-
tional arguments that are not mentioned on the help page can be passed through to

Y

underlying low level graphics functions by making use of the general ‘. ..’ argument.

2.2 xyz.coords()

As well known from other R functions, vectors z, y and z (for the 3D case) are used

to specify the locations of points.

If z has got an appropriate structure, it can be provided as a single argument. In
this case, an attempt has to be made to interpret the argument in a way suitable for
plotting. For that purpose, we added the function xyz.coords (R core, 2002a) into
the R base package that accept various combinations of # and optionally y and z
arguments. It is a “utility for obtaining consistent z, y and z coordinates and labels
for three dimensional plots” (R core, 2002a). Many ideas used in this function are
taken from the function xy.coords already existing for the 2D case. Even though
xyz.coords was introduced to support scatterplot3d, it is designed to be used by

any 3D plot functions making use of (;,y;, ;) triples!.

If the argument is a formula of type zvar ~ xvar + yvar (cf. R core (2002b) for
details on formulas), xvar, yvar and zvar are used as x, y and z variables. If the
argument is a list with components x, y and z, these are assumed to define plotting
coordinates. If it is a matrix with three columns, the first is assumed to contain the
x values, etc. Alternatively, two arguments = and y can be be provided, one may
be real, the other complex. In any other case, the arguments are coerced to vectors
and the values plotted against their indices. If no axis labels are given explicitly,
xyz.coords attempts to extract appropriate axis labels xlab, ylab and zlab from

the above mentioned data structures.

Additionally, color vectors contained in a matrix, data frame or list can be detected

by scatterplot3d internally.

2.3 Structure

The R code of scatterplot3d (Appendix B) is structured into a few parts:

A quite long list of arguments in the first part of the function is followed by some

!The functions persp, image and contour are restricted to use a grid of x,y values and hence

only need n x— and m y— values for n x m z— values.

plausibility checks, extraction of characters, conversion of data structures (cf. Sec-
tion 2.2), basic calculations of the angle for displaying the cube, and calculations
regarding the data region limits, as well as data sorting for an optional “3D high-

lighting” feature.

In order to optimize the fit of the data into the plotting region, the second part of
the function deals with optimal scaling of the three axis. This yields a high printout
quality as well known from regular R graphics, but unfortunately it results also in
a static plot, i.e. rotation is not possible. If scatterplot3ds with different viewing
angles are put together as a “slide show” to imitate a rotation, each of these “slides”
is individually optimally sized regarding the plotting region, so all in all such a “slide

show” will not work.

After the graphics device is initialized in the third part, axis, tick marks, box, grid
and labels are added to the plot, if it is required. In the last but one part, the data
is plotted and overlayed by the front edges of the box.

Besides the primarily expected result, a drawn plot, four functions are generated

and invisibly returned as Values in the last part of scatterplot3d (cf. Appendix C).

These functions, namely xyz.convert, points3d, plane3d and box3d, are required
to provide extensibility of the three dimensional plot; details are described in Sec-

tion 3.

3 Extensibility

Two kinds of extensibilities will be described in this section. On one hand, regarding
the scatterplot3d design, the extensibility of the R graphics system will be discussed;
it provides the tools and features enabling the programmer to write complex high
level plot functions in a very general manner. On the other hand we describe the

extensibility of scatterplot3d itself.

3.1 Extensibility of R graphics

R provides a huge collection of low level graphic functions like those for adding ele-
ments to an existing plot or for computations related to plotting. These functions are
used to build very general high level functions, at least for the two dimensional case,

and without them, the “R code only” design of scatterplot3d would be impossible.

A selection of these low level functions begins with the functions to obtain z, y
(and z) coordinates for plotting, namely xy.coords and xyz.coords (for the 3D
case, cf. Section 2.2). Further on, the functions plot.new and plot.window can be
used to set up the plotting region appropriately, pretty to calculate pretty axis tick
marks, segments to draw line segments between pairs of points, and functions like

title, axis, points, lines, text etc. are self-explanatory.

A huge collection of graphical parameters for R is documented in the help pages for
par and plot.default (cf. R core (2002a)). Almost all low level graphic functions

)

make use of the argument ‘. .." which allows specifying most of these parameters in
a very general manner. If this argument, ‘...’ is also used in a high level function,
arguments which are not explicitly introduced in the arguments list, can be passed
through to lower level graphic functions as well; this is a powerful feature of the S

language.

Since the R graphics system is designed for two dimensional graphics, it lacks of some
features for the three dimensional case. Unfortunately, the axis function works only
for 2D graphics. Consequently a large amount of code (Appendix B) was required

to enable oblique axes for displaying the 3D scatter plot in an arbitrary angle.

Locations in R graphics devices can be addressed with 2D coordinates, Thus the
information on the projection has to be calculated by the 3D graphic functions in-
ternally. As described in Section 2, scatterplot3d uses a parallel projection. Since
the R graphics device does not know anything about the projection, without any
appropriate additional tools it is not possible to add elements into an existing scat-
terplot3d.

3.2 Extensibility of scatterplot3d

In Sections 1 and 2 it was emphasized that the scatterplot3d design was intended
to be as general as possible. Some attempts to obtain this generality are described
in Section 2 and its subsections. Because of the missing projection information, the
ability of adding elements to an already existing scatterplot3d would be restricted,
if only the already defined (and for the 2D case general) R functions could be used
(cf. Section 3.1).

For this reason, scatterplot3d (invisibly) returns a list of function closures (cf. Sec-
tion 2.3). A function closure is a function together with an environment, and an
environment is a collection of symbols and associated values (i.e. R variables). Thus
these properties of R’s scoping rules, called Lexical Scoping (Gentleman and Thaka,
2000), are extensively used in scatterplot3d. Notice that Lexical Scoping is a feature

of R, not defined as such in the S language.

In other words, the values returned by scatterplot3d are functions together with
the environment in which they (and the scatter plot) were created. The benefit
of returning function closures is, that the function somehow “knows” the values of
variables (in the environment) that were assigned to those variables at the time when
the function was created. All in all, we made those functions know details about
the axis scaling and the projection information that are required to add elements to

an existing plot appropriately.

The following functions are returned by scatterplot3d, for details see Appendix C:

xyz.convert: A function which converts 3D coordinates to the 2D parallel projec-
tion of the existing scatterplot3d. Tt is useful to add arbitrary elements into
the plot.

points3d: A function which draws points or lines into the existing plot.

plane3d: A function which draws a plane into the existing plot:
plane3d(Intercept, x.coef=NULL, y.coef=NULL, 1lty="dashed", ...).
Instead of an intercept, a vector containing three elements or an (g)lm object

can be specified.

box3d: This function draws a box (or “refreshes” an existing one) around the plot.

xyz.convert is the most important function, because it does the parallel projection
by converting the given 3D coordinates into the 2D coordinates needed for the R
graphics devices. Examples how to use the mentioned function closures are given in

Section 4.

4 Examples

Many examples presented in this sections are in color. If you have not got a colored
version of this paper, you may get it from http://www.statistik.uni-dortmund.
de/sfb475/en/index-e.html.

