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1. Introduction
This paper will be an extension of the analysis of the German macro economic data presented
in Klapper (1998) that should be consulted for a detailed description of the data. While the
primal focus of Technical Report 19/1998 was more on presenting and describing the data and
proposing rank based methods for forecast combination, this paper will be more concerned
with a thorough data analysis. The goal will be to give an answer to the question when and
why a combining technique is superior to another.
We will first analyze the variance-covariance structure of the given macro economic data set in
Chapter 2. This outcome will be used in a simulation study with the results presented in
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Chapter 3. The concluding Chapter 4 contains a summary and an outlook for future research.
Appendix A lists detailed formulas.
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2. Analysis of the Variance-Covariance Structure
Our data set contains 6 variables having very similar variance-covariance structures. As
displayed in Table 1 the relationship of highest to lowest variances of the 7 forecasters range
from almost 3:1 for public consumption to 1.5:1 for exports and consumer prices. In all cases
there are several forecasters with very similar variances giving variance based methods a hard
time to determine weights, e.g. for the exports that have 4 forecasters with very similar
variances at a maximum difference of 8%. These relationships lead standard tests for equality
of variances like Bartlett’s test come to the conclusion that there are no differences. Table 1
shows the p-values for rejecting H0: „all variances are the same“ that range between 0.16 and
0.78 leading to the conclusion that the null can not be rejected for all 6 variables. Klapper
(1998) shows that there is enough difference between the variances to make combining
techniques based on ranks or MSE outperform the Simple Average most of the time. These
methods require a difference of variances to be effective.
The correlations between the forecasters within each variable are fairly high ranging between
0.65 and 0.98, Table 1 shows the individual ranges for each variable. The distributions of the
correlations are graphically displayed in Figure 1. The boxplots in the upper portion are
showing a wider spread of correlations for the GDP, public consumption, and consumer prices.
These variables also have several peaks, and by looking at the histograms in the lower portion
of Figure 1 those different distributions possibly indicate different forecasting methods with the
forecasters falling into several groups. The correlations of the other three variables are less
wide spread indicating that these variables are easier to forecast.
The distributions of the correlations between variables for each forecaster are very similar. The
boxplot in Figure 2 shows the majority of the correlations between 0.2 and 0.6. The histograms
also look similar in shape. There are some negative correlations, the highest of which in
absolute value for each forecaster is the correlation between public consumption and consumer
prices. Closest to zero are the correlations between GDP and consumer prices and between
private consumption and exports. The highest correlations are between GDP and imports and
between exports and imports. All these relationships make perfect sense since they are in line
with the underlying econometric models and therefore general economic theory.

2.1 Autocorrelations

The autocorrelations between variables may be of interest since there might be a dependence
between one variable and a different variable in the previous time period. This dependence may
be important for multivariate variable combinations. Table 2 shows the correlations between
two variables and the corresponding 1-lag autocorrelations. In most cases the autocorrelations
are closer to zero and only 10% of the variable pairs have an autocorrelation greater than 0.30
as opposed to 67% of the correlations. Only the autocorrelation between GDP and consumer
prices is -0.63 and much higher than the corresponding correlation of 0.09. In all other cases of
high autocorrelations we have higher correlations. This indicates that autocorrelations may not
play an important role in this particular data set. We will therefore not consider multivariate
combinations in this analysis but may consider it in the ongoing analysis process.
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Table 1 - Variances and Test of Equality
GDP Private Cons. Public Cons. Export Import Consumer Prices

Scaled Scaled Scaled Scaled Scaled Scaled
Variance Variance Variance Variance Variance Variance Variance Variance Variance Variance Variance Variance

2,44 1,97 2,12 2,04 3,31 2,83 21,5 1,50 17,5 1,86 1,08 1,52
1,75 1,41 1,72 1,65 2,08 1,78 19,1 1,34 13,6 1,45 0,95 1,34
1,70 1,37 1,67 1,61 1,57 1,34 17,4 1,22 12,4 1,32 0,88 1,24
1,49 1,19 1,24 1,19 1,54 1,32 15,4 1,08 10,9 1,16 0,79 1,11
1,42 1,15 1,21 1,16 1,37 1,17 15,3 1,07 10,6 1,13 0,78 1,10
1,42 1,15 1,12 1,08 1,23 1,05 15,0 1,05 10,0 1,06 0,72 1,01
1,26 1 1,04 1 1,17 1 14,3 1 9,4 1 0,71 1

