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Confidence Intervals for the Between Group Variance
in the Unbalanced One—Way Random Effects Model of
Analysis of Variance

JOACHIM HARTUNG and GUIDO KNAPP
Department of Statistics, University of Dortmund, D—44221 Dortmund

Abstract

A confidence interval for the between group variance is proposed which is deduced
from Wald’s exact confidence interval for the ratio of the two variance components
in the one-way random effects model and the exact confidence interval for the error
variance resp. an unbiased estimator of the error variance. In a simulation study
the confidence coefficients for these two intervals are compared with the confidence
coefficients of two other commonly used confidence intervals. There, the confidence
interval derived here yields confidence coefficients which are always greater than the

prescribed level.
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1 Introduction

In the present paper we consider confidence intervals for the between group variance in the
unbalanced one—way random effects model of analysis of variance (ANOVA). In the case of
a balanced design one method for constructing a confidence interval for the between group
variance was independently proposed by Tukey (1951) and Williams (1962). The Tukey—
Williams-method is based on two quadratic forms in normal variables which are exactly
distributed as multiples of y2-distributed random variables and the expectations of these
quadratic forms are parametric functions of the between group variance. Thus, for these
two parametric functions of the between group variance exact (1 — k)—confidence intervals
can be calculated and by solving the intersection of these two confidence intervals, a
confidence interval of the between group variance is given which has a confidence coefficient
at least as great as 1 — 2k due to Bonferroni’s inequality. The results of simulation studies
conducted by Boardman (1974) indicated that the confidence coefficient of the Tukey—
Wiliams-interval is near 1 — & (cf. also Graybill (1976, p. 620)) and Wang (1990) showed

that the confidence coefficient of this interval is at least 1 — k.

Following the Tukey—Williams approach Thomas and Hultquist (1978) proposed a confi-
dence interval for the between group variance in the unbalanced case where the distribu-
tions of the two involved quadratic forms in normal variables can only be approximated
by multiples of a y?-distributed random variable, but again the expected values of the
quadratic forms are parametric functions of the between group variance. The approxima-
tion to a y2-distribution is, however, not satisfactory if the ratio of between and within
group variances is less than 0.25 and the design is rather unbalanced. To overcome this
problem Burdick, Magsood and Graybill (1986) considered a conservative confidence in-
terval for the ratio of between and within group variance, which was used in Burdick and
Eickman (1986) to construct a confidence interval for the between group variance based on
the ideas of the Tukey—Williams method. In Burdick and Eickman (1986) a comparison of
the confidence coefficients of the Thomas—Hultquist—interval and the Burdick—Eickman—
interval are given by simulation studies. The results of the simulations studies indicated

that the confidence coefficient is near 1 — & in most cases. If the approximation to a y?-



distribution in the Thomas—Hultquist approach is not so good, the resulting confidence
interval can be very liberal, while in these situations the Burdick-Eickman—intervall can

be very conservative.

Now we propose a confidence interval for the between group variance in the unbalanced
design which is constructed from an exact confidence interval for the ratio of between and
within group variance derived from Wald (1940), cf. also Searle, Casella, and McCulloch
(1992, p. 78), Burdick and Graybill (1992, p. 186 f.), and an exact confidence interval of

the error variance resp. an estimator of the error variance.

The structure of the paper is as follows: In section 2 a description of the unbalanced
model and the properties of the mean sum of squares are presented. In section 3 the
different approaches for constructing a confidence interval for the between group variance
are described in detail. The section 4 explains the conducted simulation studies concerning
the confidence coefficients of the three and contains the results of the simulation study.

Finally, some conclusions are given.

Note that all mean sum of squares considered in the following are assumed to be positive,

which is given with probability one.

2 The Model

We consider the unbalanced case of the one-way random effects model of ANOVA, i. e.
yij:/L+ai+€ij, izl,...,r,jzl,...,ni>1, (]_)

where y;; denotes the observable variable, 1 the fixed, but unknown grand mean, a; the

2

unobservable random effect with mean 0 and variance oy,

and e;; the error term with

mean 0 and variance o?. We assume that the random variables ay,...,d,, €11, .. €m,
are normally distributed and mutually stochastically independent. Furthermore, let n =

2221 n; denote the number of the total observations.