4.1 Feature demonstration

In this section some of the features of scatterplot3d will be demonstrated using artifi-
cially generated data, well known examples from other R functions and the (slightly
modified) examples of scatterplot3d’s help file (cf. Appendix C). The presentation

starts with the latter, each example printed on an individual page to obtain lucidity.

this space intentionally left blank

4.1.1 Helix

In Figure 1 points of a helix are calculated and plotted using the 3D highlighting
mode (highlight.3d = TRUE) in a blue box with a light blue grid. We produce the
solid look with the point symbol, pch = 20.

z <- seq(-10, 10, 0.01)

x <~ cos(z)

y <- sin(z)

scatterplot3d(x, y, z, highlight.3d = TRUE, col.axis = "blue",
col.grid = "lightblue", main = "Helix", pch = 20)

Helix

10

Figure 1: Helix

10

4.1.2 Hemisphere

Figure 2 shows points on a hemisphere.

annotation, this figure is generated analog

Except for angle and the size of axes

ously to Figure 1.

temp <- seq(-pi, O, length = 50)

c(rep(1, 50) %*% t(cos(temp)))
c(cos(temp) %*% t(sin(temp)))
%*% t(sin(temp)))
scatterplot3d(x, y, z, highlight.3d

x <-
y <=

z <- c(sin(temp)

col.axis = "blue", col.grid = "lightblue", cex.axis =

= TRUE, angle = 120,

1.3,

cex.lab = 1.1, main

= "Hemisphere'", pch = 20)

> 1

Hemisphere

g
° * ®eoqe %o b4
,..ooooc‘m..‘no
)
oooooooooo.’." T

o °®
o“‘.
o0 ®
o0 ® oo
.“...00
XXX
l eeesocccce I
peoecocooococccocccococcccs
Poo
be ®%®000000000000000000000 4
0:"‘00
» ®e (]
° o o®
° ° °
oo, "% ccc00000000% ¢
° °
7'.0..-A:----0‘...

-0.5 0 0.5 1

°
®000000000000000°®

X

Figure 2: Hemisphere

11

0.6 0.8

04

0.2

4.1.3 3D barplot

With some simple modifications, it is possible to generate a 3D barplot, as shown
in this example. To make the plot look like a barplot, type = "h" is set to draw
vertical lines to the x—y plane, pch = " " to avoid plotting of point symbols and
lwd = 5 to make the lines looking like bars. Furthermore, instead of three vectors

a data frame is given as the first argument to scatterplot3d.

my.mat <- matrix(runif(25), nrow = 5)
dimnames (my.mat) <- 1ist(LETTERS[1:5], letters[11:15])
s3d.dat <- data.frame(columns = c(col(my.mat)),
rows = c(row(my.mat)), value = c(my.mat))
scatterplot3d(s3d.dat, type = "h", lwd = 6, pch = " ",

x.ticklabs = colnames(my.mat), y.ticklabs = rownames(my.mat),

color = grey(25:1 / 40), main = "3D barplot")

3D barplot
=
o
© |
o
()
=
©
>
o
| s
I D
|
o C
] B
04./ A
k | m n o

columns

Figure 3: 3D barplot

12

4.1.4 Adding elements

The importance of Lexical Scoping to generate function closures to provide exten-
sibility of scatterplot3d was discussed in Section 3. An example how to use the
invisibly returned functions is given below on the famous (at least for S users) tree
data.

After the tree data is loaded, it is plotted by scatterplot3d, and the (invisibly re-
turned) result is assigned to the variable s3d. The (blue colored) points are plotted

using type = "h", so one can see the x—y location of those points very clearly.

In the next step, a linear model (assumption: volume depends on girth and height
of the trees) is calculated. Furthermore, this Im object is plotted by the returned

plain3d function (was assigned to s3d before), and it results in a regression plane.

Just for demonstration purposes, in the last step some red colored points (on a

imaginary line crossing the plot) are plotted with an asterisk as its point symbol.

data(trees)
s3d <- scatterplot3d(trees, type = "h", color = "blue",
angle = 55, scale.y = 0.7, pch = 16, main = "Adding elements")
my.lm <- lm(trees$Volume ~ trees$Girth + trees$Height)
s3d$plain3d (my.1lm)
s3d$points3d(seq(10, 20, 2), seq(85, 60, -5), seq(60, 10, -10),
col = "red", type = "h", pch = 8)

13

Adding elements

50 60 70 80

Volume

40

Height

30

10

Girth

Figure 4: Adding elements

4.1.5 Bivariate normal distribution

In Figure 5 a surface of the density of a bivariate normal distribution is plotted.
This example is a bit more sophisticated than the examples before and shows the
extensibility of scatterplot3d. Note that scatterplot3d is designed to generate scatter
plots, not to draw surfaces, is not really user friendly for this purpose, for which

we’d typically rather use R’s persp function.

In a first step a matrix containing the density is calculated. The call of scatterplot3d
sets up the plot (axes, labels, etc.), but doesn’t draw the surface itself which is
accomplished by the two loops at the end of the code. Additionally, we give an

example of quite sophisticated mathematical annotation.

14

library (mvtnorm)
xl <- x2 <- seq(-10, 10, length = 51)
dens <- matrix(dmvnorm(expand.grid(xl, x2),
sigma = rbind(c(3, 2), c(2, 3))),
ncol = length(xl))
s3d <- scatterplot3d(xl, x2,
seq(min(dens), max(dens), length = length(x1)),
type = "n", grid = FALSE, angle = 70,
zlab = expression(f(x[1], x[2])),
xlab = expression(x[1]), ylab = expression(x[2]),
main = "Bivariate normal distribution")
text (s3d$xyz.convert (-1, 10, 0.07),
labels = expression(f(x) == frac(l, sqrt((2 * pi)~"n *
phantom(".") * det(Sigmal[X]))) * phantom(".") * exp{
bgroup (" (", - scriptstyle(frac(l, 2) * phantom(".")) *
(x - mu)"T * Sigma[X]"-1 * (x - mu), ")")}))
text (s3d$xyz.convert (1.5, 10, 0.05),

labels = expression("with" * phantom("m") *

mu == bgroup("(", atop(0, 0), ")") * phantom(".") * "," *
phantom(0) =*
Sigma[X] == bgroup("(", atop(3 * phantom(0) * 2,
2 x phantom(0) * 3), ")")))
for(i in length(x1):1)
s3d$points3d(rep(x1[i], length(x2)), x2, dens[i,], type = "1")
for(i in length(x2):1)
s3d$points3d(xl, rep(x2[i], length(x1l)), dens[,i], type = "1")

15

Bivariate normal distribution

106) = exp(~2 (x-)" (x-))
(2n)" det(zy)

n aelo) 2ele)
wi w= , Tx =
0 23

©

<

o

©

=

[}
~
5\

X <t

- =

< o
e
=

[aV}

=

[}

o

X4

Figure 5: Density of a bivariate normal distribution

16

Xo

4.2 Real world examples

Three real world examples are presented in this section. The data are from the fol-
lowing recent projects of the collaborative research centre 475 (Deutsche Forschungs-

gemeinschaft, SFB 475: “Reduction of complexity in multivariate data structures”):

C3 (Biometrics) Meta—Analysis in Biometry and Epidemiology,
B3 (Econometrics) Multivariate Analysis of Business Cycles, and

C5 (Technometrics) Analysis and Modelling of the Deephole-Drilling—Process with
Methods of Statistics and Neuronal Networks.