Bartlett p 0.3117 0.7519 0.7756 0.6027 0.1626 0.8038
corr. 0,73-0,97 0,82-0,95 0,65-0,95 0,85-0,98 0,86-0,97 0,72-0,96

Bartlett p = p-value from Bartlett’s Test of equal variances
corr. = range of correlations

Table 2 - Autocorrelations
GDP Private Public Export Import Consumer

Cons. Cons. Prices
GDP Corr - 0,46 0,42 0,73 0,80 0,09

1-Lag AC - 0,02 -0,06 -0,19 0,25 -0,63
Private Cons. Corr 0,46 - 0,37 -0,04 0,34 0,56

1-Lag AC -0,14 - 0,01 0,05 -0,24 0,03
Public Cons. Corr 0,42 0,37 - 0,25 0,41 -0,11

1-Lag AC 0,10 0,11 - -0,10 -0,13 -0,30
Export Corr 0,73 -0,04 0,25 - 0,79 0,53

1-Lag AC -0,18 0,15 -0,28 - -0,39 -0,30
Import Corr 0,80 0,34 0,41 0,79 - 0,26

1-Lag AC -0,13 -0,22 -0,22 0,00 - 0,01
Consumer Pr. Corr 0,09 0,56 -0,11 0,53 0,26 -

1-Lag AC -0,18 -0,02 -0,22 -0,07 -0,16 -
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3. Simulation Study

Our data set of macro economic forecasts contains six variables that have a certain variance-
covariance structure presented in Chapter 2. The purpose of this simulation study will be to
find out which structure  favors which combining technique. We will generate a dataset using a
specific variance-covariance structure. In this dataset we use 10 time periods as a performance
window to calculate the combining weights and apply these weights to the 12th time period to
calculate the combining errors as explained in Klapper (1998). This is done step-by-step until
the last forecast in the dataset is reached. We then calculate a criterion like the MSE for the
combining errors of each technique.
This is repeated a certain number e.g. 100 times. Finally we determine how often a combining
technique results in a lower MSE than the MSE using the Simple Average and compare the
average MSE over all runs for each combining technique to the average MSE using the Simple
Average. The Simple Average is used as a comparison basis because it is commonly used in
literature and very popular since it is simple to calculate. Its weights add to one and are greater
than zero and it is the optimal combining technique if all variances are the same, but it does not
depend on the quality of past forecasts. The combining techniques to be compared to the
Simple Average are:

Rank based methods:
•  The method called Rank takes the inverse of the sum of the ranks of the last 10 time points

for each forecaster divided by the sum of the inverses of all forecasters. This results in
coefficients for each forecaster that are greater than zero and add up to one, which is the
same for all other rank based methods.

•  The RQua technique does the same as Rank but takes the quadrupled ranks instead of the
simple  ranks.

•  RHist works like Rank but includes all past time points instead of the last 10.
•  R0.5 averages the coefficients calculated like Rank and the coefficients of the previous time

period.
• cciv and cciv3 only consider the ranks of the best or the best 3 forecasters, respectively.

They are explained in detail in Russell and Adam (1987).

Other combining methods:
• The cmse technique as explained in Russell and Adam (1987) takes the inverse of the MSE

of the past 10 performance periods for each forecaster and puts it into relation to the sum of
the inverse MSEs of all forecasters.

• The cmad technique works like cmse but uses the MAD instead of the MSE.
• The New/Gr method explained in Newbold and Granger (1974) takes the row sums of the

inverse covariance matrix of the forecast errors and divides it by the sum of all elements of
the inverse covariance matrix. This method is equivalent to an OLS regression approach.

