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Abstract

In a recent paper Speckman et al. (2002) introduced a technique for accounting co-

variates when their e�ects are nonlinear. They proposed a test for a one-sided analysis

of covariance which is based on a rank test for the residuals obtained by smoothing the

dependent variable on the covariate. In this paper we study some of the asymptotic prop-

erties of this test and a modi�cations of the test which try to take into account di�erent

sizes of the variances in both samples.

1 Introduction

Consider the classical two sample problem

Y

ij

= m

i

(X

ij

) + �

i

(X

ij

)"

ij

; j = 1; : : : ; n

i

; i = 1; 2(1.1)

where X

ij

(j = 1; : : : ; n

i

) are independent observations with positive density r

i

(i = 1; 2)

on the interval [0; 1] and "

ij

are independent identically distributed errors with mean 0 and

variance 1 (j = 1; : : : ; n

i

; i = 1; 2): The comparison of the two regression functions m

1

and m

2

is fundamental in applied statistic and much e�ort has been devoted to this problem. Many

authors propose tests for the two-sided hypotheses

H

0

: m

1

� m

2

vs. H

1

: m

1

6= m

2

[see e.g. Delgado (1993), Hall and Hart (1990), King, Hart and Wehrly (1991), Kulasekera

(1995), Kulasekera and Wang (1997), Young and Bowman (1995), Cabus (2000), Munk und
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Dette (1998), Dette and Neumeyer (2001)]. In this paper we are interested in the problem of

comparing two curves, where a one-sided analysis is appropriate, i.e.

H

0

: m

1

� m

2

vs. H

1

: m

1

(x) > m

2

(x) 8 x:(1.2)

Recently this problem has been studied by several authors [see Koul and Schick (1997), Hall,

Huber and Speckman (1997) among others]. A very interesting method was proposed by

Speckman, Chiu, Hewett and Bertelson (2002), which is based on the Wilcoxon-Mann-Whitney

statistic applied to the residuals obtained from a nonparametric �t of the unknown regression

function under the null hypothesis of equality. The corresponding test is simple to implement

and has easily computed level probabilities, provided that the joint sample f(X

ij

; Y

ij

) j j =

1; : : : ; n

i

; i = 1; 2g is a sample of i.i.d. observations [see Speckman et al. (2002)]. This situation

obviously occurs under the null hypothesis m

1

= m

2

and under the additional assumptions of

equal design densities (i.e. r

1

� r

2

) and equal variance functions (i.e. �

1

� �

2

):

It is the purpose of the present paper to study the asymptotic properties of the test proposed

by Speckman et al. (2002) in the case of (local) alternatives and in the case of di�erent design

densities and variance functions. We prove an asymptotic normal law in all cases, where the

variance of the asymptotic distribution depends on several features of the data (design density,

distribution of the error, variance function), which are not known by the experimenter [except

in the case considered by Speckman et al. (2002)]. These results give further insight in the

theoretical properties of the procedure proposed by Speckman et al. (2002) and explain certain

de�ciencies of this procedure if the basic assumption of equal design densities and variance

functions is not satis�ed. The paper will be organized as follows. In Section 2 we review the

rank test of Speckman et al. (2002) and study some of its robustness properties if the random

variables (X

ij

; Y

ij

) are not identically distributed. We also investigate a modi�cation of the

procedure which tries to deal with the problem of unequal variances in both samples. Section

3 contains our main theoretical results and some proofs are given in an appendix.

2 A rank test based on residuals

Consider the regression model (1.1) and let

m̂(x) =

P

2

i=1

P

n

i

j=1

K

�

X

ij

�x

h

�

Y

ij

P

2

i=1

P

n

i

j=1

K

�

X

ij

�x

h

�

(2.1)

denote the Nadaraya-Watson estimator obtained from the total sample. If the null hypothesis

of equal regression curves m

1

� m

2

holds we expect the residuals

"̂

ij

= Y

ij

� m̂(X

ij

)(2.2)

to be approximately centered. On the other hand note that in general the statistic m̂(x)

estimates the function

~m(x) =

�

1

r

1

(x)m

1

(x) + �

2

r

2

(x)m

2

(x)

r(x)

;(2.3)

where

r(x) = �

1

r

1

(x) + �

2

r

2

(x);(2.4)
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and we assume that the individual sample sizes satisfy for N = n