4.2.1 Meta—analysis of controlled clinical trials

In the first real world example the data from a project on “Meta—Analysis in Biom-
etry and Epidemiology” is taken. The data set contains the results of 13 placebo—
controlled clinical trials which evaluated the efficacy of the Bacillus Calmette-Guérin
(BCQG) vaccine for the prevention of tuberculosis (TB). An important task in com-
bining the results of clinical trials is to detect possible sources of heterogeneity which
may influence the true treatment effect. In the present example, a possible influ-
ential covariate is the distance of each trial from the equator, which may serve as
a surrogate for the presence of environmental mycobacteria that provide a certain
level of natural immunity against TB. Other covariates may be the year the trial
was carried out and the allocation scheme of the vaccination (A = alternate, R =
random, S = systematic). For more details, especially on the choice of the trials
and the meta—analytical methods of combining the results, we refer to Knapp and

Hartung (2002) and the references given therein.

In Figure 6 the estimated risks of TB disease are plotted for the vaccinated group
and the non—vaccinated group, respectively, in the dependence of the year the trial
was carried out, of the absolute distance from the equator and of the allocation
scheme. The color represents the precisions of the estimated risks. Figure 6 clearly
reveals a spatio—temporal trend in the realization of the trials. The former trials

were carried out far away from the equator, and in all these trials one can observe

17

an evident superiority of the BCG vaccine for the prevention of TB. Except one
trial all the other later trials were realized closer to the equator. In these trials, it
is apparently that the estimated risks in the non—vaccinated groups are even rather
low and, consequently, cannot graphically separated from the estimated risks in the
vaccinated groups. Finally, it is worthwhile to note that the later trial which was
carried out far away from the equator has a relative small estimated risk in the
non—vaccinated group compared to the former trials and, hence, does not yield such

an evident superiority of the BCG vaccine.

Three variables are represented by the three dimensions of the cube, while vari-
able “Precision” is represented by color. To realize color representation for metric

variables, some manual tuning is necessary, though.

layout(cbind(1:2, 1:2), heights = c(7, 1))

prc <- hsv((prc <- 0.7 * Prec / diff(range(Prec))) - min(prc) + 0.3)

s3d <- scatterplot3d(Year, Latitude, Risk, mar = c(5, 3, 4, 3),
type = "h", pch = " ", main = "Estimated TB risks")

s3d$points(Year, Latitude, Risk, pch = ifelse(vac, 22, 21), bg = prc,
cex = ifelse(vac, 2, 1.5))

s3d.coords <- s3d$xyz.convert(Year, Latitude, Risk)

al.char <- toupper(substr(as.character(Allocation), 1, 1))

text(s3d.coords$x[!vac], s3d.coords$y[!vac]l, labels = al.char[!vac],
pos = 2, offset = 0.5)

legend(s3d$xyz.convert (80, 15, 0.21), pch = c("A", "R", "S"), yjust=0,
legend = c("alternate", "random", "systematic"), cex = 1.1)

legend(s3d$xyz.convert (47, 60, 0.24), pch = 22:21, yjust 0,

legend = c("vaccinated", "not vaccinated"), cex = 1.1)

par (mar=c(5, 3, 0, 3))
plot(seq(min(Prec), max(Prec), length = 100), rep(0, 100), pch = 15,

axes = FALSE, xlab = "color code of variable \"Precision\"",
ylab = "", col = hsv(seq(0.3, 1, length = 100)))

axis(1l, at = 4:7, labels = expression(1074, 10°5, 1076, 1077))

18

Two kinds of point symbols stand for the “Vaccinated” variable, and for a sixth
variable, “Allocation”, an appropriate letter is printed additionally close to the “not

vaccinated” symbol.

For each of the latter three variables a legend is desirable. Thus the smaller two
legends are plotted into the scatterplot3d, while the legend for the color coding gets

a single plot. The function layout arranges the two plots suitably on the same

device.
Estimated TB risks
O vaccinated
O not vaccinated
AQ
@
o
© A alternate
c\g R random
e S systematic
N
o R :|
6 © R
r o
R 3
9 R: 60 g
S T
40
Yo}
S S
s A8 ng 8 S
s 20
A- R
o } } } } + + 10
45 50 55 60 65 70 75 80
Year
T T T 1
10* 10° 10° 107

color code of variable "Precision"

Figure 6: Estimated TB risks

19

4.2.2 Business cycle data

The example in this section shows the plotting of data from a project on “Multi-
variate Analysis of Business Cycles”. One of the main interests of the project is the
prediction of business cycle phases. An extraction of available relevant (concerning
the purposes of this section) variables and its abbreviations is given in Table 1. The
abbreviation ’gr’ stands for growth rates with respect to last year’s corresponding

quarter.

abbr | description

IE real investment in equipment (gr)
C real private consumption (gr)
Y real gross national product (gr)

L wage and salary earners (gr)

Table 1: Abbreviations

The experts’ classification of the data into business cycle phases (“PH”) was done
by Heilemann and Miinch (1996) using a 4-phase scheme. These phases are called

lower turning points, upswing, upper turning points, and downswing.

In Figure 7 the three variables C, Y, and L are represented by the three dimensions of
the cube. The variable IE is represented by color, while four different point symbols

stand for the four business cycle phases (PH).

For each of the latter two variables, a legend is desirable. Thus the smaller one (for
PH) is plotted into the scatterplotdd, while the legend for the color coding of IE got

a single plot, analogously to the example in Section 4.2.1.

A regression plane is added to the plot to support the visual impression. Obviously
all the plotted variables are highly correlated, with the exception of the class variable
which does not appear to be well predictable by the other variables. Details are
discussed in Theis et al. (1999). In order to provide a correct impression of the
fit, the residuals, i.e. the projection lines to the plane, are drawn in Figure 8 where

different color and line types are used for positive and negative residuals respectively.

20

layout(cbind(1:2, 1:2), heights = c(7, 1))
temp <- hsv((temp <- 0.7 * IE / diff(range(IE))) - min(temp) + 0.3)
s3d <- scatterplot3d(L, C, Y, pch = Phase, color = temp,
mar = c(5, 3, 4, 3), main = "Business cycle phases")
legend(s3d$xyz.convert (-2, 0, 16), pch = 1:4, yjust = 0,
legend = c("upswing", "upper turning points",
"downswing", "lower turning points"))
s3d$plain3d(my.1lm <- Im(Y ~ L + C), 1lty = "dotted")
par (mar=c(5, 3, 0, 3))
plot(seq(min(IE), max(IE), length = 100), rep(0, 100), pch = 15,
axes = FALSE, xlab = '"color code of variable \"IE\"", ylab = "',
col = hsv(seq(0.3, 1, length = 100)))
axis(1l, at = seq(-20, 25, 5))

Business cycle phases

o upswing
A upper turning points
+ downswing
x lower turning points
A
x .,5") S+
. RN . A
oo ol I
S g f{AA :
o 1 © o N M+x +i
T N AR
°_. ﬁ +A o
.-'_,.o'.-r+o %QQA X *
5 0. 0 R ¥ +A
. X +oo QQB%
> o 1 x‘_-x +@<o+
o0 L& 15
X L +_,'+
O e 10
o +
5
0
0 s t t t t -5
-6 -4 -2 0 2 4 6
L
I T T T T T T T T 1
-20 -15 -10 -5 0 5 10 15 20 25

color code of variable "IE"

