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Summary

Microarrays are part of a new class of biotechnologies which allow the monitoring of

expression levels of thousands of genes simultaneously. In microarray data analysis,

the comparison of gene-expression pro�les with respect to di�erent conditions and

the selection of biologically interesting genes are crucial tasks. Multivariate statistical

methods have been applied to analyze these large data sets. In particular, Dudoit

et al. (2002) developed methods using t-statistics with p-values calculated through

permutations, and with the Westfall and Young step-down approach to correct for

multiple testing. Thomas et al. (2001) developed a regression modelling approach.

Following the idea of Efron et al. (2000) and Tusher et al. (2001), Pan (2002) pro-

posed mixture modelling approach that relaxes many strong assumptions on the null

distributions of the test statistics. In this paper, we replace the based Normal mixture

density estimators proposed by Pan et al. (2002), with less restrictive nonparametric

ones.

Keywords: Kernel estimator; Microarray; Mixture modeling; Regression mod-

elling, t-test.
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1 Introduction

Gene expression regulates the production of protein, the ultimate expression

of the genetic information, which in turn governs many cellular processes in

biological systems. The knowledge of gene expression has applications ranging

from basic research on the mechanism of protein production to applications

such as diagnosing, staging, treating and preventing of diseases. Microarray

techniques provide a way of studying the RNA expression levels of thousands

of genes simultaneously; see for example Brown and Botstein (1999), Lander

(1999), Quackenbush (2001). The identi�cation of di�erentially expressed genes

is a question which arises in a broad range of microarray experiments which

produce enormous amounts of data, see Spellman et al. (1998), Galitski et al.

(1999), Golub et al. (1999), Callow et al. (2000), Friddle et al. (2000), and

Guimaraes and Urfer (2002), to name a few. The expression level can refer to

summary measure of relative red to green channel intensities in a uorescence-

labeled complementary DNA or cDNA array, a radioactive intensity of a ra-

diolabeled cDNA array, or summary di�erence of the perfect match (PM) and

mis-match (MM) scores from an oligonucleotide array, see Li and Wong (2001)).

Microarray experiments involve a number of distinct stages which are discussed

in Smyth et al. (2002). The expression levels may have been suitably prepro-

cessed to acquire red and green foreground and background intensities for each

spot of the arrays, including dimension reduction, data normalization and data

transformation; see for example Dudoit et al. (2002), Efron et al. (2000), Li

and Wong (2001). We suppose here that all stages to get data are satis�ed.

For the purpose of the paper, let Rf and Gf (resp. Rb and Gb) be the fore-

ground (resp. the background) red and green intensities for each spot. The log-

di�erential expression ratio will be Y = log

2

(R=G) where usually R = Rf �Rb

and G = Gf � Gb; where G > 0: One of the core goals of microarray data is

to compare, for example, the expression levels of genes in samples drawn from

two di�erent cell types, such as healthy versus diseased cells, and to identify

which of the genes show good evidence of being di�erentially expressed. Statis-
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tical methods are very helpful to reach this goal. In the early days, many data

analysis programs sort the genes according to the absolute level of Y , where

Y is Y -values for any particular gene across the replicate arrays, see Smyth

et al. (2002) for more details. This is known to be unreliable (see Chen et al.

(1997)) because statistical variability of the expression levels for each genes was

not taken account. It has also been noticed that data based on a single array

may not be reliable and may contain high noises (see Lee et al. (2000)). More-

over, the need for independent replicates has been recognized (see Lee et al.

(2000)), and several methods from combining information from several arrays

have been proposed. These methods assign a test score to each of the genes and

then select those that are \signi�cant". The test statistics included the t-test

(Zhang et al. (1997), Alon et al. (1999)), the ANOVA F -statistics (Kerr et al.