1

+ n

2

!1

n

i

N

= �

i

+O

�

1

N

�

(2.5)

with �

i

2 (0; 1); i = 1; 2: Therefore it is easy to see that under the alternative m

1

> m

2

the

residuals "̂

1j

from the �rst sample tend to larger values than the residuals "̂

2j

from the second

sample. Based on these observations Speckman et al. (2002) suggested the following procedure

for testing the hypotheses in (1.2). Let

^

R

ij

=

2

X

`=1

n

`

X

k=1

If"̂

`k

� "̂

ij

g(2.6)

denote the rank of the residual "̂

ij

among "̂

11

; : : : ; "̂

2n

2

and

W

N

=

n

1

X

j=1

^

R

1j

(2.7)

the corresponding Wilcoxon statistic, then the null hypothesis in (1.2) is rejected for large values

of W

N

: A simple argument of exchangeability [see Speckman et al. (2002)] shows that under

the null hypothesis H

0

: m

1

� m

2

and the additional assumption of equal variance functions

�

2

1

� �

2

2

(2.8)

and equal design densities

r

1

� r

2

(2.9)

the statistic W

N

has the classical Wilcoxon rank-sum distribution [see e.g. Randles and Wolfe

(1979)] and consequently the corresponding level probabilities can easily be computed even in

the �nite sample case. In the following two tables we give some simulation results of the test

which rejects the null hypothesis, whenever

Z

N

=

W

N

� (N + 1)n

1

=2

p

n

1

n

2

(N + 1)=12

> u

1��

;(2.10)

where u

1��

denotes the (1 � �) quantile of the standard normal distribution. We considered

the common regression function

m

1

(x) = m

2

(x) = sin(5x)(2.11)

but used di�erent variances or design densities in our simulation in order to study the robustness

properties of the test (2.10) with respect to violations of the assumptions (2.8) and (2.9) (note

that in the case m

1

� m

2

; r

1

� r

2

; �

2

1

� �

2

2

the random variable Z

N

is asymptotically standard

normal distributed). Table 2.1 shows the simulated level of the test (2.10) for a uniform design

in both samples (i.e. r

1

� r

2

� 1) but di�erent variances, i.e. �

2

1

; �

2

2

2 f1; 2g: For the error

distribution we assumed a (X

2

1

� 1)=

p

2 distribution and the results are based on 10 000 runs

for each scenario. In order to eliminate boundary e�ects we used a local linear estimator [see

Fan and Gijbels (1996)] with bandwidth

h =

n�

n

1

N

�̂

2

2

+

n

2

N

�̂

2

1

�

=N

o

1=5

;
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where �̂

2

i

denotes the estimator of Rice (1984) for the integrated variance function

R

1

0

�

2

i

(x)r

i

(x)dx,

i = 1; 2 [see Neumeyer and Dette (2003)]. For equal variances we observe an excellent approxi-

mation of the nominal level [see also Speckman et al. (2002), who obtained similar results with

a di�erent smoothing procedure]. However, in the case of di�erent variances we observe that

the test does not keep its level with suÆcient accuracy. If �

2

1

< �

2

2

the level is substantially

overestimated while in the opposite case the level is drastically underestimated. The situation

with equal variances but di�erent design densities is somehow similar and depicted in Table

2.2, where we investigated the densities

h(x) � 1; h(x) =

1

3

x

�2=3

(2.12)

as possible choices for r

1

and r

2

: The reason for these deviations will be given in Section 3,

where it is shown that the statistic Z

N

is not asymptotically standard normal distributed, if one

of the assumptions (2.8) or (2.9) is violated. More precisely we prove asymptotic normality of

the statistic Z

N

under fairly general conditions, where the mean and variance of the limit distri-

bution is not necessarily equal to 0 and 1; respectively. Additionally, we show that a suÆcient

condition for a standard normal distribution as limit distribution of Z

N

are the assumptions

(2.8) and (2.9).

To understand these observations heuristically consider for a moment the classical situation of

the Wilcoxon-Mann-Whitney test, where there are two samples

X

1

; : : : ; X

n

1

i.i.d. � F

Y

1

; : : : ; Y

n

2

i.i.d � G

with continuous distribution functions F;G, and we are interested in the problem of testing the

hypothesis H

0

: F � G: If

R

i

=

n

1

X

j=1

IfX

j

� X

i

g+

n

2

X

j=1

IfY

j

� X

i

g

denotes the rank of X

i

in the total sample, then it follows from the classical result of Cherno�

and Savage (1958)

P

n

1

j=1

R

j

�

(N+1)n

1

2

+ n

1

n

2

(

1

2

� w)

n

1

n

2

=

p

N

D

�! N (0; s

2

);

where w = P (X

1

� Y

1

) and the asymptotic variance is given by

s

2

=

1

�

2

Var(F (Y

1

)) +

1

�

1

Var(G(X

1

)):

A simple calculation now shows that the power of the test which rejects H

0

: F = G; whenever

P

n

1

j=1

R

j

� (N + 1)n

1

=2

p

n

1

n

2

(N + 1)=12

> u

1��

;

is approximately given by

�

 

r

N

s

2

(

�u

1��

r

N + 1

12n

1

n

2

+

�

1

2

� w

�

)!