In model (1) it holds that the mean sum of squares between the groups, i. e.

1 T
MS1= (T —T0)? 2
T_liz:;n(y' 7.) 2)
with 75 = > 0% yij/ni and g = 375 D707 yij/n, has the expected value
1 2_ N7 2
E(MS1) = ko? + 02, k= T : (3)
r—1 n

and

(r—1)MS1 5 e 9

—NXT717 lfo—a:07 (4)

ko? + o2
where x2 denotes a central chi-square distributed random variable with v degrees of

freedom.

The mean sum of squares within the groups, i. e.

1 T ng
MS2=——73 > (v~ %) (5)
i=1 j=1

has expected value

E(MS2) = o? (6)
and

(n—r)MS2/o¢ ~ x5 - (7)
According to (7), a (1 — k)-confidence interval for o2 is given by

(n—r)MS2 (n—r)MS2

?

CI(0?) :

e

) (8)

2 2
Xn—r;l—n/Q Xn—r;n/Z

where x2.., denotes the y—quantile of a x*-distribution with v degrees of freedom.

Due to (4) the approximation of the distribution of A/S1 by a multiple of a y*>—distribution
is only satisfactory if the between group variance o2 is close to 0. Thus, the transfer of the
confidence interval for o2 in the balanced case independently proposed by Tukey (1951)
and Williams (1962) to the unbalanced case is not possible. In the next section we will
therefore consider three different approaches of constructing a confidence interval for o2

in the unbalanced case.
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3 Confidence intervals on o}

3.1 The Thomas—Hultquist confidence interval

Instead of MS1 from (2) Thomas and Hultquist (1978) considered the sample variance

of the group means given by

2
1 —(_ 1<
MSS’:T_12<%.—;;%.> . (9)

1=1

They showed that it holds approximately

(7” — 1)M53 appr.

2 2/~ ~ X?«_1 ) (10)
o2+ 02/n
where n denotes the harmonic mean of the sample sizes of the r groups.

Furthermore, Thomas and Hultquist proved that M.S2 and M S 3 are stochastically inde-

pendent, so that

O'2 MS3 appr
< : ~ F,_ n—r 11
o2+ o2/ MS2 b (11)

where F,, ,, denotes a F'-distributed random variable with 14, and v, degrees of freedom.

From (10) and (11) (1—x)—confidence intervals for 024 02/7 and 02 /c? can be constructed
and adopting the ideas of constructing a confidence interval by Tukey and Williams to
the present situation, Thomas and Hultquist proposed the following confidence interval

2.
for o7

r—1 MS2
CITH(UZ) : [2(7) (Msg_ T rl,nr;ln/2> )

erl;lfn/Z
—1 MS2
(Z ) <M83 - o Frl,nr;n/2> : (12)
erl;n/Q n

Due to Bonferroni’s inequality the confidence coefficient of (12) is at least (1 — 2k), but
one may hope that the actual confidence coefficient is near (1 — k). However, in Thomas
and Hultquist (1978) it is reported that the y*-approximation in (10) is not good for
extremely unbalanced designs where the ratio n = 02/0? is less than 0.25. Thus, in such
situations the confidence interval (12) can be a liberal one, i. e. the confidence coefficient

substantially lies below (1 — k).



3.2 The Burdick—Eickman confidence interval

Burdick, Magsood and Graybill (1986) suggested a confidence interval for the ratio n =
02 /o2 which overcomes the problem with small ratios in the Thomas—Hultquist procedure

and has a confidence coefficient of at least 1 — x. This interval is given by

MS3 1 1 MSS3 1 1
- - - (13)

Cl(n) : . — .
(77) MS2 Frfl,nfr;lfn/Z Nmin ’ MS2 Frfl,nfr;lfn/Q Nmax

with 1y, = min{ny, ... ,n,} and np.x = max{ny,... ,n,.}.

The difference between (13) and the confidence interval for n = 02/0? in the Thomas—
Hultquist procedure is that due to (11) Thomas and Hultquist subtract 1/n in both

bounds instead of 1/nyi, and 1/ny.y, respectively, in (13).

Using (13) and the confidence interval for o2 + ¢2/n due to (10), Burdick and Eick-
man (1986) investigated the confidence interval for o2 constructed by the Tukey-Williams

method.