2000)) and the information theoric measure known as InfoScore (Hadenfalk et

al. (2001)). Recently, Chilingaryan et al. (2002) used a multivariate approach

based on Mahalanobis distance between vectors of gene expressions as a crite-

rion for simultaneously comparing a set of genes, and developed an algorithm

for maximizing it. A Similar vectorial approach, including principal components

analysis, is also given by Kuruvilla et al. (2002). Bayesian probabilistic frame-

work for microarray data analysis are also developed by Friedman et al. (2000),

Baldi et al. (2001), Imato et al. (2002) among others. In this paper we consider

the detection of di�erentially expressed genes with replicated measurements of

expression levels using Bayesian inference with the mixture model approach of

Pan et al. (2002). It is one of the three methods reviewed by Pan (2002). In

particular, we introduce a kernel estimator of density functions in order to form

the test statistic in the Bayesian techniques.

The paper is organized as follows. After describing the statistical model and

tests in Section 2, we discuss the kernel estimation procedure. Finally, Section 3

summarizes some concluding remarks and gives an outlook for further activities.
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2 Statistical model and methods

In this section, we give a general statistical model from which we make the

comparative studies. Then, we recall the construction of the t-test and the

mixture modeling approach.

2.1 The model

Various models are proposed to summarize multiple measurements of gene ex-

pression. A general survey is given by, for example, Thomas et al. (2001), Li

and Wong (2001) and Sebastiani and Romani (2002). We will focus on a simple

model studied in particular by Pan et al. (2002).

Suppose that Y

ij

is the expression level of gene i in array j, i = 1; :::; n and

j = 1; :::; J . We suppose that J = J

1

+ J

2

and that the �rst J

1

and last J

2

arrays are obtained under the di�erent conditions, say treatment and control,

respectively.

We consider the following general statistical model:

Y

ij

= �

i

+ �

i

x

j

+ "

ij

(1)

where x

j

= 1 for 1 � j � J

1

and x

j

= 0 for J

1

+ 1 � j � J

1

+ J

2

, and "

ij

are

independent random errors with mean 0:

Hence �

i

+ �

i

and �

i

are the mean expression levels of gene i under the two

conditions respectively.

Let H

0i

denote the null hypothesis of equal treatment and control mean expres-

sion levels for gene i; i = 1; :::; n: Here we consider only two-sided alternative

hypotheses; one-sided alternatives can be handled in similar manner. Then,

determining whether a gene has di�erential expression is equivalent to testing

the null hypothesis

H

0i

: �

i

= 0 against H

1i

: �

i

6= 0:

A statistical test consists of two parts. The �rst is to construct a summary test

statistic which will rank the genes in order of evidence for di�erential expression,
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from strongest to weakest evidence. The second is to choose a critical-value, or

the signi�cance level or p-value associated with the test statistic above which

any value is considered to be signi�cant. In many microarray studies the aim

is to identify a number of candidate genes for con�rmation and further study.

To focus on the main issue, we use � = 0:01 as the genome-wide signi�cance

level. To account for multiple hypothesis testing, one may calculate adjusted p-

values, see Sha�er ((1995) and Westfall and Young (1993). According to Sha�er

(1995), given any procedure, the adjusted p-value corresponding to the test of

single hypothesis H

0i

can be de�ned as the level of the entire test procedure at

which H

0i

would just be rejected, given the values of all test statistics involved.

The Bonferroni method is perhaps the best known method with multiple testing

(see Dudoit et al. (2002) and Thomas et al. (2001)). This method should be

used here. Hence the gene-speci�c signi�cance level (for a two-sided test) is

�

�

= �=(2n):

In the following, we review two methods along the line.

2.2 The t-test

Let us recall that H

0i

denote the null hypothesis of equal expression levels under

the two di�erent conditions (e.g. control and treatment ) for gene i, i = 1; :::; n.

We consider only two-sided alternative hypotheses. For gene i , the t-statistic

comparing gene expression is

Z

i

=

Y

i(1)�

Y

i(2)

r

s

2

i(1)

J

1

+

s

2

i(2)

J

2

; (2)

where Y

i(1)

and Y

i(2)

denote the average expression level of gene i in the J

1

treatment and J

2

control hybridizations, respectively. Similarly, s

2

i(1)

and s

2

i(2)

denote the sample variances of gene i's expression level in the treatment and

control hybridizations, respectively.