Figure 7: Business cycle phases

21

s3d <- scatterplot3d(L, C, Y, pch = 20, mar = c(5, 3, 4, 3),
main = "Residuals")
s3d$plain3d(my.1lm, 1ty = "dotted")
orig <- s3d$xyz.convert(L, C, Y)
plane <- s3d$xyz.convert(L, C, fitted(my.lm))
i.negpos <- 1 + (resid(my.lm) > 0)
segments(orig$x, origPy, plane$x, planely,
col = c("blue", "red")[i.negpos], 1ty = (2:1)[i.negpos])

Residuals

> 0
15 O
T _ 10
1 (SRR
0
© -5

Figure 8: Residuals (cf. Figure 7)

22

4.2.3 Deep hole drilling

Our last real world example shows phase spaces (Tong, 1993) of the drilling torque
of a deep hole drilling process. The data is taken from a project on ”Analysis and
Modelling of the Deephole-Drilling-Process with Methods of Statistics and Neu-
ronal Networks”. More detailed analysis on the data than provided in the following

example was done by, e.g., Busse et al. (2001) and Weinert et al. (2001).

Figure 9 visualizes the phase spaces of the drilling torques of two deep hole drilling
processes, a regular and a chattering one. Obviously the points in the phase space of
the chattering process are very systematically scattered, and the range of the data
is very different for the two processes. The magnification of the regular process in
Figure 10 shows that the points of the regular process are scattered unsystematically.
Note that other lags like 10, 20, 100 would produce a similar plot. This indicates a

sine wave like relationship in the chattering case.

s3d <- scatterplot3d(drilli[1:400], drill1[7:406], drill1[32:431],
color = "red", type = "1", angle = 120, xlab = "drilling torque",
ylab = "drilling torque, lag 6", zlab = "drilling torque, lag 31",
main = "Two deep hole drilling processes")

s3d$points3d(drill2[1:400], drill2[7:406], drill2[32:431],
col = "blue", type = "1")

legend(s3d$xyz.convert (-400, 1000, 950), col= c("blue", "red"),
legend = c("regular process", "chattering process"), lwd = 2,

bg = "white")

scatterplot3d(drill2[1:400], drill2[7:406], drill2[32:431],
color = "blue", type = "1", angle = 120, xlab = "drilling torque",
ylab = "drilling torque, lag 6", zlab = "drilling torque, lag 31",

main = "Magnification of the regular process")

23

Two deep hole drilling processes

—— regular process
—— chattering process

© 1 8
()]

8 7 ®
g T »
g 1000 o
S 18 &
) g
= 600 + g
S 2
1l o o
200 é
I~

-200 o

1 8

1

-600

-400 0 400 800
drilling torque

Figure 9: Phase spaces of the drilling torques of two deep hole drilling processes

Magnification of the regular process

o

@

o

© o

(o] T+ ©

E o
S 1s &
o 280 =
o =
bt 5 1 e -
2 = 8 g
= lg S
220 , =
200 18 =
- ©

180 ls

160 -

140 g

140 160 180 200 220 240 260 280

drilling torque

Figure 10: Magnification of the regular process (Figure 9)

24

5 Other 3D tools in R

At the time of writing scatterplot3d, the function persp() in the base package of R
for three dimensional surface plots was available, but there was no way to generate
3D scatter plots in R itself.

The data visualization system zgobi (Swayne et al., 1998) provides interactive visu-
alization of multidimensional data, e.g. brush and spin, higher-dimensional rotation,
grand tour, etc. The R package zgobi (Swayne et al., 1991; we have to distinguish the
visualization system and the package) provides an Interface to zgobi and launches a
zgobi process appropriately. ggobi (Swayne et al., 2002) is the next edition of zgobi
and available at http://www.ggobi.org.

Analogously to zgobi a R package Rggobi (Temple Lang and Swayne, 2001) exists in
the Omegahat project (Temple Lang, 2000) http://www.omegahat .org that allows
one to embed ggobi within R and to both set and query the ggobi contents. All in all,
ggobi can be loaded dynamically into R (as well as into other software products, in
principle), and R into ggobi. This provides interactive, direct manipulation, linked,

high-dimensional graphics within R.

The package RGL (Murdoch, 2001) provides an R interface to OpenGL. A huge
collection of useful functions to generate, manipulate and interactively rotate 3D
objects is available. Unfortunately, at the time of writing the package is only avail-

able for the Windows operating system.

Very recently, the function cloud in the lattice package has been introduced. It is a
3D scatter plot function that works in the lattice (Sarkar, 2002) (and grid (Murrell,
2001)) environment of R, but it is still under development (as well as parts of lattice
and grid) and therefore contains some bugs and lacks of some features (compare
the help pages for details). One of these features, mathematical annotation, will
be added presumably in R—1.6.0. Lattice is an implementation of Trellis Graphics,
which is a framework for data visualization developed at the Bell Labs by Becker
et al. (1996), extending ideas presented in Cleveland (1993).

25

6 Conclusion

In the design (Section 2) of the scatter plot function scatterplot3d emphasis is placed
on generality and extensibility (Section 3). These two properties are demonstrated
in Section 4, as well as the high printout quality. A high printout quality and a
homogeneous appearance with respect of any other R (2D) graphics is extremely
important for publications and presentations. Thus we recommend to use scatter-

plot3d particularly for these purposes.

Other R related 3D “tools” (Section 5) are focused on different properties, such as

surface plotting (e.g. function persp), interactivity and online analysis (e.g. ggobi
or RGL).

Acknowledgements. The financial support of the Deutsche Forschungsgemein-
schaft (SFB 475, “Reduction of complexity in multivariate data structures”) is

gratefully acknowledged.

We express our sincere thanks to the following people (in alphabetical order) for
their extensive comments on the features and bugs during the time of development,
as well as for the discussion of the example data:

Ben Bolker, Anja Busse, Ursula Garczarek, Joachim Hartung, Guido Knapp, Win-
fried Theis, Brigitta Vof}, and Claus Weihs.

26

References

Becker, R. A., W. S. Cleveland, and M. Shyu (1996). The visual design and control
of trellis display. Journal of Computational and Graphical Statistics 5(2), 123—
155.

Busse, A. M., M. Hiisken, and P. Stagge (2001). Offline-Analyse eines BTA-
Tiefbohrprozesses. Technical Report 16/2001, SFB 475, Department of Statis-
tics, University of Dortmund, Germany. See also: http://www.statistik.

uni-dortmund.de/sfb475/en/tr-e.html.
Cleveland, W. S. (1993). Visualizing Data. Summit, NJ: Hobart Press.

Gentleman, R. and R. Thaka (2000). Lexical Scope and Statistical Computing.
Journal of Computational and Graphical Statistics 9(3), 491-508.

Heilemann, U. and H. J. Miinch (1996). West German Business Cycles 1963-1994:
A Multivariate Discriminant Analysis. In CIRET-Conference in Singapore,
CIRET-Studien 50.

Thaka, R. and R. Gentleman (1996). R: A Language for Data Analysis and Graph-
ics. Journal of Computational and Graphical Statistics 5(3), 299-314.