3.1 Preparing for the Simulation

First we want to determine which criterion we are going to use to compare the forecast
combination errors. To be close to our real data we will assume the forecast errors of seven
forecasters to be multivariate normal distributed with variances ranging from 1 to 3 and all
correlations being 0.85. We also want to find out the optimal number of repeats for our
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simulation which is important because computing time can get very extensive due to loops
necessary for some of the combining techniques.
Table 3 shows the results and is subdivided into 4 subtables. The first and second subtable use
the MSE as a comparison measure. These two tables stand for two different needs of quality
for the combination of forecasts. If  the question is how often the Simple Average is beaten
regardless if the margin is slim or huge, the first subtable should be used. The second subtable
follows the idea that the average MSE of the forecast combination errors should be as low as
possible in the average. This table is less robust towards outliers since extremely bad
performances have more influence on the outcome of the second subtable. Since both aspects
are of interest to us, we will consider both tables to determine a rank ordering of forecast
combining techniques. The third and fourth subtable are using the MAD as a comparison
measure, respectively.
The first and the third subtable indicate the percentage of times the listed techniques beat the
Simple Average. For better understanding we display the number of times the Simple Average
is not beaten. A zero indicates that a combining technique performs 100% better than the
Simple Average. The second and fourth subtable show the mean criterion for each combining
technique in relation to the Simple Average’s mean MSE or MAD, respectively. The
percentage difference to the Simple Average’s mean MSE is shown with a 5 meaning  a 5%
lower MSE and a -6 standing for 6% higher MSE than the Simple Average’s MSE. All
numbers in Table 4a and 4b are rounded numbers. In each of the four subtables we use 100,
500, 1,000, and 2,000 runs to determine the optimal number of times to repeat the simulation.
The techniques are sorted in each subtable by the numbers of the 2,000-row, the first and third
subtable ascending because lower means better and the other two subtables descending since
the higher the percentage of the corresponding criterion, the better the combination technique.
To determine whether to use the MSE or MAD, we compare the second and fourth subtable
that show the same ranking of combining techniques for 2,000 runs. Using 100 runs, there are
some changes in the rank ordering of combining techniques, but using 500+ there are only two
rank order changes between cciv and cmse: For 1,000 runs in the second and for 500 runs in
the fourth subtable. The performance of both methods is very similar and rank ordering
differences may be due to chance. In the first and third subtables the RQua, RHis, and cmad
techniques perform almost equally well leading in some rank ordering changes that could be
due to chance. Altogether we can conclude that MSE and MAD lead to the same results and
we can therefore concentrate more on using the more popular MSE criterion used in the first
and second subtable.
In the first subtable are three incidences with pairwise switches in the rank ordering. The
switch at 100 runs between cmse and RQua is the most severe. The switches beween RQua,
RHis, and cmad that range between 2.4 and 3.6 for 500 runs could be due to chance as
discussed before since the numbers are very similar. In the second subtable there are also
changes in rank ordering beween cciv and cmse for 100 and 1,000 runs. All this leads to the
conclusion that we should use at least 500 runs and we should not interprete slight differences
in performance as being significant for making a combining technique superior to another.

