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Robust Estimation of the Location Parameter
from a Two-Parameter Exponential

Distribution

Jörg Pawlitschko∗

Department of Statistics
University of Dortmund

D-44221 Dortmund

Abstract

This paper deals with the problem of estimating the location parameter of a two-
parameter exponential distribution in case of contaminated data. Since in this case
the sample minimum is an extremely unreliable estimator, robust alternatives are nec-
essary. We investigate two types of estimators closer. The first type is based on a
simple relation for the median. The second type has originally been suggested for
Type-II-censored samples, but it also has good robustness properties. We discuss the
breakdown properties of the two types of estimators and compare their performance
for various patterns of data contamination in an extensive simulation study.

1 Introduction

In this paper we consider the problem of estimating the location parameter θ of a two-
parameter exponential distribution Exp(θ, ν) with density

fθ,ν(t) =
1

ν
exp

(
−t − θ

ν

)
, t > θ.

The two-parameter exponential distribution provides a simple but nevertheless useful model
for the analysis of lifetimes, especially when investigating reliability of technical equipment.
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In this context, the parameter θ can be interpreted as a guarantee time. When conducting
a reliability experiment some of the items being tested may fail quite early. A common way
to treat such observations is to consider the recorded times to failure not as trustworthy and
to ignore them until the experiment has been running for a certain time. This proceeding
leads to left censored lifetimes. Alternatively one may consider the complete data but take
account of those spurious lifetimes by application of robust statistical methods. As we will
see, on the one hand this approach leads to estimators already known from the analysis of
censored data which now however can be investigated with respect to their robustness to
violation of the exponential model. On the other hand, application of a wider class of robust
methods offers a variety of new estimators for the location parameter.

Let xN = (x1, . . . , xN)′ be a sample of size N with assumed parent distribution Exp(θ, ν).
With x1:N ≤ · · · ≤ xN :N we denote the corresponding ordered values. A common estimator
for θ is the sample minimum θ̂min = x1:N . This estimator is the maximum likelihood estimator
for θ and it is known to be strongly consistent with convergence order N . However, it is
extremely non-robust. Not only that it has low finite-sample breakdown point 1/(N + 1),
a single outlier that falls below the true θ determines this estimator completely and will
inevitably lead to false conclusions. Therefore, robust alternatives to θ̂min are necessary.

In this paper we investigate two approaches closer. One is based on a simple representation
of the median of an Exp(θ, ν)-distributed random variable, the other makes use of ideas
that have already successfully been applied in the case of censored data. We introduce
these two types of estimators in Section 2 and discuss their breakdown behavior. Section 3
contains the results of an extensive simulation study that has been conducted to investigate
the performance of these estimators in different situations of data contamination.

2 Robust Estimators

For an Exp(θ, ν)-distributed random variable X its median is given by

Med(X) = θ + ν ln 2. (1)

Hence, if SN(xN) is a robust estimator of the scale parameter ν, a robust estimator of θ can
be obtained by setting

θ̂S = Med(xN) − SN(xN) ln 2. (2)

Estimators of this type have been suggested by Rousseeuw and Croux (1993). In the follow-
ing, we will call such an estimator a Median-Scale- (MS-) estimator. Of course, there are
many possible choices for SN in (2). We concentrate on some which have explicit represen-
tations so that they are unique and simple to calculate and have breakdown point equal to
1/2. Further, all these choices render the corresponding MS-estimator affine equivariant.
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(i) Median absolute deviation from the median:

MADN(xN) = a Medi

∣∣xi − Med(xN)
∣∣.

(ii) RCS-estimator (Rousseeuw and Croux, 1993):

RCSN(xN) = b Medi

(
Medj

∣∣xi − xj

∣∣).
(iii) RCQ-estimator (Rousseeuw and Croux, 1993):

RCQN(xN) = c
{|xi − xj|; i, j ∈ {1, . . . , N}, i < j

}
l:N (N−1)

,

where

l =
⌈N (N − 1)

8

⌉
.

(iv) Length of the shortest half sample (Rousseeuw and Leroy, 1988):

LSHN(xN) = d min
i=1,...,N−h

(
xh+i:N − xi:N

)
,

where h = �N/2�.