Knapp, G. and J. Hartung (2002). Improved tests for random effects meta-
regression with a single covariate. Statistics in Medicine. revised version sub-

mitted.

Murdoch, D. (2001). RGL: An R Interface to OpenGL. In K. Hornik and
F. Leisch (Eds.), Proceedings of the 2nd International Workshop on Dis-
tributed Statistical Computing, March 15-17, Vienna. Technische Univer-
sitdt Wien. ISSN 1609-395X, http://www.ci.tuwien.ac.at/Conferences/
DSC-2001/Proceedings/.

Murrell, P. (2001). R Lattice Graphics. In K. Hornik and F. Leisch (Eds.), Pro-
ceedings of the 2nd International Workshop on Distributed Statistical Com-
puting, March 15-17, Vienna. Technische Universitat Wien. ISSN 1609-395X,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/.

Murrell, P. and R. Thaka (2000). An approach to providing mathematical an-
notation in plots. Journal of Computational and Graphical Statistics 9(3),
582-599.

27

R Development Core Team (2002a). The R Environment for Statistical Computing
and Graphics, Version 1.5.0. R—Project. ISBN 3-901167-50-1, http://CRAN.
R-project.org/manuals.html.

R Development Core Team (2002b). R Language Definition, Version 1.5.0. R—
Project. ISBN 3-901167-56-0, http://CRAN.R-project.org/manuals.html.

R Development Core Team (2002c). Writing R Extensions, Version 1.5.0. R—
Project. ISBN 3-901167-54-4, http://CRAN.R-project.org/manuals.html.

Sarkar, D. (2002). Lattice: An implementation of Trellis graphics in R. R
News 2(2). ISSN 1609-3631, http://CRAN.R-project.org/doc/Rnews/, to
be published.

Swayne, D. F., A. Buja, and N. Hubbell (1991). XGobi meets S: Integrating
software for data analysis. In Computing Science and Statistics: Proceedings
of the 23rd Symposium on the Interface, Fairfax Station, VA, pp. 430-434.

Interface Foundation of North America, Inc.

Swayne, D. F., D. Cook, and A. Buja (1998). Xgobi: Interactive dynamic graph-
ics in the X window system. Journal of Computational and Graphical Statis-
tics 7(1), 113-130. See also http://www.research.att.com/areas/stat/
xgobi/.

Swayne, D. F., D. Temple Lang, A. Buja, and D. Cook (2002). GGobi: Evolving
from XGobi into an extensible framework for interactive data visualization.

Journal of Computational and Graphical Statistics. (To appear).

Temple Lang, D. (2000). The Omegahat Environment: New Possibilities for Sta-
tistical Computing. Journal of Computational and Graphical Statistics 9(3),
423-451.

Temple Lang, D. and D. F. Swayne (2001). GGobi meets R: an extensible environ-
ment for interactive dynamic data visualization. In K. Hornik and F. Leisch
(Eds.), Proceedings of the 2nd International Workshop on Distributed Sta-
tistical Computing, Vienna. Technische Universitat Wien. ISSN 1609-395X,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/.

Theis, W., K. Vogtlinder, and C. Weihs (1999). Descriptive studies on styl-
ized facts of the german business cycle. Technical Report 45/1999, SFB

28

475, Department of Statistics, University of Dortmund, Germany. See also:

http://www.statistik.uni-dortmund.de/sfb475/en/tr-e.html.

Tong, H. (1993). Non-linear Time Series, A Dynamical System Approach. Oxford

Statistical Science Series. New York: Oxford University Press.

Weinert, K., O. Webber, A. M. Busse, M. Hiisken, J. Mehnen, and S. P. (2001). In
die Tiefe: Koordinierter Einsatz von Sensorik und Statistik zur Analyse und
Modellierung von BTA-Tiefbohrprozessen. Spur, G. (ed.): ZWF, Zeitschrift
fur wirtschaftlichen Fabrikbetrieb 5, 299-314.

29

Appendix

A Information files

A.1 Description

Package: scatterplot3d

Version: 0.3-11

Title: 3D Scatter Plot

Author: Uwe Ligges <ligges@statistik.uni-dortmund.de>
Maintainer: Uwe Ligges <ligges@statistik.uni-dortmund.de>
Description: Plots a three dimensional (3D) point cloud.
Depends: R (>= 1.1.0)

License: GPL (version 2)

A.2 Changes

Changes in 0.3-x releases of scatterplot3d:

3.0: New design: box, pretty() for ticks,
0.3.1: par("las") bug patched, scale.y is changed (code and default)
3.2: all angles will work again (default: 40)
tick mark labeling changed (using mtext)
par("mar") is set in the first line, not very general!
new argument ‘‘mar’’, more details in the help files
new arguments x/y/z.ticklabs, thanks to Ben Bolker!
bug fix: adj for tick.mark.labels corrected
0.3-5: new argument y.margin.add for manual fixing scaling problems
(e.g. some y-tickmarks dissapear after rescaling the window)
0.3-6: cex.symbols introduced to solve magnification errors
0.3-7: added function plane3d, which will be returned,
(e.g. for overlaying a regression plane)
0.3-8: Dbugfix: some magnification errors for y.ticklabs
: bugfix: pch works vectorized again (error with y-sorting)
0.3-10: added function box3d(), which will be returned,
to draw the box surrounding the plot again after additions
* added a function s3d.persp() - somehow joining s3d and persp() *
0.3-11: * s3d.persp() deleted again, because of various reasons *
Created this file to reduce the size of the R code.

(@]
T
©

known UNfixed bug: xlim, ylim, zlim don’t work *exactly* for enlarged areas

30

B Code (scatterplot3d.R)

scatterplot3d <- function(x, y = NULL, z = NULL, color = par(”col”),
pch = NULL, main = NULL, sub = NULL, xlim = NULL, ylim = NULL,
zlim = NULL, xlab = NULL, ylab = NULL, zlab = NULL, scale.y = 1,
angle = 40, axis = TRUE, tick.marks = TRUE, label.tick.marks = TRUE,
x.ticklabs = NULL, y.ticklabs = NULL, =z.ticklabs = NULL,
y.margin.add = 0, grid = TRUE, box = TRUE, lab = par(”lab”),
lab.z = mean(lab[1:2]), type = par(”type”), highlight.3d = FALSE,
mar = c(5, 3, 4, 3) + 0.1, col.axis = par(”colaxis”), col.grid= "grey”,
col.lab= par(”col.lab”), cex.symbols = par(’cex”),
cex.axis = par(”cex.axis”), cex.lab = 0.8 * par(’cex.lab”),
font.axis = par(”font.axis”), font.lab = par(”font.lab”),
lty.axis = par(”lty”), 1lty.grid = par(”lty”), log = 7”7, ...)
log not yet implemented

scatterplotdd , 0.3—11, 24.05.2002,

Uwe Ligges <ligges@statistik. uni—dortmund.de>,

http://www. statistik . uni—dortmund.de/leute/ligges . htm

ki

For MANY ideas and improvements thanks to Martin Maechler!!!