3.2 Simulation Results

The Simulation results are displayed in Table 4. Table 4a shows the percentage of times the
Simple Average is not beaten and Table 4b shows the percentage of the mean MSE of each
technique compared to the Simple Average’s mean MSE. We will consider a variety of
variance-covariance structures and therefore vary 3 parameters: The spread of (constant)
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variances, the correlation, and the length of the time series of forecasts considered. We will
start with 7 forecasters to be combined and also try 2, 3, and 5 forecasters. As a second step
we will make the variances to change over time. In this case the variances are considered as
stochastic processes with a probability to change for each time period. There are maximum and
minimum boundaries for the variances to keep them in a realistic range. This change of the
variances simulates the change in the forecasting process of each forecaster that can be caused
by the use of new forecasting methods, new staff or new political interests of the forecaster.
The combining techniques are sorted by the performance of the basic case in row 1 named
simulation 1, where 7 forecasters forecast at 20 time points with variances 3, 2.5, 2.5, 2, 2, 1.5,
1 and correlations 0.85. There is no autocorrelation assumed to be present. We can see from
Table 4b that the RQua method has the lowest average MSE followed by cciv and cmse. Table
4a shows that the cmse and cmad combination techniques based on Russell and Adam (1987)
beat the Simple Average most often followed by the rank based method RQua and the more
conservative rank techniques RHis and R0.5 that consider all previous time periods or
respectively weight the previous weights with 0.5. As opposed to using the real data, the
simple rank technique Rank performs worse than these methods because the covariance matrix
is held constant. This indicates that the variances of the real data may not be constant. The
New/Gr method performs significantly worse than all other methods. Table 4a shows that it
does not outperform the Simple Average 62% of the time compared to 18% of the worst
performing rank based combination technique. Looking at Table 4b we can see that its mean
MSE is 17% higher than the Simple Average’s mean MSE. The rank methods are ranging
between 2% and 6% lower than the Simple Average’s mean MSE. A reason for this bad
performance of the New/Gr method could be that it does not constrain its weights to be
greater than zero. Therefore it sometimes produces extreme positive and negative weights that
come up with nonsense combined values. Considering the standard deviations of the MSEs in
Table 4b we can test if the differences from the Simple Average’s MSE are significant. Using a
simple t-test to test H0: „Two means are equal“, results in significant differences for all
deviances greater or equal 3% and some of the 2% deviances. Significant differences are
marked with a star in Table 4b.
If we now vary the spread of variances and compare simulations 1-4, we can see no significant
change in the rank ordering of the performance of the combining techniques except the
New/Gr method. Generally for all methods, the higher the variance spread the higher the
number of times the Simple Average is outperformed. Table 4b also shows that the higher the
variance spread the closer the New/Gr methods gets to the rank based techniques. In
simulation 4 with a variance spread of 7 to 1, seven  methods beat the Simple Average all the
time. In this scenario the New/Gr method yields the lowest average MSE with 35% less than
the Simple Average’s mean MSE outperforming the rank and MSE based methods by a margin
of more than 10 percentage points.
In simulations 1 and 5-11 we vary the correlation. The lower the correlation the worse the
peformance of all methods. The rank ordering of combining techniques changes with lowering
the correlation because the decrease in performance does not happen equally fast for all
methods. For a correlation of less than 0.6 the rank based methods beat the Simple Average
more often than the cmse and cmad methods with the method Rank being the best for
correlations of 0.2 and less in both tables. The New/Gr method performs significantly worse
than all other methods when the correlations are lower. For a correlation of 0.95 its mean MSE
is with 20% improvement over the Simple Average the lowest for all combining techniques but
for a correlation of 0.90 it is already worse than all other techniques including the Simple
Average.
Comparing simulations 1 and 12 shows that increasing the length of the time series from 20 to
50 does increase the number of times the MSE is lower than the Simple Average’s MSE for all
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methods except the New/Gr as displayed in Table 4a. Table 4b reveals that the average MSE
does not change significantly by increasing the time series length. The explanation for the good
performance of rank based and MSE based combining techniques could be the ability of these
methods to use more time points to „learn“ about the variance-covariance structure. The
New/Gr method performs even worse because its bad performance usually results from some
extreme errors caused by the problems mentioned above. The longer the time series the higher
the probability of these extreme errors to happen at least once.
We now vary the number of forecasts to be combined. Looking at simulations 13-15 and 1 we
can see that the New/Gr method performs better if we combine a smaller number of forecasters
but even combining 2 forecasts it has only 52% of the time a lower MSE than the Simple
Average as opposed to the best performing rank based method RHis with 73%. For combining
less than 7 variances the RQua method has the lowest average. The cmse beats the Simple
Average most often for combining less than 7 forecasts.
As already mentioned there are some motivations for the assumption that the variances may
not be constant over time due to a variety of reasons. We now consider the variances to follow
a stochastic process with a probability for the variances to change and upper and lower
boundaries. Simulations 16-19 show four different scenarios where we vary both parameters,
the probability to change and the boundaries. In all 4 simulations with nonconstant variances
the RQua, cmse, and cmad techniques beat the Simple Averge most often. The RQua method
has also always the lowest average MSE and the cmse and cciv share that position for lower
change probabilities of 0.2 and 0.3. The method RHis that includes all time points does not
perform significantly worse than the method Rank that only inludes the last 10 indicating the
assumed change of variances may not be severe enough.