For any distribution from a location-scale family the constants in (i) – (iv) can be chosen
such that the respective estimator is Fisher-consistent for the scale parameter. In case of an
exponential distribution one has to set a = 2.0781, b = 1.6982, c = 3.476, d = 1.4427.

A different type of estimator can be found by using results from the analysis of censored
data. In case of a doubly Type-II-censored sample the smallest and largest values are not
observable. Suppose that only xr:N ≤ · · · ≤ xN−s:N are known for some fixed 1 < r <
N − s < N . In this situation the BLUE of θ is well-known to equal

θ̂r,s = xr:N −
∑N

i=N−r+1 1/i

N − r − s

(
N−s∑
i=r

xi:N + s xN−s:N − (N − r + 1) xr:N

)
, (3)

cf. e.g. Balakrishnan and Sandhu (1995). In case of a complete sample, this estimator can
be interpreted as a special kind of L-estimator giving weight zero to the r − 1 smallest and
s largest observations. If the proportion of outliers in the complete sample is not too large,
then it can be expected that for appropriately chosen values of r and s this L-estimator will
have good robustness properties.

In the following, we discuss the breakdown behavior of the location estimators introduced so
far. Since in case of an exponential distribution the location parameter θ does not character-
ize the center of the distribution, it is useful to distinguish between two types of breakdown.
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Let TN denote any estimator of θ which is invariant under permutations of the observations.
Then we define finite-sample breakdown points of TN as follows:

b+(TN , xN) =
1

N
min

{
m : sup

y1,...,ym∈R

TN(x1, . . . , xN−m, y1, . . . , ym) = ∞}
,

b−(TN , xN) =
1

N
min

{
m : inf

y1,...,ym∈R

TN(x1, . . . , xN−m, y1, . . . , ym) = −∞}
,

b(TN , xN) = min
{
b−(TN , xN), b+(TN , xN)

}
.

These breakdown points are replacement breakdown points in the sense of Donohoe and
Huber (1983). Further, both b+ and b− can be seen as explosion breakdown points describing
the proneness to positive explosion in case of b+ and to negative explosion in case of b−. Since
θ is the lower boundary of the support of Exp(θ, ν), the second type of breakdown poses the
more severe problem. Obviously, for the sample minimum one has b+(θ̂min, xN) = 1, however
b−(θ̂min, xN) = 1/(N + 1) which indicates that this estimator is not very reliable.

Proposition 1

(a) For the L-estimator θ̂r,s the finite-sample breakdown points are given by

b+(θ̂r,s, xN) =
N − r + 1

N
, b−(θ̂r,s, xN) =

min{r, s + 1}
N

.

(b) For all four choices of SN , the finite-sample breakdown points of the corresponding
MS-estimators are given by

b+(θ̂S, xN) =
1

N

⌊N + 1

2

⌋
, b−(θ̂S, xN) =

1

N

⌊N + 1

2

⌋
.

Proof. For proving (a), note that an L-estimator of θ can also be written as

θ̂r,s(xN) =
N−s∑
i=r

w[i:N ] xi:N

with weights

w[r:N ] = 1 +
(N − r)

∑N
i=N−r+1 1/i

N − r − s
,

w[i:N ] = −
∑N

i=N−r+1 1/i

N − r − s
for i = r + 1, . . . , N − s − 1,
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w[N−s:N ] = −(s + 1)
∑N

i=N−r+1 1/i

N − r − s
.

Note that w[r:N ] > 0, w[i:N ] < 0 for i = r + 1, . . . , N − s, and

N−s∑
i=r+1

w[i:N ] = 1 − w[r:N ]. (4)

Now breakdown of θ̂r,s with respect to positive explosion is attained by replacing N − r + 1
observations in xN by the same number y and letting y → ∞. Then for the new sample x̃N ,
also x̃r:N → ∞ and from (4) it is clear that θ̂r,s(x̃N) → ∞. Note that no smaller number of
replacements leads to positive explosion, since this would require x̃i:N → −∞ for some i > r
which is only possible if also x̃r:N → −∞ with at least the same rate of divergence.