Parts of the help files are stolen from the standard plotting functions in R.

mem.par <- par(mar = mar)
x.scal <- y.scal <- z.scal <- 1
xlabel <- if (!missing(x)) deparse(substitute(x))
ylabel <- if (!missing(y)) deparse(substitute(y))
zlabel <- if (!missing(z)) deparse(substitute(z))
verification , init , ...
if (highlight.3d &% !missing(color))
warning(message = ”color.is.ignored.when._highlight.3d_=_TRUE”)
if (length(x) < 2) stop(”Minimal required_length_of_x_is_2.!")

color as part of ‘x’ (data.frame or list):

if('is.null(d <- dim(x)) && (length(d) == 2) && (d[2] >= 4))
color <- x[,4]

else if(is.list(x) && !'is.null(x$color))
color <- x$color

convert ‘anything’ —> vector
xyz <- xyz.coords(x = x, y =y, z = z, xlab = xlabel, ylab = ylabel,
zlab=zlabel, log=log)

if(is.null(xlab)) { xlab <- xyz$xlab; if(is.null(xlab)) xlab <- 7”7 }
if(is.null(ylab)) { ylab <- xyz$ylab; if(is.null(ylab)) ylab <- 7”7 }
if(is.null(zlab)) { zlab <- xyz$zlab; if(is.null(zlab)) zlab <- 7”7 }

31

if (length(color) == 1)
color <- rep(color, length(xyz$x))
else if(length(color) != length(xyz$x))
stop (”length(color) .must_be_equal_length(x)_or.1.!")

angle <- (angle %% 360) / 90
yz.f <- scale.y * abs(if(angle < 1) angle else
if(angle > 3) angle - 4 else 2 - angle)
yx.f <- scale.y * (if(angle < 2) 1 - angle else angle - 3)
if (angle > 2) { ## switch y and x azis to ensure righthand oriented coord.
temp <- xyz$x; xyz$x <- xyz$y; xyz$y <- temp
temp <- xlab; xlab <- ylab; ylab <- temp
temp <- xlim; xlim <- ylim; ylim <- temp
}
angle.l <- ifelse((2 > angle &% angle > 1) || angle > 3, TRUE, FALSE)
angle.2 <- ifelse(l > angle || angle > 3, FALSE, TRUE)
dat <- cbind(as.data.frame(xyz[c("x”,”y”,”2”)]1), col = color)

zlim, ylim, 2lim —— select the points inside the limits
if('is.null(xlim)) {
xlim <- range(xlim)
dat <- dat[xlim[1]

FALSE]

A
I

dat$x & dat$x <= x1im[2] , , drop

}

if (!is.null(ylim)) {
ylim <- range(ylim)
dat <- dat[ylim[1] <

FALSE]

dat$y & dat$y <= ylim[2] , , drop

}

if (Mis.null(zlim)) {
zlim <- range(zlim)
dat <- dat[zlim[1] <

dat$z & dat$z <= zlim[2] , , drop = FALSE]
}

n <- nrow(dat)
if(n < 1) stop(”No.data_left_within.(x|y|z)lim”)

y.range <- range(dat$ylis.finite(dat$y)l)
if (all(diff(y.range) == 0))
stop (7 All_points_have_the_same_Y —value!l_Use_.2D—plot!”)

3D—highlighting / colors / sort by y
if(type == "p” || type == "h”) {
y.ord <- rev(order(dat$y))
dat <- datly.ord,]
if (length(pch) > 1)
if (length(pch) != length(y.ord))
stop ("length(pch)_must_be_equal_length(x)_or_1.!")

32

else pch <- pchly.ord]
if (highlight.3d)
dat$col <- rgb((1l:n / n) * (y.rangel2] - dat$y) / diff(y.range),
g =0, b=0)

H### optim. azis scaling
p-lab <- par(”lab”)
77 Y
y.range <- range(dat$y, ylim)
y.prty <- pretty(y.range, n = lab[2],
min.n = max(1, min(.5 * lab[2], p.lab[2])))
y.scal <- round(diff(y.prty[1:2]), digits = 12)
y.add <- min(y.prty)
dat$y <- (dat$y - y.add) / y.scal
y.max <- (max(y.prty) - y.add) / y.scal
if (!is.null(ylim))
y.max <- max(y.max, ceiling((ylim[2] - y.add) / y.scal))
if (angle > 2)
dat$y <- y.max - dat$y ## turn y—wvalues around
X
x.range <- range(dat$x[is.finite(dat$x)], xlim)
if (all(diff(x.range) == 0))
stop (7 All_points_have_the_same_X—value!l_Use_.2D—plot!”)
x.prty <- pretty(x.range, n = lab[1],
min.n = max(1, min(.5 * lab[1], p.lab[1])))
x.scal <- round(diff(x.prty[1:2]), digits = 12)
dat$x <- dat$x / x.scal
x.range <- range(x.prty) / x.scal
x.max <- ceiling(x.range[2])
x.min <- floor(x.range[1])
if(lis.null(x1lim)) {
x.max <- max(x.max, ceiling(xlim[2] / x.scal))
x.min <- min(x.min, floor(xlim[1] / x.scal))
}
x.range <- range(x.min, x.max)
7
z.range <- range(dat$z[is.finite(dat$z)], zlim)
if (all(diff(z.range) == 0))
stop (7 All_points_have_the_same_Z—value!_Use_2D—plot!”)
z.prty <- pretty(z.range, n = lab.z,
min.n = max(1l, min(.5 * lab.z, p.lab[2])))
z.scal <- round(diff(z.prty[1:2]), digits = 12)
dat$z <- dat$z / z.scal
z.range <- range(z.prty) / z.scal
z.max <- ceiling(z.range[2])

33

z.min <- floor(z.rangel[1])

if ('is.null(zlim)) {
z.max <- max(z.max, ceiling(zlim[2] / z.scal))
z.min <- min(z.min, floor(zlim[1] / =z.scal))

}

z.range <- range(z.min, z.max)

it graphics

plot.new()

if (angle.2) {x1 <- x.min + yx.f * y.max; x2 <- x.max}

else {x1 <- x.min; x2 <- x.max + yx.f * y.max}

plot.window(c(x1, x2), c(z.min, z.max + yz.f * y.max))

temp <- strwidth(as.character(y.scal * y.max + round(y.add, 0)),
cex = cex.lab/par(”cex”))

if(angle.2) x1 <- x1 - temp - y.margin.add

else x2 <- x2 + temp + y.margin.add

plot.window(c(x1, x2), c(z.min, z.max + yz.f * y.max))

if (angle > 2) par(”usr” = par(Pusr”) [c(2, 1, 3:4)])

title(main, sub, ...)

draw axis, tick marks, labels , grid , ...
if(grid) {
X
i <- x.min:x.max
segments(i, z.min, i + (yx.f * y.max), yz.f * y.max + z.min,
col = col.grid, 1ty = lty.grid)
Y
1 <- O:y.max
segments(x.min + (i * yx.f), i * yz.f + z.min,
x.max + (i * yx.f), i * yz.f + z.min,
col = col.grid, 1ty = lty.grid)
}
if (tick.marks && axis) { ## tick marks
xtl <- (z.max - z.min) * (tcl <- -par(”tcl”)) / 50
ztl <- (x.max - x.min) * tcl / 50
Y
1 <- O:y.max
temp <- ifelse(angle.2, x.min, x.max)
segments(yx.f * i - ztl + temp, yz.f * i + z.min,
yx.f * 1 + ztl + temp, yz.f * i + z.min,
col=col.axis, lty=lty.axis)
X
i <- x.min:x.max
segments(i, -xtl + z.min, i, xtl + z.min, col=col.axis, lty=lty.axis)