3.3 Theory vs. Simulation

We can use the Pitman-closeness theory as in Wenzel (1998) to calculate a probability that a
certain combination technique is better than another. Table 5 shows two comparisons: cmse vs.
Simple Average (SA) and New/Gr versus Simple Average. The New/Gr method explained in
Newbold and Granger (1974) is a very popular method in literature but does not perform very
well when more than two forecasters are combined due to a lack of constraining the
coefficients to be greater than zero. In our simulation study in Simulation 1, the New/Gr
method of combining forecasts was only 38.2% of the times better than the Simple Average as
can be seen in Table 4a and the cmse method outperformed the Simple Average 97.6% of the
time in the same simulation scenario. Looking at Table 5 we can see that the theoretical values
obtained by the Pitman-closeness theory are 86.6% and 90.0%, respectively. A cause of this
difference may be the poor estimation of the covariance matrix. But even if we assume the
covariance matrix to be known during the simulation study which keeps the weights constant
over time, the probabilities for the cmse and the New/Gr method beat the MSE of the Simple
Average 99.5% and 95.7% of the time, respectively. As expected both these percentages are
higher compared to the case with the covariance matrix being estimated. For the New/Gr
combining technique the percentage is closer to the theoretical probability but for the cmse
technique it is not. We tried other simulation scenarios by varying the variance-covariance
structure as displayed in Table 5. In all cases the theoretical and simulated probabilities are
significantly different with lower theoretic probabilities than the simulations with known
covariance matrix.



9

4. Summary
The performance of forecast combining techniques highly depends on the variance-covariance
structure of the forecast errors. The method RQua based on the ranks of the forecast errors
and the method cmse based on the MSE perform best for most of the simulation scenarios
tested. The New/Gr technique beats the Simple Average least often in all scenarios and is only
superior in average MSE for big variance spreads and extremely high correlations. Lower
correlations favor more conservative rank based combining methods like RHis, R0.5, and
Rank. For extreme cases with correlations of 0.95, a large variance spread from 7 to 1, or long
time series, most rank and MSE based methods always have a lower MSE than the Simple
Average. The Simple Average’s MSE is beaten at least 50% of the time except for zero
correlation for all rank and MSE based methods except cciv. All rank and MSE based methods
except cciv also always have a lower average MSE than the Simple Average except for zero
correlation. The improvement of these methods over the Simple Average ranges from 1% to as
much as 22% for RQua in the case of a high variance spread.

Table 3 - Determination of Criteria and Number of
 Repeats

Percentage of Times the MSE of Simple Average is not Beaten
Simu- Techniques
lation Iterations cmse RQua cmad RHis R0.5 Rank cciv3 cciv New/Gr

1 100 3,0 2,0 3,0 3,0 4,0 4,0 5,0 18,0 66,0
2 500 2,4 2,8 2,4 3,6 3,6 4,2 8,0 17,8 61,8
3 1000 1,8 2,5 2,2 2,3 3,6 4,7 8,9 20,6 64,2
4 2000 1,9 2,0 2,1 3,3 3,5 3,6 7,0 19,1 64,0

Mean MSE as Percentage of Simple Average’s Mean MSE
Simu- Techniques
lation Iterations RQua cciv cmse cciv3 cmad R0.5 Rank RHis New/Gr

1 100 6,2 5,6 5,7 5,3 2,9 2,0 2,0 2,0 -20,4
2 500 6,4 6,0 5,9 5,4 2,9 2,0 2,0 2,0 -17,0
3 1000 6,5 5,6 5,8 5,1 2,9 2,0 2,0 2,0 -19,7
4 2000 6,4 5,9 5,9 5,3 2,9 2,0 2,0 2,0 -21,1