Breakdown of θ̂r,s due to negative explosion can be achieved in two different ways: (i)
replacing r observations in xN by the same number y and letting y → −∞ and (ii) replacing
s + 1 observations by y and letting y → ∞. The smaller number of replacements yields the
corresponding breakdown point.

Part (b) can easily be derived from the explosion breakdown points of the standardized
median and the respective scale estimators which (with the exception of LSHN) have been
calculated in Gather and Schultze (1999). �

From Proposition 1 one sees that L-estimators with optimal breakdown points can be ob-
tained by choosing r = (N +1)/2, s = (N −3)/2 or r = (N −1)/2, s = (N −1)/2 if N is odd
and r = N/2, s = N/2−1 if N is even, however, the variances of these optimal L-estimators
are much larger than that of the four MS-estimators making them not recommendable.

3 Finite-sample behavior of the location estimators

under contamination – a simulation study

To compare the performance of the location estimators in case that not all observations
in xN come from the same two-parameter exponential distribution we conducted an exten-
sive simulation study. To create different situations of “bad” data we considered a certain
contamination model, namely a slippage model of Ferguson-type. For given sample size N
and η0, η1 ≥ 0, let k0 = �N η0�, k1 = �N η1�, and n = N − k0 − k1. We do not require
η0 + η1 ≤ 1/2 however both should not exceed the fraction of “good” observations. Then
samples were generated which contained
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• n = N − k0 − k1 observations from Exp(θ, 1); θ > 0 (the “good” observations),

• k0 observations from Exp(0, 1) (location slippage),

and

• k1 observations from Exp(θ, b), b 
 1 (scale slippage).

We first investigate the more interesting case that no scale slippage is present. Figures 1–3
give bias and standard deviation of L-estimators with s = 0 and different values of r. Note
that in this case the choice of r = 1 corresponds to the bias-corrected sample minimum.
The location slippage amounts to θ = 0.5, 1.5, 2.5. Each simulation run consisted of 5000
repetitions. The figures refer to a sample size of N = 50, results for other sample sizes
turned out to be quite similar.

The simulations lead to the following results: If η0 > 0 then all L-estimators have negative
bias as could have been expected. The ability of coping with contaminated observations
depends of the location difference. In case of small θ L-estimators can cope with a fraction η0

of location-contaminants that is higher than r/N (see Figure 1). This effect disappears with
θ becoming larger. The L-estimator with r = �(N + 1)/2� is resistant against any location-
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contamination, however it has larger standard deviation than any of the MS-estimators (see
below) and therefore cannot be recommended.

Figures 4–6 show comparable results for MS-estimators, when no scale contamination is
present. The corresponding results for the sample minimum are displayed as well.

The simulation results for the MS-estimators lead not to a clear recommendation. Again, if
η0 > 0 then all MS-estimators considered here have negative bias. Further, the MAD-MS-
estimator performs best with respect to bias with the exception of the case that both η0

and θ are large and it has small standard-deviation if the fraction of location contaminants
η0 is not too large. The LSH-MS-estimator has always high (absolute) bias and standard-
deviation and therefore is not recommendable. The RCQ-MS- and RCS-MS-estimators have
similar standard deviation, the former however mostly has the larger (absolute) bias which
for small η0 even exceeds that of the LSH-MS-estimator. As a final conclusion one may state
that within the class of MS-estimators the RCS-MS-estimator performs best if η0 approaches
1/2, otherwise the MAD-MS-estimator has the edge.

When being compared with L-estimators, one finds that MS-estimators give better protection
against a great variety of different contamination situations. However, if one has knowledge
about amount and form of possible contamination, then an L-estimator with appropriately
chosen r and s = 0 is preferable.
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Figure 7 shows further results for L-estimators in case of additional scale contamination.
Location slippage is fixed at θ = 2.5, η0 = 0.1, the parameter b characterizing the scale
slippage has been set to b = 16.

As it could be expected, now also the choice of s should carefully be made. If s is chosen to
small, then with growing r the additional scale contamination leads to a negative bias of the
L-estimator, which can be very substantial if η1 is large. The bias-problem can be avoided if
s is chosen as large as possible, however, as already mentioned, if also r is large the resulting
breakdown-optimal L-estimator has the drawback of a large variance.

