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Sensitivity of graphical modeling

against contamination

Sonja Kuhnt and Claudia Becker

Department of Statistics, University of Dortmund

44221 Dortmund, Germany

Abstract

Graphical modeling as a form of multivariate analysis has turned

out to be a capable tool for the detection and modeling of complex

dependency structures. Statistical models are related to graphs, in

which variables are represented by points and associations between

each two of them as lines. The usefulness of graphical modeling de-

pends of course on �nding a graphical model, which �ts the data

appropriately. We will investigate how existing model building strate-

gies and estimation methods can be a�ected by model disturbances

or outlying observations. The focus of our sensitivity analysis lies on

mixed graphical models, where both discrete and continuous variables

are considered.

1 Introduction

Graphical models turned out to be a helpful tool for detecting and mod-

eling dependency structures (e.g. Cox and Wermuth, 1996, Edwards, 2000,

Lauritzen, 1996, Whittaker, 1990). Up to now not much work has been
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done with respect to considering model disturbances or the e�ect of outly-

ing observations on the estimation in such models. Since usually estimation

is performed by the maximum likelihood method, it can be expected that

{ similar to other model situations { also in graphical models outliers or

contaminated data will disturb the estimation. Hence, with the growing ac-

ceptance of using graphical models for analyzing dependency structures there

will also be a growing need for sensitivity analyses of the existing estimation

methods and for the construction of robust estimates for these models.

We consider here �rst approaches to sensitivity analyses and robustness in

graphical models, where we focus on the case of mixed random vectors con-

taining both, discrete and continuous elements. There exists already work

on robustness and the e�ect of outliers for either purely discrete or purely

continuous cases { more with respect to the continuous case, less with respect

to the discrete case (see e.g. Barnett and Lewis, 1994, for an overview). We

try to put together ideas from both branches for the usage in mixed graphical

models, concentrating on graphical interaction models, where an undirected

graph shows the association structure between the variables.

The paper is organized as follows. In Section 2 we brie
y recollect the main

ideas of graphical modeling and introduce in more detail the distributional

assumptions. Section 3 provides an example data set illustrating the e�ect of

a certain disturbance in the data on the model building process. To expand

the �ndings of the example, we show the results of a simulation study in

Section 4, where the e�ect of contamination on the model building process is

investigated in more detail. We conclude with some remarks on the de�nition

of outliers and possible robusti�cations of the modeling in graphical mixed

models.
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2 Graphical Models: Distributional Assumptions

The notion of graphical independence models visualizes conditional indepen-

dences inherent in a statistical model by a graph. A graph in the mathe-

matical sense is a pair G = (V;E), where V = f1; :::; ng is a �nite set of

vertices and the set of edges E is a subset of the set V � V of ordered tuples

of distinct vertices. In an undirected graph it follows from (a; b) 2 E that

also (b; a) 2 E.

Given a random vectorX = (X

1

; :::; X

n

)

0

and an undirected graphG = (V;E)

with V = f1; : : : ; ng the notion of a graphical independence model is de�ned

by the class of all distributions of X, for which X

a

? X

b

j X

V nfa;bg

holds

i� (a; b) is not element of the set E. Here, X

a

? X

b

j X

V nfa;bg

denotes the

conditional independence of X

a

and X

b

given all other variables.

We consider a set X = (X

1

; :::; X

n

)

0

of random variables, where the �rst p

variables are discrete and the following q continuous, n = p+ q. Denote the

vector of discrete variables by X

�

and the vector of of continuous variables

by X

�

. If a purely discrete vector X

�

is considered, graphical models provide

a new way to demonstrate well-established log linear models (Edwards and

Kreiner, 1983, Whittaker, 1990). In the purely continuous case graphical

models based on the assumption of a normal distribution are characterized

by restrictions on the covariance matrix (Edwards, 2000, Chap.3). An exten-

sion of the distributional assumptions of the pure cases to the mixed case has

been provided by Lauritzen and Wermuth (1989) with the notion of a con-

ditional gaussian (CG-) distribution, where the continuous variables given

the discrete variables are normally distributed. Let a typical observation of

X = (X

0

�

; X

0

�

)

0

be written as (i

0

; y

0

)

0

, where i is a p-tuple containing the
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values of the discrete variables and y is a real-valued vector of length q. Let

further I denote the set of all possible outcomes of X

�

. The density of a

CG-distribution is then de�ned by f

X

�

;X

�

= f

X

�

(i) f

X

�

jX

�

(ijy); yielding

f

X

�

;X

�

(i; y) = p

i

(2�)

�

q

2

det(�

i

)

�

1

2

expf�

1

2

(y � �

i

)

0

�

�1

i

(y � �

i

)g; (1)

where p

i

denotes the probability of the occurrence of i, and �

i

, �

i

are the con-

ditional mean and covariance of Y given i. The distribution is called homo-

geneous, if for some � it holds that �

i

= � 8 i 2 I. The set fp

i

; �

i

;�

i

g

i2I

is called the set of moment parameters, their structure determines the inde-

pendence properties between the random variables. Applications of graphical

independence models usually aim at �nding a simple model in the sense of

a sparse dependency structure, which is still consistent with the data. Vari-

ous strategies have been proposed for the selection of an appropriate model.