Percentage of Times the MAD of Simple Average is not Beaten
Simu- Techniques
lation Iterations cmse cmad RQua RHis R0.5 Rank cciv3 cciv New/Gr

1 100 3,0 4,0 5,0 7,0 8,0 6,0 16,0 28,0 66,0
2 500 4,2 4,8 5,0 4,8 6,2 7,6 11,0 23,6 62,6
3 1000 4,4 5,3 5,3 4,8 6,9 7,7 11,1 21,5 63,2
4 2000 3,0 3,8 4,1 5,5 6,5 7,5 10,9 21,9 61,5

Mean MAD as Percentage of Simple Average’s Mean MSE
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Simu- Techniques
lation Iterations RQua cciv cmse cciv3 cmad R0.5 Rank RHis New/Gr

1 100 6,1 5,0 5,3 4,8 2,6 1,8 1,9 1,9 -19,1
2 500 6,3 5,6 5,7 5,1 2,8 1,9 1,9 1,9 -18,8
3 1000 6,3 6,0 5,7 5,2 2,8 2,0 2,0 1,9 -18,2
4 2000 6,5 6,0 6,0 5,4 2,9 2,0 2,0 2,0 -15,4

All simulations use 7 forecasters with variances 3,2.5,2.5,2,2,1.5,1, a correlation of 0.85 and a total
time series length of 20. First and third subtable: Percent of times a technique’s MSE is larger than
the SA’s MSE.
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Table 4a - Percentage of Times SA is Beaten
Simu- Corre- Techniques
lation Length Iterations Variances lation cmse cmad RQua RHis R0.5 Rank cciv3 cciv New/Gr

1 20 500 3, 2.5, 2.5, 2, 2, 1.5, 1 0,85 2 2 3 4 4 4 8 18 62
2 20 500 2, 1.5, 1.5, 1.5, 1, 1, 1 0,85 7 9 8 12 14 15 19 32 79
3 20 500 4, 3.5, 3, 2.5, 2, 1.5, 1 0,85 0 0 1 0 0 1 2 9 43
4 20 500 7, 6, 5, 4, 3, 2, 1 0,85 0 0 0 0 0 0 0 3 13
5 20 500 3, 2.5, 2.5, 2, 2, 1.5, 1 0,95 0 0 0 0 0 0 0 1 25
6 20 500 " 0,9 0 1 0 1 1 2 3 11 49
7 20 500 " 0,8 4 4 5 5 6 4 14 27 74
8 20 500 " 0,6 16 15 17 18 20 18 33 45 86
9 20 500 " 0,4 33 27 34 26 26 25 38 54 92
10 20 500 " 0,2 43 37 47 37 37 35 51 64 93
11 20 500 " 0 58 44 61 42 43 41 59 79 95
12 50 500 " 0,85 0 0 0 0 0 0 0 4 82
13 20 500 1.5,1 0,85 31 28 33 27 30 30 30 42 48
14 20 500 2,1.5,1 0,85 16 17 18 24 24 22 22 28 47
15 20 500 3,2,2,1.5,1 0,85 4 6 7 7 7 8 22 22 40

Var pCh min max
16 20 500 s. 1 0.2 1 4 0,85 4 4 4 6 6 6 10 20 60
17 20 500 s. 1 0.3 1 4 0,85 4 4 4 7 6 6 10 21 62
18 20 500 s. 1 0.4 1 4 0,85 3 3 3 4 5 5 9 22 58
19 20 500 s. 1 0.3 0.5 5 0,85 3 3 3 5 3 3 5 13 40

Rounded percent of times a technique’s MSE is larger than the SA’s MSE.