Large absolute t-statistics suggest that the corresponding genes have di�erent

expression levels in the control and treatment groups. Note that the replication
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is essential for such an analysis because of the need for assessing the variability

of gene expression levels in the treatment and control groups.

Under the Normality assumption of Y

ij

, Z

i

approximately has a t-distribution

with degree of freedom

d

i

=

(s

2

i(1)

=J

1

+ s

2

i(2)

=J

2

)

2

(s

2

i(1)

=J

1

)

2

=(J

1

� 1) + (s

2

i(2)

=J

2

)

2

=(J

2

� 1)

(3)

A classical approximation of d

i

is given by J

1

+ J

2

� 1, see for example Sche��e

(1970) and Best and Rayner (1987).

If we do not assume the t-distribution, we use permutation to estimate their

distribution, see Dudoit et al. (2002) for more details. Wastfall and Young

(1993) suggest approximating the p-values using asymptotic theory, see also

Dudoit et al. (2002) for a computational algorithm.

2.3 The mixture model

The ordinary t-statistic is not ideal because of its restrictive assumptions. Strong

assumptions (e.g. normality, equality of variances) are needed for the null dis-

tribution of the test statistics. To estimate the null distribution, Pan (2002)

and Pan et al. (2002) constructed the following null statistics

z

i

=

Y

i(1)

u

i

=J

1

� Y

i(2)

v

i

=J

2

r

s

2

i(1)

J

1

+

s

2

i(2)

J

2

(4)

where Y

i(1)

= (Y

i1

; Y

i2

; :::; Y

iJ1

); Y

i(2)

= (Y

iJ

1

+1

; Y

iJ

1

+2

; :::; Y

iJ

1

+J

2

); u

i

is a ran-

dom permutation of column vector containing J

1

=2 1's and �1's respectively,

and v

i

is a random permutation of column vector containing J

2

=2 1's and �1's

respectively. Let f and f

0

be the distribution densities of Z

i

and z

i

. If there is

no expression change for gene i , then Z

i

should have the same distribution as

that of z

i

: Under the weak assumption that the random variable "

ij

in (1) has

a distribution symmetric about its mean 0, then under H

0i

, f = f

0

.

If we assume that the distribution of Z

i

's for genes that are di�erentially ex-

pressed is f

1

, f can be expressed as a mixture of f

0

and f

1

,
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f = p

0

f

0

+ p

1

f

1

(5)

where p

1

is an unknown proportion of the genes that are di�erentially expressed

and p

0

= 1� p

1

.

For any given Z, if we know f

0

and f , we use the likelihood ratio test statistic

LR(Z) = f

0

(Z)=f(Z) (6)

to test for H

0

.

Then, by the optimal Neyman-Pearson test, a small value of LR(Z), sayLR(Z) <

c, provides evidence to reject H

0

. The cut-o� point c is determined such that

the type I error kind is

�

n

=

Z

LR(z)<c

f

0

(z)dz (7)

where � is the genome wide signi�cance level.

In the absence of strong parametric assumptions, the parameters p

0

; f

0

and f

1

are not identi�able, see Efron et al. (2000). By assuming a normal distribu-

tion for Z

i

, for each i, one can estimate the components of the mixture by

using for example the EM algorithm (see Dempster et al. (1977)). Lee et

al. (2000) and Newton et al. (2001) considered parametric approaches by as-

suming Normal or Gamma distributions for f

0

and f

1

respectively. Efron et al.

(2000) avoided such parametric assumptions and considered a nonparametric

empirical Bayesian approach.

Using z

i

's and Z

i

's we will estimate f

0

and f by a kernel method and develop

a procedure to determine the type I error.