;(2.13)
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where � denotes the distribution function of the standard normal distribution. Note that

under the null hypothesis H

0

: F = G we have s

2

= 1=(12�

1

�

2

) and w = 1=2; which yields the

asymptotic level �:

The test proposed by Speckman et al. (2002) replaces in this statistic the X

i

and Y

j

by

the residuals "̂

ij

de�ned in (2.2). In order to understand the problem with this substitution

heuristically we assume for the moment that we could replace the X

i

and Y

j

by the \true"

residuals, that is

X

j

= Y

1j

�m(X

1j

) = �

1

(X

ij

)"

1i

=: e

1j

(2.14)

Y

j

= Y

2j

�m(X

2j

) = �

2

(X

2j

)"

2j

=: e

2j

:

If one of the assumptions (2.8) or (2.9) is not satis�ed we can neither expect that the corre-

sponding probability w = P (e

1j

� e

2j

) is equal 1=2 nor that the asymptotic variance s

2

is equal

1=(12�

1

�

2

) and this explains heuristically the loss of accuracy in the simulations presented in

Table 2.1 and 2.2. We note that for w 6= 1=2 this loss will be substantial asymptotically, be-

cause the factor w � 1=2 6= 0 is multiplied with the factor

p

N in (2.13) and dominates the

asymptotic power function. This is already indicated by the simulation results presented in

Table 2.1, which show that in the case �

2

1

6= �

2

2

the approximation of the level is not improved

with increasing sample size. It will be demonstrated in Section 3 that the situation is even

more complicated because the Wilcoxon Mann-Whitney test based on the \true" residuals e

ij

behaves quite di�erently than the corresponding test based on the observable residuals "̂

ij

:

n

1

/

n

2

10 20

�

2

1

/

�

2

2

1 2 1 2

5% 10% 5% 10% 5% 10% 5% 10%

10 1 0.054 0.110 0.132 0.229 0.050 0.107 0.131 0.227

2 0.024 0.060 0.051 0.111 0.018 0.042 0.049 0.097

20 1 0.050 0.100 0.162 0.260 0.052 0.097 0.190 0.295

2 0.013 0.029 0.050 0.097 0.011 0.026 0.053 0.101

Table 2.1 Simulated level of the rank test (2.10) of Speckman et al. (2002) for various sample

sizes and di�erent variances in both groups. The common regression function is given by (2.11)

and the designs in both samples are obtained from the uniform distribution.
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n

1

/

n

2

10 20

r

1

/

r

2

1

1

3

x

�2=3

1

1

3

x

�2=3

5% 10% 5% 10% 5% 10% 5% 10%

10 1 0.054 0.110 0.067 0.136 0.050 0.107 0.069 0.138

1

3

x

�2=3

0.027 0.063 0.053 0.110 0.026 0.058 0.048 0.099

20 1 0.050 0.100 0.080 0.147 0.052 0.097 0.094 0.167

1

3

x

�2=3

0.026 0.056 0.052 0.099 0.018 0.043 0.051 0.097

Table 2.2. Simulated level of the rank test (2.10) of Speckman et al. (2002) for various sample

sizes, equal variances �

2

1

= �

2

2

= 0:5 in both groups. The common regression function is given

by (2.11), and the design densities are de�ned by (2.12).

Before we explain this asymptotic behaviour we introduce a modi�cation of the statistic pro-

posed by Speckman et al. (2002), which - on a �rst glance - seems to be able to deal with

violations of the assumption (2.8). To be precise, we de�ne standardized residuals

~"

ij

=

Y

ij

� m̂(X

ij

)

�̂

i

(X

ij

)

; j = 1; : : : ; n

i

; i = 1; 2;(2.15)

where

�̂

2

i

(x) =

n

i

X

j=1

K

�

X

ij

�x

h

�

P

n

i

`=1

K

�

X

i`

�x

h

�

(Y

ij

� m̂

i

(X

ij

))

2

(2.16)

is an estimator for the variance function of the ith sample (i = 1; 2) and

m̂

i

(x) =

P

n

i

j=1

K

�

X

ij

�x

h

�

Y

ij

P

n

i

j=1

K

�

X

ij

�x

h

�

(2.17)

the corresponding estimator of the regression function. Let

~

R

ij

=

2

X

`=1

n

`

X

k=1

If~"

`k

� ~"

ij

g(2.18)

denote the rank of ~"

ij

in the total sample of standardized residuals,

~

W

N

=

P

n

1

j=1

~

R

1j

the sum

of the ranks of the �rst sample, then following Speckman et al. (2002) we propose to reject the

null hypothesis, whenever

~

Z

N

=

~

W

N

� (N + 1)n

1

=2

p

n

1

n

2

(N + 1)=12

> u

1��

:(2.19)

Tabel 2.3 shows the simulated level of the test (2.19) for the scenario used in Table 2.1 (i.e.

r

1

� r

2

; �

2

1

; �

2

2

2 f1; 2g; "

ij

� (X

2

1

�1)=

p

2): Now we observe substantial di�erences between the

nominal and simulated level in all cases. Even in the case where the variances are equal [which

gives a sequence of exchangeable random variables (X

ij

; Y

ij

)] the di�erences are substantial and

6



increase with the sample size. Table 2.4 shows corresponding results with a standard normal

distribution for the errors "

ij

: Here the nominal level is approximated with suÆcient accuracy

in the case of equal variances, but in the case of di�erent variances the test (2.19) is not an

improvement of the test (2.10). Our simulations indicate that the replacement of the true

residuals Y

ij

�m(X

ij

) = �

i

(X

ij

)"

ij

by their corresponding estimates "̂

ij

or ~"

ij

has a non-trivial

e�ect on the performance of the resulting testing procedure. In the following section we study

the asymptotic behaviour of the tests de�ned in (2.10) and (2.19) in more detail and by this

analysis we are able to explain the observations described in this section.