This interval is given by

nL r—1)MS3 nU r—1)MS3
Cly(0?) < ~)_(2 ) ;< ~>'(2 ) , (14)
1+nL XT—I;I—H/Q L+nU XT—I;I_H/Q
with
MSS3 1 1
L= 0 : -
max{ " MS2 Frfl,nfr;lfn/Q nmin}
and
MS3 1 1
U= 0 . -
max{ ’ MS2 Frfl,nfr;n/Q nmax}

3.3 Confidence interval based on Wald’s confidence interval for n

Instead of approximative confidence intervals for 7 as in the Thomas—Hultquist and
Burdick-Eickman approach we consider the exact confidence interval for n given in Wald

(1940) to construct a confidence interval for 2.



Following Wald (1940) we observe that
Var(y;) = 02 + o2 /n; = o2 Jw; (15)

with w; =n;/(1+nn;),i=1,...,r.

Now, Wald considered the sum of squares

. — ZT—1 W;Yi. ’
(r=1)MS4= ) w; (yi. - == (16)
izzl: Zi:l W

and proved that

(r = 1)MS4fo ~x; .
Furthermore, M S/ and MS2 are stochastically independent so that

MS}
w =—~F_ 1. 1
()= 3o~ Fr, (1)

According to (17), an exact confidence interval for the ratio n can be constructed.

Wald showed that (r — 1)M S4 is a strictly monotonously decreasing function in 7, and
so the bounds of the exact confidence interval are given as the solutions of the following

two equations:

lower bound: F,(n) = Fr_1 n—r 1—x
(n) Ln—r1-r/2 (18)
upper bound:  F,(n) = Fr_1 nep r/2
Since F,(n) is a strictly monotonously decreasing function in 7 the solution of (18), if it

exists, is unique. But due to the fact that 7 is nonnegative, (r — 1)M S/ is bounded at
n = 0, namely it holds

D i1 nzy_z) ? (19)

(T_I)MS4 < an (y_z_ Zr

n=1 1

Thus, a nonnegative solution of (18) may not exist. If such a solution of one of the
equations in (18) does not exist, the corresponding bound in the confidence interval is set
equal to zero. Note that the existence of a nonnegative solution in (18) only depends on

the chosen x.



Let us denote by n;, and 7y the solutions of the equations in (18), so we propose, using

the confidence bounds from (8) for o2, the following confidence interval for o2

(n—r)MS2 (n—r)MS2
X%hr;lfn . X?L—T;H .

which has a confidence coefficient of at least (1 —2k) according to Bonferroni’s inequality.

CI(0?) :

nL; | , (20)

But due to the fact that the confidence coefficient of [0 - np,, 02 - ny] is exactly 1 — &, the
resulting confidence interval (20) may be very conservative, i. e. the confidence coefficient
is larger than (1 — k). So, we also consider a confidence interval for o2 with the estimator

MS2 for o2 instead of the bounds of the confidence interval for o2, i. e.

Cl(02) - [MS2- 3 MS2-qy] . (21)

4 Simulation studies

In simulation studies we compare the confidence coefficients of the four different confidence
intervals (12), (14), (20), and (21) for o2 in the unbalanced one-way random effects model.
The simulations are conducted using SAS 6.12 under Windows NT. The means of the r
groups, ¥;., ¢ = 1,...,r, are independently generated using the SAS function RANNOR
and the sum of squares within the groups, (n — r) - MS2, is generated independently
fromy;, 1 =1,...,r, using the SAS function RANGAM. During all simulations the error
variance o2 is set equal to one, and for the variance between the groups, o2, we consider
the values 0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8, and 10. The different unbalanced
designs, which we examined, are given in table 1, whereby eight of these patterns were
also analysed by Burdick and Eickman (1986). For r = 3 and r = 6 we extend the analysis
by considering some patterns which are not so extremely unbalanced as in Burdick and

Eickman.

We consider two-sided confidence intervals with x = 0.1 and x = 0.05, respectively.
All estimated confidence coefficients are based on 10,000 replications for every set of
parameters. Based on normal approximation it means that a 95%-confidence interval for
an estimated confidence coefficient p = 0.95 is given by [0.9456 ; 0.9541] and for p = 0.9
by [0.8940 ; 0.9057].