These are of course to be seen with the appropriate caution and should al-

ways be accompanied by background knowledge. Reviews can be found in

Edwards (2000, Chap. 6) and Blauth (2002, Chap. 2). They encompass

backward and forward selection strategies as well as alternative search algo-

rithms. As a typical example we look at a backward-selection procedure. The

procedure starts with a saturated model, where no conditional independence

holds, hence every pair of vertices is joined by an edge in the correspond-

ing independence graph. Then, step by step, individual edges are removed.

At each step a criterion is calculated for every model resulting from the re-

moval of a further edge from the present graph. Such a criterion can e.g. be

Akaike's Information Criterion (AIC), �2 ln

b

`

M

+ 2r, where

b

`

M

is the maxi-

mum likelihood unter the model M and r is the dimension (number of free

parameters) of the model. Also the �

2

test based on the deviance di�erence
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Figure 1: Independence graph resulting from stepwise model selection

�2(ln
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0

� ln

b

`

M

1

) between two models M

0

and M

1

, M

0

�M

1

, is frequently

used. The edge corresponding to the largest value of the AIC-criterion or

the largest p-value is deleted and the procedure continues until there is no

further improvement in the AIC-criterion or the p-value stays below a given

level �. Often, the model search is restricted to models with a decomposable

graph, such that maximum likelihood estimates can be explicitly calculated.

The aim of this paper is to explore the sensitivity of such a procedure to

contaminated data.

3 Data Example: Breast Cancer

As an example we consider a data set dealing with ablative surgery for breast

cancer. The main variable (G) classi�es each of 186 patients by the treatment

success as either successful / intermediate (G=1) or failure (G=2). The data

set further contains six continuous variables (U-Z) and three binary variables

(A-C) describing various characteristics of the patients. This data set has

originally been described by Krzanowski (1975) in the context of discriminant
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analysis. The data set provides an illustrative example of the mixed case

and has already been analyzed using the graphical model approach (see e.g.

Edwards, 2000, p. 119 �.) Starting with the homogeneous saturated model

and applying the backwards model selection strategy described in Section

2 based on the �

2

test, results in the independence model described by the

graph in Figure 1. Note, that the principle of coherence has been followed,

meaning that an edge with a p-value below the chosen level � = 0:05 at any

step will not be removed in a later step. Also, only models with decomposable

graphs have been considered. The model search has been conducted using

the computer program MIM (Edwards, 2000).

We repeat the same procedure after changing the value of variable U for the

�rst observation in the data set. The values of variable U vary between 23

and 69 with a median of 47:14 and a variance of 78:5. The value 35 of the �rst

observation is replaced by the maximum value 69 for U in the data set, hence

by an observation not obviously presenting a contaminated value. Still, it

suÆces to change the result of the model search selection procedure, compare

Figure 2. Concentrating on the main variable (G) we see in Figure 1, that the

corresponding vertex is connected with the vertices for the variables A,B,C

and Z. In Figure 2, however, variable V is also connected with G. Changing

a single value in only one observation hence already changed the identi�ed

model, yielding an additional edge in the resulting graph.

4 Simulation study for a mixed homogeneous model

The example of the foregoing section gives rise to the question whether this

is a singular e�ect or may happen rather often. In general, we have to in-
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Figure 2: Independence graph resulting from stepwise model selection on the

data with a single changed observation

vestigate what happens to the model building process if some observations

do not �t into the pattern built by the majority of the data. To expand the

�ndings of the example, we perform a simulation study. We generate 100

data sets with 1000 observations each according to a graphical mixed model

with dependency structure according to Figure 3. The four-dimensional ran-

dom vector X with observation x = (i

0

; y

0

)

0

= (i

1

; i

2

; y

1

; y

2

)

0

follows a CG-

distribution with density according to (1). The moment parameters for the

simulation are given in Table 1. The data generated in this way will also

be called the \true" data. Next, we disturb the true data in several ways,

creating �ve data situations:

(A) true data

(B) y

1

replaced by �30 in 10 randomly chosen observations

(C) y

1

replaced by 1000 in 10 randomly chosen observations

(D) y

1

replaced by �30 if i = (1; 1)
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p

i

1

;i

2

i

2

= 1 2 3

i

1

= 1 0.3712 0.0087 0.0219

2 0.3799 0.1101 0.0032

3 0.0912 0.0007 0.0131

� =

0

@

10:78 �14:22

�14:22 29:74

1

A

�

i

1

;i

2

i

2

= 1 2 3

i

1

= 1

�

�15:38

27:77

� �

11:41

19:48

� �

�18:45

34:19

�

2

�

�11:07

18:76

� �

�7:11

10:47

� �

�14:14

25:18

�

3

�

�17:35

31:91

� �

�13:39

23:62

� �

�20:42

38:33

�

Table 1: Moment parameters of the simulated model

(E) i replaced by (3; 2) in 10 randomly chosen observations.