n

1

/

n

2

10 20

�

2

1

/

�

2

2

1 2 1 2

5% 10% 5% 10% 5% 10% 5% 10%

10 1 0.110 0.178 0.146 0.219 0.085 0.149 0.116 0.183

2 0.115 0.173 0.131 0.200 0.100 0.156 0.103 0.163

20 1 0.180 0.238 0.196 0.257 0.152 0.216 0.168 0.228

2 0.184 0.237 0.202 0.261 0.169 0.231 0.175 0.236

Table 2.3. Simulated level of the rank test (2.19) for various sample sizes and variances. The

design in both groups is uniform, while the error distribution is a (X

2

1

� 1)=

p

2 distribution.

n

1

/

n

2

10 20

�

2

1

/

�

2

2

1 2 1 2

5% 10% 5% 10% 5% 10% 5% 10%

10 1 0.061 0.127 0.094 0.162 0.071 0.126 0.115 0.179

2 0.057 0.107 0.069 0.121 0.054 0.097 0.077 0.130

20 1 0.058 0.106 0.077 0.139 0.057 0.112 0.099 0.170

2 0.055 0.098 0.056 0.107 0.044 0.085 0.055 0.108

Table 2.4. Simulated level of the rank test (2.19) for various sample sizes and variances. The

design in both groups is uniform, while the error distribution is standard normal.

3 Asymptotic analysis

In order to explain the properties described in the simulation study from an asymptotic point

of view we require various additional assumptions on the data generating process. For the

bandwidth of the kernel estimators we assume

Nh!1; h! 0; Nh

4

! 0; Nh

3+2Æ

(log h

�1

)

�1

!1(3.1)

7



for some 0 < Æ < 1=2, while the design densities should satisfy

r

1

; r

2

;2 C

2

([0; 1]); inf

x2[0;1]

r

i

(x) > 0; i = 1; 2:(3.2)

Further we assume

m; �

1

; �

2

2 C

2

([0; 1]); inf

x2[0;1]

�

2

i

(x) > 0; i = 1; 2;(3.3)

K has compact support, is twice continuously di�erentiable,

Z

R

uK(u)du = 0:(3.4)

Let

F

i

(y j x) = P (Y

ij

� y j X

ij

= x)

(i = 1; 2) denote the conditional distribution function of Y

ij

given X

ij

; then we assume that

F

i

(y j x) is continuous in (y; x) and has a density, say

f

i

(y j x) =

@

@y

F

i

(y j x)

(also continuous in (y; x)) satisfying

inf

x2[0;1]

inf

s2[0;1]

f

i

(F

�1

i

(s j x) j x) > 0; i = 1; 2(3.5)

sup

x;y

jyf

i

(y j x)j <1; i = 1; 2:(3.6)

Finally, we require the following assumptions (i = 1; 2)

@

@y

f

i

(y j x) exists, is continuous in (y; x) and satis�es sup

x;y

jy

2

@

@y

f

i

(y j x)j <1(3.7)

@

@x

F

i

(y j x) exists, is continuous in (y; x) and satis�es sup

x;y

jx

@

@x

F

i

(y j x)j <1(3.8)

@

2

@

2

x

F

i

(y j x) exists, is continuous in (y; x) and satis�es sup

x;y

jx

2

@

2

@

2

x

F

i

(y j x)j <1 :(3.9)

Throughout this paper we denote with F

"

and F

e

i

the distribution functions of the random

variables "

ij

and e

ij

= �

i

(x

ij

)"

ij

; respectively, while the corresponding densities are denoted by

f

"

and f

e

i

(i = 1; 2): Note that F

e

i

and f

e

i

are not necessarily equal for both samples and are

related to F

"

and f

"

by the equation

F

e

i

(y) = P (�

i

(X

ij

)"

ij

� y) =

Z

1

0

F

"

�

y

�

i

(x)

�

r

i

(x)dx(3.10)

f

e

i

(y) =

Z

1

0

r

i

(x)

�

i

(x)

f

"

�

y

�

i

(x)

�

dx; i = 1; 2:(3.11)

In the following let

^

F

i;n

i

(y) =

1

n

i

n

i

X

j=1

If"̂

ij

� yg; i = 1; 2;

~

F

i;n

i

(y) =

1

n

i

n

i

X

j=1

If~"

ij

� yg; i = 1; 2;

8



denote the empirical distribution functions of the residuals "̂

ij

and ~"

ij

de�ned by (2.2) and

(2.15), respectively, then it is easy to see that the statistics W

N

de�ned in (2.7) and

~

W

N

can

be represented as

W

N

= n

1

N

n

n

1

N

Z

R

^

F

1;n

1

(y)d

^

F

1;n

1

(y) +

n

2

N

Z

R

^

F

2;n

2

(y)d

^

F

1;n

1

(y)

o

(3.12)

~

W

N

= n

1

N

n

n

1

N

Z

R

~

F

1;n

1

(y)d

~

F

1;n

1

(y) +

n

2

N

Z

R

~

F

2;n

2

(y)d

~

F

1;n

1

(y)

o

:

Our main results essentially specify the asymptotic distribution of the random variables W

N

and

~

W

N

: A proof is complicated and given in the Appendix.