Table 1: Patterns of unbalanced designs used in simulations

Pattern r n;

1* 3 5, 10, 15

2 3 10, 20, 30

3 3 5, 10, 100

4* 3 1, 1, 100

o* 3 2, 2, 100

6 6 9, 10, 15, 5, 10, 15

7 6 10, 20, 30, 10, 20, 30

8 6 5, 10, 15, 20, 25, 30

9* 6 1,1,1,1,1, 100

10* 6 2,2,2,2,2,100

11* 10 1, 1, 4, 5, 6, 6, 8, 8, 10, 10
12* 10 2,2,4,5,6,6,8, 8,10, 10
13* 10 3,3,4, 5,6, 6,8, 8,10, 10

* These patterns were also considered in Burdick and Eickman (1986)

For solving the system of equations (18), we use the bisection method and choose as the
precision of the solutions 10714, As starting values of the bisection method we use the
ones proposed by Wald (1940), who showed that for the solutions of (18), say 77 =, or
nu, it holds with 7 = k/2 or 7 =1 — K/2

MSS3 1 1 . _MS3 1 1
: - <9< : - : (22)
MS2 Fr—l,n—r;T TMmin MS2 Fr—l,n—r;T Nmax

Note that the lower bound for 77, and the upper bound for 7y coincide with the confidence
interval for n considered by Burdick, Magsood and Graybill (1986), cf. (13).

In table 2 the results of the simulation study are explicitly shown for all values of o2
with k£ = 0.1 in pattern 5, where Clry denotes the Thomas-Hultquist-interval from (12),
Clgg the Burdick-Eickman-interval from (14), CI the interval from (20) and CI from
(21). We choose this pattern as an example to illustrate the characteristics we found in

all simulation studies.

If 2 = 0 all confidence intervals are rather conservative. For small 02 > 0 the estimated



Table 2: Estimated confidence coefficients for the four different confidence intervals in

pattern 5 with Kk = 0.1
Pattern | 02 | Clry  Clgg CI CI

3 0 109377 0.9796 0.9465 0.9465
0.01 | 0.8874 0.9683 0.9026 0.9007
0.05 | 0.8890 0.9555 0.9070 0.8986
0.1 10.8912 0.9452 0.9141 0.9022
0.25 | 0.8961 0.9292 0.9227 0.9058
0.5 1 0.8946 0.9122 0.9244 0.9013
0.75 | 0.8984 0.9088 0.9280 0.9021
1 10.9035 0.9098 0.9352 0.9084
2 10.9000 0.9030 0.9363 0.9052
3 10.9084 0.9099 0.9414 0.9127
4 10.9049 0.9059 0.9404 0.9074
6
8

0.9028 0.9036 0.9422 0.9069
0.9000 0.9003 0.9394 0.9049
10 1 0.8969 0.8973 0.9380 0.9020

gt ¢t Ot Ot Ot QOu Ut QU QU Ot ot ot

confidence coefficients of the Thomas—Hultquist interval lie below 1 — k, but the difference
to 1 —  in this pattern is not so severe. If o2 becomes larger, the estimated confidence
coefficient lies near 1 — k. The Burdick-Eickman-interval possesses for small o2 > 0 a
high confidence coefficient, i. e. in these situations the interval is very conservative. The
estimated confidence coefficient of this interval declines, if o2 becomes larger, and lies

near 1 — k for large o2. The confidence interval CI, where the bounds of the (1 — k)

2

2 are taken as estimates of the error variance, has a confidence

confidence interval for o
coefficient near 1 — « for small 62 > 0, and the estimated confidence coefficient increases if
o2 becomes larger. Thus, for large o2 this confidence interval may be rather conservative.
For the confidence interval CI with the mean squared error as the estimator of the error

variance we get estimated confidence coefficients which lie near 1 — & for all 62 > 0.

If an increase or a decline of the estimated confidence coefficients is found, the estimated

10



confidence coefficients attain a certain level near o2 = 1, so that for 62 > 1 there is little
variation between the estimated confidence coefficients. Thus, for simplifying the presen-

tation of all simulations we present in table 3 and 4 ranges of the estimated confidence

2

coefficients for 0 < 02 < 1 and o2

> 1 separately for all patterns with x = 0.1, and

2

k = 0.05, respectively, where in the case 0 < o

< 1 we omit the values for o2 = 0,

because as stated above the confidence intervals are rather conservative in this situation.