Interestingly, if r is chosen such that it exceeds N η0 only by a small amount, then the choice
of s has no effect on the performance of the resulting L-estimator.

With the exception of the RCQ-MS-estimator, the performance of the MS-estimators is not
much affected by additional scale contamination. The former tends to be biased downwards
with increasing η1 and is therefore not recommendable in this case. Again, best results are
obtained with the MAD- and the RCS-MS-estimator, the former mostly having the smaller
bias, the latter having the smaller variance.

Figures 8–10 show simulation results for bias and standard-deviation of the MAD-MS- and
RCS-MS-estimator together with related results for some selected L-estimators in the special
case that the parameters θ and b are set to θ = 2 and b = 16, respectively. As in the case of
no scale contamination, the performance of the MS-estimators is more stable over different
contamination situations than that of the L-estimators. Again, for fixed η0 and η1 it is nearly
always possible to choose certain values for r and s such that the resulting L-estimator shows
better results than its competitors. The same L-estimator, however, may lead to very bad
results if the fractions of contaminated observations change.

10



(a) Bias, η1 = 0.1 (b) Standard-deviation, η1 = 0.1

(c) Bias, η1 = 0.25 (d) Standard-deviation, η1 = 0.25

(e) Bias, η1 = 0.4 (f) Standard-deviation, η1 = 0.4

Figure 7: Bias and standard deviation of L-estimators with N = 50, θ = 2.5, 10% location
contamination for selected values of η1
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– A – : r = 5, s = 0, – B – : r = 13, s = 5, – C – : r = 13, s = 13.
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Figure 10: Bias and standard-deviation of some L- and MS-estimators with N = 50, θ =
2, b = 16, η1 = 0.3; MS-estimators based on – 1 – : MAD, – 2 – : RCS; L-estimators with
– A – : r = 5, s = 0, – B – : r = 13, s = 5, – C – : r = 13, s = 13.

4 Example and Conclusion

Consider the following sample of N = 15 observations which are assumed to come i.i.d. from
a two-parameter exponential distribution:

1.38, 11.31, 13.46, 15.01, 16.00, 17.49, 17.54, 17.89,
19.89, 23.07, 25.53, 32.44, 36.16, 40.61, 49.72.

Figure 11 contains QQ-plots for checking the assumption of exponentiality, where in plot
(a) the population quantiles are estimated non-robustly and in plot (b) their estimation is
based on the RCS-estimator of the scale and the corresponding MS-estimator of the location
parameter. Note that from (a) one would conclude that the assumption of a two-parameter
exponential distribution is questionable. In plot (b), the smallest observation clearly sticks
out as outlying and the remaining points roughly lie on the main diagonal thus supporting
the assumption of exponentiality for the main body of the data.
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Figure 11: QQ-plots for the example: Parameters estimated with (a) sample mean and
minimum, (b) RCS- and RCS-MS-estimator.

Table 1 contains the values of the four MS-estimators discussed so far as well as the values
of some selected L-estimators.

MS-estimator
based on
MAD 10.4247
RCS 8.4059
RCQ 6.1291
LSH 9.3064

L-estimator s =
0 1 2

1 -0.1286 -0.1979 -0.2799
2 9.4242 9.3716 9.3070
3 10.7734 10.7074 10.6238

r = 4 11.4541 11.3699 11.2605
5 11.3213 11.1949 11.0273
6 11.7517 11.5918 11.3726
7 9.6564 9.3116 8.8322

Table 1: Estimators of the location parameter for the example

Indeed, the sample has been generated as a random sample of size 14 from an Exp(10, 16)-
distribution with an additional lower outlier. Therefore, all robust estimators, maybe with
exception of the RCQ-MS-estimator, behave satisfactorily.
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In this paper we have discussed several robust estimators of the location parameter of a two-
dimensional exponential distribution. We have seen that estimators of the median-scale type
provide good protection against different situations of location and/or scale contamination
of the regular data. For a special contamination situation one might find an L-estimator
which performs better with respect to its bias and variance, this location estimator, however,
might fail in other situations. An important application of robust location estimators will be
their implementation in outlier-identification procedures. Since mostly the fraction and type
of outliers in a given sample will be unknown, for this application the use of MS-estimators
is suggested. We will address this topic in further research.
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