34

Z

i <- z.min:z.max

temp <- ifelse(angle.2, x.max, x.min)

segments(-ztl + temp, i, ztl + temp, i, col=col.axis, lty=lty.axis)

if (label.tick.marks) { ## label tick marks
las <- par(”las”)

mytext <- function(labels, side, at, ...)
mtext (text = labels, side = side, at = at, line = -.5,
col=col.lab, cex=cex.lab, font=font.lab, ...)
X

j <- subset(temp <- pretty(x.range, n = lab[1]),
temp <= x.range[2] & temp >= x.range[1])
if(is.null(x.ticklabs))
x.ticklabs <- j * x.scal
mytext(x.ticklabs, side = 1, at = j)
7
j <- subset(temp <- pretty(z.range, n = lab.z),
temp <= z.range[2] & temp >= z.rangel[1l])
if(is.null(z.ticklabs))
z.ticklabs <- j * z.scal
mytext(z.ticklabs, side = ifelse(angle.l, 4, 2), at = j,
adj = ifelse((0 < las) && (las < 3), 1, NA))
Y
j <- subset(temp <- pretty(c(0, y.max), n = lab[2]),
temp <= y.max & temp >= 0)
temp <- if(angle > 2) rev(j) else j ## turn y—labels around
if(is.null(y.ticklabs))
y.ticklabs <- y.scal * temp + round(y.add, O)
else if (angle > 2)
y.ticklabs <- rev(y.ticklabs)
text(j * yx.f + ifelse(angle.2, x.min, x.max),
j * yz.f + z.min, y.ticklabs,
pos = ifelse(angle.1, 2, 4), offset = 1,
col=col.lab, cex = cex.lab/par(”’cex”), font=font.lab)

}
T
if(axis) { ## axis and labels
mytext <-
function(lab, side = side, at = at, ...)
mtext(lab, side = side, at = at, col = col.lab,
cex = cex.axis, font = font.axis, las = 0, ...)
X

lines(c(x.min, x.max), c(z.min, z.min), col = col.axis, lty=1lty.axis)
mytext(xlab, line = 1.5, side = 1, at = mean(x.range))

35

Y
lines(c(x.max, x.max + y.max * yx.f), c(z.min, y.max * yz.f + z.min),
col = col.axis, 1ty = lty.axis)
mytext(ylab, side = ifelse(angle.l, 2, 4), at = z.min + y.max * yz.f,
line = .5)
7
lines(c(x.min, x.min), c(z.min, z.max), col = col.axis, lty=1lty.axis)
mytext(zlab, line = 1.5, side = ifelse(angle.l, 4, 2),
at = mean(z.range))
if (box) {
X
temp <- yx.f * y.max
templ <- yz.f * y.max
lines(c(x.min + temp, x.max + temp),
c(z.min + templ, z.mint+templ), col=col.axis, lty=lty.axis)
lines(c(x.min + temp, x.max + temp),
c(templ + z.max, templ+z.max), col=col.axis, lty=lty.axis)
Y
temp <- c(0, y.max * yx.f)
templ <- c(0, y.max * yz.f)
lines(temp + x.min, templ + z.min, col=col.axis, lty=lty.axis)
lines(temp + x.min, templ + z.max, col=col.axis, lty=lty.axis)
7
temp <- yx.f * y.max
templ <- yz.f * y.max
lines(c(temp + x.min, temp + x.min),
c(z.min + templ, z.max+templ), col=col.axis, lty=lty.axis)
lines(c(x.max + temp, x.max + temp),
c(z.min + templ, z.max+templ), col=col.axis, lty=lty.axis)

plot points

X
Z

<- dat$x + (dat$y * yx.f)
<- dat$z + (dat$y * yz.f)

col <- as.character(dat$col)
if(type == "h”) {

}

z2 <- dat$y * yz.f + z.min
segments(x, z, x, z2, col = col, cex = cex.symbols, ...)

points(x, z, type = "p”, col = col, pch = pch, cex = cex.symbols,

else points(x, z, type = type, col = col, pch = pch,

cex = cex.symbols, ...)

box—lines in front of points (overlay)

36

if (axis && box) {
lines(c(x.min, x.max), c(z.max, z.max), col=col.axis, lty=lty.axis)
lines(c(0, y.max * yx.f) + x.max, c(0, y.max * yz.f) + z.max,
col = col.axis, 1ty = lty.axis)
lines(c(x.max, x.max), c(z.min, z.max), col=col.axis, lty=lty.axis)

}

par (mem.par)
Return List of functions
ob <- 1s() ## remove all unused objects from the result ’s enviroment:
rm(list = ob[!ob %in% c(”x.scal”, ”y.scal”, "z.scal”, "yx.f’,
"vz. {7, 7y.add”, 7zmin”, "z.max”, "x.min”, "x.max”, "y.max”)])
rm(ob)
invisible(list(
xyz.convert = function(x, y=NULL, z=NULL) {
xyz <- xyz.coords(x, y, z)
y <~ (xyz$y - y.add) / y.scal
return(x = xyz$x / x.scal + yx.f * y,
y = xyz$z / z.scal + yz.f * y)
1,
points3d = function(x, y = NULL, z = NULL, type = "p”, ...) {
xyz <- xyz.coords(x, y, z)
y2 <= (xyz$y - y.add) / y.scal
x <- xyz$x / x.scal + yx.f * y2
y <- xyz$z / z.scal + yz.f * y2
if(type == "h”) {
y2 <- z.min + yz.f * y2
segments(x, y, x, y2, ...)
points(x, y, type = "p”, ...)
}
else points(x, y, type = type, ...)
1,
plane3d = function(Intercept, x.coef = NULL, y.coef = NULL,
1ty = ”dashed”, ...){
if(!is.null(coef (Intercept))) Intercept <- coef(Intercept)
if (is.null(x.coef) && length(Intercept) == 3){
x.coef <- Intercept[2]
y.coef <- Intercept[3]
Intercept <- Intercept[1]
}
x <- x.min:x.max
x.coef <- x.coef * x.scal
zl <- (Intercept + x * x.coef + y.add * y.coef) / z.scal
z2 <- (Intercept + x * x.coef +
(y.max * y.scal + y.add) * y.coef) / z.scal
segments(x, z1, x + y.max * yx.f, z2 + yz.f * y.max, lty=1lty,

37

))

y <- O:y.max
y.coef <- (y * y.scal + y.add) * y.coef
zl <- (Intercept + x.min * x.coef + y.coef) / z.scal
z2 <- (Intercept + x.max * x.coef + y.coef) / z.scal
segments(x.min + y * yx.f, z1 + y * yz.f,

x.max +y * yx.f, z2 + y *x yz.f, 1ty = 1lty, ...)

},
box3d = function(...){
lines(c(x.min, x.max), c(z.max, z.max), ...)
lines(c(0, y.max * yx.f) + x.max, c(0, y.max * yz.f) + z.max,
lines(c(x.max, x.max), c(z.min, z.max), ...)
lines(c(x.min, x.max), c(z.min, z.min), ...)
}

38

C Help page (generated from scatterplot3d.Rd)

scatterplot3d 3D Scatter Plot

Description

Plots a three dimensional (3D) point cloud.