The most extreme result in table 3 and 4, respectively, is given in pattern 11. There, the
Thomas-Hultquist-interval is very liberal for 0 < 02 < 1, whereas the Burdick-Eickmann-
interval produces estimated confidence coefficients greater than 0.99 in these situations.
Generally speaking, the results just described for k = 0.1 in pattern 5 are reflected in a

similar way in all conducted simulations as well for k = 0.1 as for K = 0.05.

5 Conclusions

In our simulation studies we confirm the results of Burdick and Eickman (1986) that the
Thomas-Hultquist-interval may be very liberal for small o2, i. e. the confidence coeffi-
cient considerably lies below 1 — k. In these situation the Burdick-Eickman-interval has
a confidence coefficient which is always larger than 1 — x, but the interval can be very
conservative. If o2 becomes larger, both intervals are very similar. The confidence in-
terval CI deduced from Wald’s confidence interval for the ratio n with the bounds of the
confidence interval of the error variance as estimates for the error variance has always a
confidence coefficient at least as great as 1 — x, but this interval can be very conservative
for large 02. A good compromise for the whole range of o2 is the confidence interval CI
from (21), which has a confidence coefficient at least as great as 1 — x for small o2, and

for growing o2 the confidence interval only becomes moderately conservative.
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Table 3: Ranges of estimated confidence coefficients for the four different confidence intervals