2.4 Kernel estimation of f

0

and f

The construction of a kernel estimator requires a choice of a density function

K, and a bandwidth h

n

which is a a sequence of positive numbers tending to 0
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as n tends to in�nity. From Z

i

and z

i

, i = 1; :::; n, f and f

0

can be estimated

nonparametrically by

f

n

(z) =

1

nh

n

n

X

i=1

K(

z � Z

i

h

n

) (8)

and

f

0n

(z) =

1

nh

n

n

X

i=1

K(

z � z

i

h

n

): (9)

In order to get smoother estimation, one can use a kernel K which is bounded,

symmetric and satisfying jzjK(z)! 0 as jzj ! 1 and

R

z

2

K(z)dz <1. Some

special kernel functions are given by:

Kernel K(z)

Uniform

1

2

1(jzj � 1)

Triangle (1� jzj)1(jzj � 1)

Epanechnikov

3

4

(1� z

2

)1(jzj � 1)

Quartic

15

16

(1� z

2

)

2

1(jzj � 1)

Triweight

35

36

(1� z

2

)

3

1(jzj � 1)

Gaussian

1

p

2�

exp�

z

2

2

Cosines

�

4

cos(

�

4

z)1(jzj � 1)

Well known theoretical results show that the choice of reasonable K does not

seriously a�ect the quality of the estimators (8) and (9). On the contrary

the choice of h

n

turns to be crucial for the accuracy of the estimator. Some

indications about this choice are given in Bosq and Lecoutre (1987). We will

use in practice

h

n

= b�

n

n

�1=5

where b�

n

denotes the empirical standard deviation. This choice minimizes some

asymptotic mean square error (see Deheuvels (1977)).
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2.5 Determination of the cut-o� point c

From Efron and Tibshirani (1993), Pan (2002) and Pan et al. (2002), Efron et

al. (2000, 2001), a parametric bootstrap approach proceeds as follows.

We drawB random samples from f

0

, z

(1)

; z

(2)

; :::; z

(B)

, where z

(b)

= fz

(b)

1

; z

(b)

2

; :::; z

(b)

N

g

for b = 1; :::; B. Then for a possible cut-o� point c, we calculate the average of

false rejections:

False(c) =

1

B

B

X

b=1

#fi : LR(z

(b)

i

) < cg: (10)

Based on a desired false rejection number, we can choose the corresponding c.

Note that with the normal mixture model in Pan et al. (2002), it is possible to

numerically determine the c using the bisection method (Press et al.(1992)) to

solve equation (7).

Here we propose an empirical method to solve (7) based on nonparametric

estimation of f

0

and f . We start by replacing f

0

and f by their kernel estimators

f

0n

and f

n

proposed in (8) and (9), and solve the modi�ed equation

�

n

=

Z

d

LR(z)<c

f

0n

(z)dz; (11)

where

d

LR(z) = f

0n

(z)=f

n

(z):

Let T = LR(z) and

b

T

i

=

d

LR(z

i

) and

b

T

(1)

;

b

T

(2)

; :::;

b

T

(n)

be the ordered values

of

b

T

1

;

b

T

2

; :::;

b

T

n

: For a �xed value c 2

h

b

T

(1)

;

b

T

(n)

i

, let A

c

= fz : T < cg,

b

A

c

=

n

z

i

:

b

T

i

< c; i = 1; :::; n

o

and z

c;(1)

; z

c;(2)

; :::; z

c;(q)

be the ordered values of

b

A

c

:

Then

Z

A

c

f

0

(z)dz �

Z

b

A

c

f

0n

(z)dz �

z

c;(q)

Z

z

c;(1)

f

0n

(z)dz (12)

Now, the approximate cut-o� point is the value c

j

=

b

T

(1)

+

j

m

(

b

T

(n)

�

b

T

(1)

); where

m is as large as possible, such that
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�

n

�

Z

b

A

c

j

f

0n

(z)dz: (13)

3 Discussion and concluding remarks

We have reviewed and extented methods for the analysis of microarray experi-

ments. Following the principle of "letting the data speak about themselves", we

have introduced a nonparametric kernel estimation into mixture models. Our

method has three principal advantages:

1) An assumption of normality is not needed.

2) The estimation of the degrees of freedom in the existing t-test is avoided.

3) We need not use bootstrap to estimate the cut-o� point.

Hence, our method can be implemented unambiguously and eÆciently. In a

forthcoming paper, extensive simulation results and applications to real data

will be reported.
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