Theorem 3.1. Assume that (2.5), (3.1) - (3.9) are satis�ed, then under the null hypothesis of

equal regression curves we have

U

N

=

p

N

n

Z

R

�

n

1

N

^

F

1;n

1

(y) +

n

2

N

^

F

2;n

2

(y)

�

d

^

F

1;n

1

(y)�

Z

R

(�

1

F

e

1

(y) + �

2

F

e

2

(y))dF

e

1

(y)

o

D

�! N (0; �

2

);

where the asymptotic variance is given by

�

2

=

�

2

�

1

n

2

X

i=1

�

i

Z

R

2

(F

e

3�i

(u ^ v)� F

e

3�i

(u)F

e

3�i

(v))dF

e

i

(u)dF

e

i

(v)

+ �

2

�

1

Z

1

0

(�

1

�

2

1

(t)r

1

(t) + �

2

�

2

2

(t)r

2

(t))

1

r

2

(t)

�

�

Z

R

Z

1

0

h

f

"

�

z�

1

(x)

�

2

(t)

�

r

1

(x)r

2

(t)

�

2

(t)

� f

"

�

z�

2

(x)

�

1

(t)

�

r

1

(t)r

2

(x)

�

1

(t)

i

dx dF

"

(z)

�

2

dt

� 2�

1

�

2

Z

1

0

�

Z

R

Z

1

0

h

f

"

�

z�

1

(x)

�

2

(t)

�

r

1

(x)r

2

(t)

�

2

(t)

� f

"

�

z�

2

(x)

�

1

(t)

�

r

1

(t)r

2

(x)

�

1

(t)

i

dx dF

"

(z)

�

�

�

�

1

(t)r

1

(t)

r(t)

Z

R

Z

1

0

E["If"�

1

(t) � y�

2

(x)g]r

2

(x) dx dF

"

(y)

�

�

2

(t)r

2

(t)

r(t)

Z

R

Z

1

0

E["If"�

2

(t) � y�

1

(x)g]r

1

(x) dx dF

"

(y)

�

dt

o

:

Moreover, under local alternatives m

2

(x) = m

1

(x) + �(x)=

p

N we have

U

N

D

�! N (�; �

2

);

where the asymptotic mean is given by

� = ��

2

Z

1

0

�(x)r

1

(x)r

2

(x)

r(x)

n

�

1

�

2

(x)

Z

R

f

"

�

y

�

2

(x)

�

dF

e

1

(y) +

�

2

�

1

(x)

Z

R

f

"

�

y

�

1

(x)

�

dF

e

2

(y)

o

dx

Theorem 3.2. Assume that (2.5), (3.1) - (3.9) are satis�ed, then under the null hypothesis of

equal regression curves we have

~

U

N

=

p

N

n

Z

R

�

n

1

N

~

F

1;n

1

(y) +

n

2

N

~

F

2;n

2

(y)

�

d

~

F

1;n

1

(y)�

1

2

o

D

�! N (0;

~

�

2

);
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where the asymptotic variance is given by

~

�

2

=

�

2

�

1

(

1

12

+ b

2

) and

b

2

=

Z

R

2

n

f

"

(y)f

"

(z)�

1

�

2

Z

1

0

�

�

1

r

1

(x)

�

2

2

(x)

+

�

2

r

2

(x)

�

2

1

(x)

��

r

1

(x)�

2

(x)� r

2

(x)�

1

(x)

r(x)

�

2

dx

+yzf

"

(y)f

"

(z)E

h�

"

2

� 1

2

�

2

i

+ yf

"

(y)E

h

("

2

� 1)If" � zg

i

+�

1

�

2

Z

1

0

r

2

(x)�

1

(x)� r

1

(x)�

2

(x)

r(x)�

1

(x)�

2

(x)

(r

2

(x)�

2

(x)� r

1

(x)�

1

(x))dx

�f

"

(y)

�

zf

"

(z)E["

3

] + 2E["If" � zg]

�o

dF

"

(y)dF

"

(z):

Moreover, under local alternatives m

2

(x) = m

1

(x) + �(x)=

p

N we have

~

U

N

D

�! N (~�;

~

�

2

);

where the asymptotic mean is given by

~� = �

Z

R

f

"

(y)dF

"

(y) �

Z

1

0

�(x)

�

2

r

1

(x)r

2

(x)

r(x)

�

�

1

�

2

(x)

+

�

2

�

1

(x)

�

dx:

Remark 3.3. Note that for a symmetric error distribution the asymptotic variance of Theorem