(12), (14), (20), and (21) with & = 0.1

Pattern

2

Oq

CITH

CIBE

CI

Cl

1

10

11

12

13

<=
>1
<=
>1
<=1
>1
<=
>1
<=
>1
<=1
>1
<=
>1
<=
>1
<=1
>1
<=
>1
<=
>1
<=1
>1
<=

>1

0.8976 — 0.9056
0.9002 - 0.9035

0.8982 — 0.9048
0.8963 — 0.9039

0.8801 — 0.9046
0.8978 — 0.9037

0.8885 — 0.8968
0.8971 — 0.9021

0.8874 — 0.9035
0.8969 — 0.9084

0.8872 — 0.9065
0.8997 — 0.9033

0.8889 — 0.9048
0.8967 — 0.9062

0.8742 — 0.9065
0.8958 — 0.9020

0.8818 — 0.9004
0.8987 — 0.9037

0.8787 — 0.8987
0.8983 — 0.9076

0.8141 — 0.8965
0.8999 — 0.9057

0.8666 — 0.9068
0.8990 — 0.9031

0.8791 - 0.9062
0.8945 — 0.9044

0.9023 - 0.9530
0.9002 - 0.9038

0.8997 — 0.9492
0.8963 — 0.9043

0.9048 - 0.9707
0.8979 — 0.9037

0.9155 - 0.9714
0.8999 — 0.9084

0.9088 — 0.9683
0.8973 — 0.9099

0.8977 - 0.9713
0.9003 - 0.9034

0.8945 — 0.9661
0.8967 — 0.9062

0.9018 — 0.9797
0.8966 — 0.9021

0.9240 — 0.9727
0.8994 — 0.9145

0.9059 - 0.9711
0.9000 — 0.9094

0.9338 — 0.9951
0.9010 — 0.9202

0.9220 — 0.9926
0.8992 — 0.9059

0.9115 - 0.9874
0.8946 — 0.9047

0.9095 - 0.9604
0.9609 — 0.9643

0.9139 — 0.9483
0.9460 — 0.9523

0.9030 — 0.9372
0.9346 — 0.9396

0.9016 — 0.9263
0.9333 — 0.9409

0.9026 — 0.9352
0.9363 — 0.9422

0.9070 — 0.9650
0.9675 — 0.9702

0.9113 — 0.9555
0.9519 - 0.9585

0.9115 - 0.9570
0.9525 - 0.9609

0.9037 — 0.9398
0.9488 — 0.9557

0.9026 — 0.9427
0.9491 - 0.9576

0.9081 - 0.9773
0.9790 — 0.9842

0.9090 - 0.9779
0.9813 — 0.9847

0.9093 - 0.9807
0.9799 - 0.9836

0.9030 — 0.9184
0.9140 — 0.9180

0.9049 - 0.9097
0.9033 — 0.9103

0.8978 — 0.9073
0.9025 — 0.9076

0.8988 — 0.9063
0.9020 — 0.9062

0.8986 — 0.9084
0.9020 - 0.9127

0.8986 — 0.9207
0.9142 - 0.9188

0.9016 — 0.9110
0.9050 - 0.9137

0.9019 — 0.9152
0.9061 - 0.9117

0.8994 — 0.9092
0.9067 — 0.9121

0.9005 — 0.9087
0.9060 — 0.9165

0.9010 - 0.9269
0.9205 - 0.9314

0.9026 — 0.9281
0.9245 - 0.9294

0.9006 — 0.9280
0.9215 - 0.9293
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Table 4: Ranges of estimated confidence coefficients for the four different confidence intervals

(12), (14), (20), and (21) with & = 0.05

Pattern

2

Oq

CITH

CIBE

CI

Cl

1

10

11

12

13

<=
>1
<=
>1
<=1
>1
<=
>1
<=
>1
<=1
>1
<=
>1
<=
>1
<=1
>1
<=
>1
<=
>1
<=1
>1
<=

>1

0.9456 — 0.9541
0.9484 — 0.9532

0.9484 - 0.9527
0.9483 — 0.9538

0.9365 — 0.9524
0.9478 — 0.9523

0.9384 — 0.9485
0.9454 — 0.9525

0.9390 - 0.9527
0.9492 - 0.9566

0.9406 — 0.9540
0.9489 — 0.9522

0.9436 — 0.9548
0.9479 — 0.9553

0.9306 — 0.9528
0.9447 — 0.9529

0.9357 — 0.9496
0.9496 — 0.9525

0.9362 — 0.9494
0.9473 — 0.9551

0.8875 — 0.9463
0.9454 — 0.9528

0.9264 — 0.9546
0.9500 — 0.9530

0.9398 — 0.9528
0.9483 — 0.9532

0.9535 — 0.9772
0.9484 — 0.9532

0.9507 — 0.9760
0.9484 — 0.9538

0.9499 - 0.9871
0.9478 — 0.9524

0.9585 — 0.9874
0.9457 — 0.9560

0.9542 — 0.9853
0.9492 - 0.9574

0.9501 — 0.9849
0.9493 — 0.9522

0.9474 — 0.9839
0.9479 — 0.9553

0.9510 — 0.9906
0.9447 — 0.9529

0.9611 — 0.9876
0.9505 — 0.9566

0.9525 — 0.9858
0.9485 — 0.9559

0.9682 — 0.9971
0.9491 — 0.9588

0.9615 — 0.9968
0.9504 — 0.9537

0.9578 — 0.9950
0.9484 — 0.9542

0.9561 — 0.9841
0.9841 — 0.9874

0.9584 - 0.9818
0.9784 — 0.9811

0.9546 — 0.9711
0.9717 — 0.9745

0.9503 — 0.9673
0.9710 — 0.9749

0.9502 - 0.9707
0.9728 - 0.9754

0.9570 — 0.9882
0.9882 - 0.9897

0.9583 — 0.9840
0.9813 — 0.9846

0.9580 — 0.9825
0.9812 - 0.9859

0.9516 — 0.9733
0.9781 - 0.9830

0.9524 - 0.9761
0.9783 — 0.9841

0.9528 - 0.9912
0.9925 - 0.9950

0.9588 — 0.9932
0.9929 — 0.9958

0.9569 — 0.9940
0.9928 — 0.9954

0.9518 — 0.9625
0.9597 — 0.9627

0.9535 — 0.9571
0.9537 — 0.9591

0.9503 — 0.9550
0.9506 — 0.9551

0.9496 — 0.9544
0.9491 - 0.9551

0.9490 — 0.9554
0.9516 — 0.9588

0.9508 — 0.9624
0.9598 - 0.9627

0.9512 — 0.9604
0.9531 — 0.9600

0.9518 — 0.9575
0.9519 - 0.9595

0.9472 - 0.9574
0.9546 — 0.9582

0.9503 — 0.9569
0.9526 — 0.9592

0.9490 — 0.9682
0.9639 — 0.9681

0.9538 — 0.9686
0.9658 — 0.9687

0.9511 - 0.9681
0.9647 — 0.9693
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