Table 4b - Percentage of SA’s Mean MSE
Simu- Corre- Techniques
lation Length Iterations Variances lation RQua cciv cmse cciv3 cmad R0.5 Rank RHis New/Gr

1 20 500 3, 2.5, 2.5, 2, 2, 1.5, 1 0,85 6* 6* 6* 5* 3* 2 2 2 -17*
2 20 500 2, 1.5, 1.5, 1.5, 1, 1, 1 0,85 3* 3* 3* 3* 2 1 1 1 -45*
3 20 500 4, 3.5, 3, 2.5, 2, 1.5, 1 0,85 11* 11* 10* 10* 5* 4* 4* 4* -6*
4 20 500 7, 6, 5, 4, 3, 2, 1 0,85 22* 18* 20* 15* 10* 7* 7* 6* 35*
5 20 500 3, 2.5, 2.5, 2, 2, 1.5, 1 0,95 7* 11* 6* 8* 3* 2* 2* 2* 20*
6 20 500 " 0,9 7* 8* 6* 7* 3* 2* 2* 2* -4*
7 20 500 " 0,8 6* 4* 6* 5* 3* 2 2 2 -35*
8 20 500 " 0,6 6* 1 6* 3* 3* 2 2 2 -56*
9 20 500 " 0,4 4* -2 4* 2 3* 2 2 2 -66*
10 20 500 " 0,2 1 -6* 2 0 2 2 2 2 -76*
11 20 500 " 0 -7* -22* -4* -4* 1 1 2 2 -81*
12 50 500 " 0,85 7* 6* 6* 5* 3* 2* 2* 2* -23*
13 20 500 1.5,1 0,85 2 2* 2 1 1 1 1 1 0
14 20 500 2,1.5,1 0,85 3* 3* 3* 1 2 1 1 1 2
15 20 500 3,2,2,1.5,1 0,85 6* 6* 6* 6* 3* 2* 2* 2* 2

Var pCh min max
16 20 500 s. 1 0.2 1 4 0,85 7* 7* 7* 6* 3* 2* 2* 2 -19*
17 20 500 s. 1 0.3 1 4 0,85 7* 7* 7* 6* 4* 2* 2* 2* -19*
18 20 500 s. 1 0.4 1 4 0,85 8* 7* 7* 7* 4* 3* 3* 2* -18*
19 20 500 s. 1 0.3 0.5 5 0,85 14* 13* 13* 11* 7* 5* 4* 4* 1

Rounded percent the MSE of a technique is better than SA’s MSE, negative numbers mean worse
than SA’s MSE. * indicates significant difference to Simple Average’s mean MSE.

Legend: Var = Variances, pCh = probability for variance to change, min = minimum variance, max =
maximum variance.
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Table 5 - Pitman Closeness Probabilities
Variance Corr MSE vs. SA New/Gr vs. SA
structure theor. simul. si/kn theor. simul. si/kn
3,2.5,2.5,2,2,1.5,1 0,85 0,900 0,976 0,995 0,866 0,382 0,957
4,3.5,3,2.5,2,1.5,1 0,85 0,930 1,000 0,999 0,902 0,570 0,984
3,2.5,2.5,2,2,1.5,1 0,95 0,943 1,000 1,000 0,910 0,750 0,999

" 0,9 0,920 0,996 1,000 0,883 0,512 0,979
" 0,8 0,884 0,958 0,993 0,852 0,260 0,919
" 0,6 0,830 0,836 0,970 0,807 0,144 0,890
" 0,4 0,783 0,674 0,870 0,766 0,082 0,760
" 0,2 0,721 0,568 0,760 0,709 0,066 0,680
" 0 0,556 0,424 0,740 0,556 0,050 0,740

3,1 0,85 0,742 0,690 0,990 0,660 0,520 0,940
3,2,1 0,85 0,747 0,840 0,996 0,659 0,530 0,936

3,2,2,1.5,1 0,85 0,750 0,960 0,991 0,657 0,600 0,928

si/kn = simulation, known covariance matrix for weight determination.
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Figure 1 - Distribution of the Correlations

The distribution of the correlations between the 7 forecasters for the 6 variables.
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Figure 2 - Between-Variable Correlations

The distribution of the between-variable correlations for each of the 7 forecaster..
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Appendix A

Bartlett’s Test
Test of H0: „The variances are unequal.“
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and with the Si being the individual variances, S the pooled variance and n the the sum of all ni.