Usage

scatterplot3d(x, y = NULL, z = NULL, color = par("col"), pch = NULL,

main
x1lab
axis

x.ticklabs = NULL, y.ticklabs = NULL, z.ticklabs

NULL, sub = NULL, xlim = NULL, ylim = NULL, zlim = NULL,
NULL, ylab = NULL, zlab = NULL, scale.y = 1, angle = 40,
TRUE, tick.marks = TRUE, label.tick.marks TRUE,
NULL,

y.margin.add = 0, grid = TRUE, box = TRUE, lab = par("lab"),
lab.z = mean(lab[1:2]), type = par("type"), highlight.3d = FALSE,
mar = c(5,3,4,3) + 0.1, col.axis = par("col.axis"),

col.grid = "grey", col.lab = par('"col.lab"),

cex.symbols = par('cex"), cex.axis = par("cex.axis"),

cex.lab = 0.8 * par("cex.lab"), font.axis = par("font.axis"),

font.lab = par("font.lab"), 1lty.axis = par("lty"),

lty.grid = par("1lty"), log = "", ...)
Arguments

X the coordinates of points in the plot.

y the y coordinates of points in the plot, optional if x is an appropriate
structure.

z the z coordinates of points in the plot, optional if x is an appropriate
structure.

color colors of points in the plot, optional if x is an appropriate structure
Will be ignored if highlight.3d = TRUE.

pch plotting “character”, i.e. symbol to use.

main an overall title for the plot.

sub sub-title.

xlim, ylim, zlim

the x, y and z limits (min, max) of the plot.

39

xlab, ylab, zlab
titles for the x, y and z axis.

scale.y scale of y axis related to x- and z axis.

angle angle between x and y axis.
Attention: result depends on scaling. For 180 < angle < 360 the
returned functions xyz. convert and points3d will not work properly.

axis a logical value indicating whether axes should be drawn on the plot.
tick.marks a logical value indicating whether tick marks should be drawn on the
plot (only if axis = TRUE).
label.tick.marks
a logical value indicating whether tick marks should be labeled on the
plot (only if axis = TRUE and tick.marks = TRUE).
x.ticklabs, y.ticklabs, z.ticklabs
vector of tick mark labels.

y.margin.add add additional space between tickmark labels and axis label of the y

axis

grid a logical value indicating whether a grid should be drawn on the plot.

box a logical value indicating whether a box should be drawn around the
plot.

lab a numerical vector of the form c¢(x, y, len). The values of x and y give
the (approximate) number of tickmarks on the x and y axes.

lab.z the same as lab, but for z axis.

type character indicating the type of plot: ”p” for points, ”1” for lines, ”h”

for vertical lines to x-y-plane, etc.

highlight.3d points will be drawn in different colors related to y coordinates (only
if type = "p" or type = "h", else color will be used).
On some devices not all colors can be displayed. In this case try the
postscript device or use highlight.3d = FALSE.

mar A numerical vector of the form c(bottom, left, top, right) which gives
the lines of margin to be specified on the four sides of the plot.
col.axis, col.grid, col.lab
the color to be used for axis / grid / axis labels.
cex.symbols, cex.axis, cex.lab
the magnification to be used for point symbols, axis annotation, labels

relative to the current.
font.axis, font.lab

the font to be used for axis annotation / labels.
lty.axis, lty.grid
the line type to be used for axis / grid.

log Not yet implemented! A character string which contains "x” (if the x

” N 7

77 <07 77Z77’ ”Xy , XZ”, ”yZ”, ”Xyz X

axis is to be logarithmic), "y”,

more graphical parameters can be given as arguments, pch = 16 or
pch = 20 may be nice.

40

Value

list with components

xyz.convert function which converts coordinates from 3D (x, y, z) to 2D-projection
(x, y) of scatterplot3d. Usefull to plot objects into existing plot.

points3d function which draws points or lines into the existing plot.

plane3d function which draws a plane into the existing plot:
plane3d(Intercept, x.coef = NULL, y.coef = NULL,
1ty = "dashed", ...). Instead of Intercept a vector containing

three elements or an (g)lm object can be specified.

box3d function which “refreshes” the box surrounding the plot.

Note

Some graphical parameters can only be set as arguments in scatterplot3d but not
in par, e.g. mar. Other arguments in par may be split into several arguments in
scatterplot3d, e.g. for specifying the line type. And finally some of the arguments
in par do not work, e.g. many of those for axis calculation. So the recommended way is
to try the specification of graphical parameters at first as arguments in scatterplot3d
and at last as arguments in par.

Author(s)

Uwe Ligges (ligges@statistik.uni-dortmund.de});
http://www.statistik.uni-dortmund.de/leute/ligges.htm.

See Also

persp, plot, par.

Examples

On some devices not all colors can be displayed.
Try the postscript device or use highlight.3d = FALSE.

example 1

z <- seq(-10, 10, 0.01)

x <- cos(z)

y <- sin(z)

scatterplot3d(x, y, z, highlight.3d = TRUE, col.axis = "blue",
col.grid = "lightblue", main = "scatterplot3d - 1", pch = 20)

41

example 2

temp <- seq(-pi, O, length = 50)

x <- c(rep(1, 50) %*% t(cos(temp)))

y <= c(cos(temp) %*% t(sin(temp)))

z <- c(sin(temp) %*% t(sin(temp)))

scatterplot3d(x, y, z, highlight.3d = TRUE, col.axis = "blue",
col.grid = "lightblue", main = "scatterplot3d - 2", pch = 20)

example 3

temp <- seq(-pi, 0, length = 50)

x <- c(rep(1, 50) %x% t(cos(temp)))

y <= c(cos(temp) %*% t(sin(temp)))

z <- 10 * c(sin(temp) %*% t(sin(temp)))

color <- rep('"green", length(x))

temp <- seq(-10, 10, 0.01)

x <- c(x, cos(temp))

y <= c(y, sin(temp))

z <- c(z, temp)

color <- c(color, rep("red", length(temp)))

scatterplot3d(x, y, z, color, pch = 20, zlim = c(-2, 10),
main = "scatterplot3d - 3")

example 4

my.mat <- matrix(runif(25), nrow = 5)

dimnames (my.mat) <- 1ist(LETTERS[1:5], letters[11:15])
my.mat # the matrix we want to plot ...

s3d.dat <- data.frame(cols = c(col(my.mat)),
rows = c(row(my.mat)),
value = c(my.mat))

scatterplot3d(s3d.dat, type = "h", lwd = 6, pch = " ",
x.ticklabs = colnames(my.mat), y.ticklabs = rownames(my.mat),
color = grey(25:1/40), main = "scatterplot3d - 4")

example 5

data(trees)

s3d <- scatterplot3d(trees, type = "h", highlight.3d = TRUE,
angle = 55, scale.y = 0.7, pch = 16, main = "scatterplot3d - 5")

Now adding some points to the "scatterplot3d"

s3d$points3d(seq(10,20,2), seq(85,60,-5), seq(60,10,-10),
col = "blue", type = "h", pch = 16)

Now adding a regression plane to the "scatterplot3d"

attach(trees)

my.lm <- Im(Volume ~ Girth + Height)

s3d$plane3d (my.1lm)

42