3.2 reduces to

~

�

2

=

�

2

�

1

h

1

12

+ �

1

�

2

n

Z

R

f

2

"

(y)dy

o

2

Z

1

0

(�

1

(x)r

2

(x)� �

2

(x)r

1

(x))

2

�

2

1

(x)�

2

2

(x)r

2

(x)

(�

1

r

1

(x)�

2

1

(x) + �

2

r

2

(x)�

2

2

(x))dx

+ 2�

1

�

2

Z

R

E[If" � zg"]dF

"

(z)

Z

R

f

2

"

(y)dy

�

Z

1

0

�

1

(x)r

2

(x)� �

2

(x)r

1

(x)

r(x)�

1

(x)�

2

(x)

(�

2

(x)r

2

(x)� �

1

(x)r

1

(x))dx

i

:

Moreover, studentizing the residuals as proposed in (2.15) does not simplify the asymptotitic

variances substantially, because the estimation of the variance function yields some additional

terms in the asymptotic variance of the corresponding rank statistic. In general the asymptotic

null distribution of U

N

and

~

U

N

depend on certain features of the data generating process.

Remark 3.4. In the case of equal variances �

1

� �

2

the variance estimators de�ned in (2.16)

can be replaced by a combined estimator

�̂

2

(x) =

2

X

i=1

n

i

X

j=1

K

�

X

ij

�x

h

�

(Y

ij

� m̂

i

(X

ij

))

2

P

2

i=1

P

n

i

`=1

K

�

X

i`

�x

h

�

:

A careful inspection of the proof given in the Appendix shows that under the additional as-

sumption of equal design densities r

1

� r

2

the bandwidth conditions stated in (3.1) can be

relaxed to

Nh!1; h! 0; Nh

5

= O(logh

�1

); Nh

3+2Æ

(log h

�1

)

�1

!1(3.13)
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and the optimal bandwidths for estimation of the regression and variance functions can be

used. In this case the asymptotic variance of the test statistic

~

U

N

de�ned in Theorem 3.1 and

3.2 reduces to

�

2

=

~

�

2

=

�

2

12�

1

:

Remark 3.5. Theorem 3.1 and 3.2 can now easily be used for analyzing the asymptotic

properties of the corresponding rank tests proposed in (2.10) and (2.19). We begin with the

test (2.10) proposed by Speckman et al. (2002). A straightforward calculation gives under local

alternatives m

2

(x) = m

1

(x) + �(x)=

p

N for the probability of rejection

P (Z

N

> u

1��

) = P

�

W

N

� n

1

(N + 1)=2

p

n

1

n

2

(N + 1)=12

> u

1��

�

(3.14)

� �

��+ (a�

1

2

)

p

N � u

1��

q

�

2

12�

1

�

�

;

where � and �

2

are de�ned in Theorem 3.1 and the constant a is given by

a =

Z

R

(�

1

F

e

1

(y) + �

2

F

e

2

(y))dF

e

1

(y):(3.15)

Now assume that the null hypothesis is valid, that is �(x) � 0; then we observe that the

probability of falsely rejecting the null hypothesis by the test (2.10) converges to 1 whenever

a >

1

2

: On the other hand, if a <

1

2

this probability converges 0: Consequently the test does

not keep its level for larger sample sizes whenever a 6=

1

2

: Recalling the de�nition (3.15) and

(3.10) we see that in general the quantity a is not equal to 1=2: For example, in the situation

depicted in Table 2.1 we have r

1

= r

2

= 1; �

2

1

= 1; �

2

2

= 2 which gives by (3.10)

F

e

2

(y) = F

"

(

y

p

2

) = F

e

1

(

y

p

2

):

Observing that " � (X

2

1

� 1)=

p

2 we obtain

Z

R

F

e

2

(y)dF

e

1

(y) = P (

p

2"

1

< "

2

) � 0:605

and consequently a � 0:553; 0:535; 0:570 corresponding to the cases �

1

=

1

2

;

2

3

;

1

3

; respectively.

Therefore the test (2.10) rejects the null hypothesis too often, which explains the empirical

results in Table 2.1 in the case �

2

1

< �

2

2

: Moreover, the probability of rejection converges to 1

for increasing sample sizes. Similary, if �

2

1

= 2; �

2

2

= 1; then we obtain a � 0:447; 0:429 and

0:464 corresponding to the cases �

1

=

1

2

;

2

3

;

1

3

; respectively, and the probability of a type I error

is underestimated and converges to 0 for an increasing sample size. This was also observed in

our simulation study in Section 2 [see Table 2.1]. Finally, if a = 1=2; then the test proposed

by Speckman et al. (2002) keeps its asymptotic level if and only if the asymptotic variance in

Theorem 3.1 satis�es

�

2

=

�

2

12�

1

:(3.16)

11



From Theorem 3.1 it follows that suÆcient conditions for this property are given by (2.8) and

(2.9) which explains our empirical �ndings in Table 2.1 and 2.2. On the other hand we obtain

by a similar calculation for the probability of rejection by the test de�ned in (2.19)

P (

~

Z

N

> u

1��

) � �

�
~�� u

1��

q

�

2

12�

1

~

�

�

(3.17)

where ~� and

~

�

2

are de�ned in Theorem 3.2. Under the null hypothesis m

1

� m

2

we have ~� = 0

and as a consequence this probability does not converge to 0 or 1 for an increasing sample size.