To each of the simulated data sets we apply the same backwards selection

strategy as for the breast cancer data, but without the restriction to decom-

posable models.
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Figure 3: Independence graph of the simulated model

The results of the model selection procedure are reported in Table 2. Several

conclusions can be drawn from these results. First, we see that certainly

contamination of the data has an in
uence on the results of the model se-

lection. The observed e�ects of the data example in Section 3 seem to be

no singular event. Second, obviously the degree of contamination is impor-

tant. Comparing the results for situations (B) and (C), we �nd that the

moderate contamination scheme (B), where we change some observed values
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Others

(A) 95 1 0 0 4

(B) 96 1 1 0 2

(C) 6 0 1 82 1

(D) 0 0 100 0 0

(E) 0 98 1 0 1

Table 2: Simulation results: number of samples out of 100 resulting in re-

spective graphs in situations (A) to (E)

to a value which lies at the border of what we may expect under the model,

does not change the outcome of the model selection. On the other hand, the

very extreme contamination of situation (C) drastically changes the results.

We expect that there will be some degree of extremeness in the contami-

nation where the behaviour of the model selection procedure changes. It

will be one aspect of further research to determine this \change point" more

exactly. Third, the type of contamination matters. Di�erent disturbances

have di�erent e�ects in the sense that di�erent graphs are found to represent

the dependency structure. There is no general direction of change, we �nd

graphs with additional edges as well as graphs with less edges than for our

true model. Again, further research is needed to investigate these e�ects in

more detail.
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5 Further Directions: Outliers and Robust Model Selection

The results of the simulation study show how severely \outliers" in the data

can a�ect the model selection process in graphical modeling. These �nd-

ings yield two interesting directions of further research: �rst, the concept of

outlyingness has to be investigated conceptionally in the context of graph-

ical modeling, especially with respect to mixed models. Second, a robust

alternative for model selection should be found which is less sensitive to

contamination in the data.

Concerning the �rst point, we give a few comments. It is not immediately

obvious how to characterize an observation as outlying with respect to a

mixed graphical model. If we restrict to the marginal (resp. conditional)

distributions, it is of course possible to de�ne outliers with respect to the

normal distribution (continuous variables) as well as with respect to the

contingency table model (discrete variables), cf. Barnett and Lewis (1994),

Becker and Gather (1997, 1999), Gather, Kuhnt and Pawlitschko (2002),

Kuhnt (2002). A special aspect of the combination of both is that it is

possible to have a single outlier in the continuous variables, whereas in the

contingency table we �nd a whole cell and hence a set of observations to

be outlying. From this follows a certain asymmetry. When looking at both

types of variables together, it is necessary to de�ne an outlier with respect

to the CG-distribution. Several questions arise. Could it happen that we

have observations contributing with their discrete part to the same cell of

the contingency table, where some of these observations are outliers with

respect to the distribution of the continuous variables, but some are not? On

the other hand, does it make sense to declare all observations contributing

with their discrete part to an outlying cell as outliers, if their continuous
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parts �t in the structure of the continuous variables quite well? Although we

have some sort of intuitive knowledge of what is an outlying observation, a

formalization for CG-distributions is a challenge to be followed.

Concerning \robust" ways of model selection, �rst approaches for general

parametric models are given by Ronchetti (1997), especially on robust ver-

sions of the Akaike Information Criterion. When �tting graphical models as

described above, maximum likelihood estimation is used. It is well known

that maximum likelihood estimators in general are sensitive against contam-

ination in the data. Hence, a natural way to robustify the model selection

process would be to replace the maximum likelihood estimators by more ro-

bust alternatives. This approach may also be applicable in graphical model-

ing. Look at the case of investigating continuous variables only. The analysis

of the dependency structure is based mainly on the concentration matrix, i.e.

the inverse of the covariance matrix. This has to be estimated appropriately.

In the saturated model, this does not pose any problem, but when delet-

ing edges, the concentration matrix estimation has to be performed under

restrictions (certain entries in the matrix have to be equal to zero). When

calculating maximum likelihood estimators, the so-called modi�ed iterative

proportional scaling is used (Frydenberg and Edwards, 1989), where, starting

from an initial estimate, the concentration matrix is adjusted iteratively to

re
ect the dependency structure of the data on the one hand and to ful�ll

the restrictions on the other hand. To our knowledge there does not exist a

robusti�ed version of the iterative proportional scaling algorithm up to now.

Since in this algorithm empirical covariance matrices for certain choices of

subsets of the variables are calculated, a robusti�cation seems possible by

using robust covariance estimators like e.g. the MCD covariance estimator

(Rousseeuw, 1985). Of course, this would be a solution for the continuous
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variables only. There exists a respective version of iterative proportional

scaling for mixed models which has to be modi�ed also with respect to esti-

mating the discrete probabilities and the dependency between discrete and

continuous variables robustly. Here, the proposal of a modi�cation is less

obvious and still under investigation.
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