However, it is asymptotically equal to � if and only if

~

�

2

=

�

2

12�

1

:(3.18)

From Theorem 3.2 we see that the conditions (2.8) and (2.9) of equal design densities and

variance functions are not suÆcient for this property. In this case we need the additional

assumption of a symmetric error distribution to guarantee (3.18), which explains our empirical

observations in Table 2.3 and 2.4.

Remark 3.6. Note that Theorem 3.1 allows an asymptotic analysis of the statistic Z

N

under

local (and �xed) alternatives in the situation considered by Speckman et al. (2002). These

authors assumed r

1

� r

2

; �

1

� �

2

and showed that under the null hypothesis Z

N

has the same

distribution as the Wilcoxon statistic. In the case of homoscedasticity �

2

1

(x) = �

2

2

(x) = �

2

8 x

and r

1

6� r

2

this is still true asymptotically, because we obtain in this case F

e

1

(y) = F

e

2

(y) =

F

"

(y=�) which implies a =

1

2

and �

2

=

�

2

12�

1

: Under local alternatives it follows in the case

r

1

� r

2

; �

1

� �

2

that

lim

N!1

P (Z

N

> u

1��

) = �

�

�

r

12�

1

�

2

� u

1��

�

:(3.19)

Observing the de�nition of � in Theorem 3.1 we obtain for the shift

�

r

12�

1

�

2

=

p

12�

1

�

2

Z

1

0

(��)(x)r

1

(x)

�

1

(x)

dx

Z

R

f

"

�

y

�

1

(x)

�

dF

e

1

(y)(3.20)

(note that �(x) < 0 and that �

1

= �

2

; r

1

= r

2

):

Some conclusions can be drawn from this representation. For example, it follows from (3.20)

that the best allocation of the observations to the treatment is obtained for n

1

= n

2

; i.e.

�

1

= �

2

=

1

2

: Similarly, di�erent designs can be compared by its e�ect on the asymptotic

power with respect to local alternatives. For example, if �

1

= �

2

= 1 and � = �x; a design

with density r

1

(x) = 2x = r

2

(x) should be preferred to a design with density 2(1 � x), while

this design has a worse performance than the uniform design. In Table 3.1 we present some

simulation results for di�erent designs and the regression function m

1

in (2.11) which indicate

that our asymptotic �ndings are already applicable for very small sample sizes. The power of

the test of Speckman et al. (2002) can be substantially increased by an appropriate design of

the experiment.

In principle such considerations are also possible in the general situation considered in Theorem

3.1. However, due to the complicated dependency of the term �=� on the design densities,

variance functions and �

1

; �

2

such calculations de�nitively have to be done numerically.
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r

1

(x) = r

2

(x) = 2(1� x) r

1

(x) = r

2

(x) = 1

n

2

10 20 10 20

n

1

5% 10% 5% 10% 5% 10% 5% 10%

10 0.294 0.439 0.354 0.499 0.455 0.606 0.569 0.709

20 0.369 0.505 0.499 0.635 0.536 0.661 0.725 0.827

r

1

(x) = r

2

(x) = e

x

=(e� 1) r

1

(x) = r

2

(x) = 2x

n

2

10 20 10 20

n

1

5% 10% 5% 10% 5% 10% 5% 10%

10 0.544 0.688 0.685 0.804 0.650 0.775 0.791 0.896

20 0.627 0.742 0.816 0.897 0.732 0.826 0.903 0.952

Table 3.1. Simulated power of the test of Speckman et al. (2002) for various designs. The

variances are �

2

1

= �

2

2

= 1; the errors are (X

2

1

� 1)=

p

2 distributed and the alternative is

�(x) = �x: The factor

R

1

0

��(x)r

1

(x)=�

1

(x)dx in formula (3.20) is given by 0.133, 0.5, 0.582

and 0.667, respectively.

Remark 3.7. Finally, we discuss the behaviour of a slightly modi�ed test statistic where

we use of a di�erent regression estimator. Instead of m̂(x) de�ned in (2.1) we consider the

estimator

�m(x) =

P

2

i=1

P

n

i

j=1

K

�

X

ij

�x

h

�

�̂

�2

i

(x)Y

ij

P

2

i=1

P

n

i

j=1

K

�

X

ij

�x

h

�

�̂

�2

i

(x)

which can be shown to have better eÆciency properties than m̂. The variance estimators �̂

2

i

(x)

are de�ned in (2.16). The residuals are now de�ned as

�"

ij

=

Y

ij

� �m(X

ij

)

�̂

i

(X

ij

)

;

and the test statistic is the sum of the ranks of the residuals from the �rst sample, that is

�

W

N

=

n

1

X

j=1

2

X

`=1

n

`

X

k=1

If�"

`k

� �"

1j

g = n

1

N

n

n

1

N

Z

R

�

F

1;n

1

(y)d

�

F

1;n

1

(y) +

n

2

N

Z

R

�

F

2;n

2

(y)d

�

F

1;n

1

(y)

o

;

where (i = 1; 2)

�

F

i;n

i

(y) =

1

n

i

n

i

X

j=1

If�"

ij

� yg:

Then under the conditions of Theorem 3.1 and local alternatives m

2

(x) = m

1

(x) + �(x)=

p

N

(where the null hypothesis of equality of the regression functions corresponds to the case � � 0)

it can be shown by similar arguments as given in the Appendix that

�

U

N

=

p

N

n

Z

R

�

n

1

N

�

F

1;n

1

(y) +

n

2

N

�

F

2;n

2

(y)

�

d

�

F

1;n

1

(y)�

1

2

o

D

�! N (��;

�

�

2

);
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where the asymptotic variance is given by

�

�

2

=

�

2

12�

1

+

�

2

4�

1

�

Z

R

yf

2

"

(y) dy

�

2

E[("

2

� 1)

2

] +

�

2

�

1

Z

R

yf

2

"

(y) dy

Z

R

E[If" � zg("

2

� 1)] dz

+ �

2

2

h�

Z

R

f

2

"

(y) dy

�

2

+

Z

R

f

2

"

(y) dy

n

2

Z

R

E[If" � zg"] dF

"

(z) +

Z

R

zf

2

"

(z) dzE["

3

]

oi

�

Z

1

0

(r

1

(x)�

�1

1

(x)� r

2

(x)�

�1

2

(x))

2

�

1

r

1

(x)�

�2

1

(x) + �

2

r

2

(x)�

�2

2

(x)

dx

and the asymptotic mean is obtained as

�� = �

Z

R

f

"

(y)dF

"

(y) �

Z

1

0

�(x)

�

2

r

1

(x)r

2

(x)�

�1

1

(x)�

�1

2

(x)

�

1

r

1

(x)�

�2

1

(x) + �

2

r

2

(x)�

�2

2

(x)

�

�
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For a symmetric error distribution the asymptotic variance reduces to

�
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2

=
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4 Appendix: proofs

For the sake of brevity we will restrict ourselves to a proof of Theorem 3.2. The proof of

Theorem 3.1 follows in a similar manner. Recall the de�nition of the statistic

~

U

N

in Theorem

3.2, then a straightforward calculation shows that

~

U

N

=

p

N

n

Z

R

�

n

1

N

(

~

F

1;n

1

(y)� F

"

(y)) +

n

2

N

(

~

F

2;n

2

(y)� F

"

(y))

�

d

~

F

1;n

1

(y)(5.1)

�

Z

R

(

~

F

1;n

1

(y)� F

"

(y))dF

"

(y)

o

;

where we have used integration by parts. This expression can be estimated further by

~

U

N

=

p

N�

2

n

Z

R

(

~

F

2;n

2

(y)� F

"

(y))dF

"

(y)�

Z
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(

~

F

1;n

1

(y)� F

"

(y))dF

"

(y)

o

+ o

p

(1) ;(5.2)

where we have used the fact that

Z

R

(

~

F

1;n

1

(y)� F

"

(y))d(

~

F

1;n

1

(y)� F

"

(y)) = o

p

�

1

p

N

�

:(5.3)
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This estimate follows from the following Lemma, which gives an asymptotic equivalent expres-

sion for the integrands and will be proved at the end of this section.

Lemma 5.1. Under the assumptions of Theorem 3.2 we have uniformly with respect to y

~

F

i;n

i

(y)� F

"

(y) =
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:

Inserting the expression of Lemma 5.1 in (5.2) yields
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where

~

G

1;N

and

~

G
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are independent empirical processes de�ned by
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Now a standard calculation shows that these processes converge weakly to independent Gaus-

sian processes, i.e.

p

N

~

G

i;N

) G

i

; i = 1; 2;

where the covariance kernel of the process G

i

is given by

k
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Now it follows from Proposition 1 in Shorack and Wellner (1986, p. 42) that

~

U

N

D

�! N (~�;

~

�

2

);

where

~

�

2
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2

2

Z

R

2

(k

1

(y; z) + k
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(y; z))dF

"

(y)dF

"
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The speci�c form of the variance in Theorem 3.2 now follows by a straightforward but tedious

calculation.

2

Proof of Lemma 5.1. We will only consider the case i = 1; the assertion of the second sample

follows precisely by the same arguments. From Lemma B1 in Akritas and Keilegom (2000) we

have
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uniformly in y; where
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Observing the de�nition of the estimate m̂ in (2.1) we obtain
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Now Proposition 7 in Akritas und Keilegom (2000) gives for the di�erence �̂
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where the integral can be evaluated as follows :
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Inserting this expression into (5.9) yields
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Now the de�nition of A
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in (5.7), (5.9) and (5.11) yield
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and the assertion of Lemma 5.1 follows from the strong law of large numbers.
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