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The Masking Breakdown Point of Multivariate Outlier

Identi�cation Rules

Claudia Becker and Ursula Gather �

Abstract

In this paper� we consider one�step outlier identi�cation rules for multivariate data�

generalizing the concept of so�called � outlier identi�ers� as presented in Davies and

Gather �����	 for the case of univariate samples
 We investigate� how the �nite�sample

breakdown points of estimators used in these identi�cation rules in�uence the masking

behaviour of the rules


Keywords� Breakdown points Outlier identi�cation Masking Robust statistics


� Introduction

It is well known that outliers� i�e� observations lying �far away� from the main part of a

data set and probably not following the assumed model� can strongly in�uence the statistical

analysis of that data and even falsify the results� In particular� some classical parametric tests

and estimators� e�g� the arithmetic mean as a location estimate� are prone to the in�uence

of outlying observations� Therefore� one often �nds the identi�cation of outliers treated as

a means to screen a data set for �bad	 observations �rstly� thus avoiding a distortion of the

statistical analysis� But outliers can be of fundamental interest in themselves and therefore

their identi�cation should also be considered as a goal in itself�

In multivariate data sets� it is almost impossible to detect outliers by pure vision� be


cause they do not �stick out on the end� �Gnanadesikan and Kettenring� ���� p� ��� as

in univariate situations� Observations which are not conspicuous in any single variable may

nevertheless di�er clearly from the rest of the data if all variables are looked at simultane


ously �cf� Rousseeuw and Leroy� ���� p� � for an example�� Some methods proposed for the

identi�cation of outliers in multivariate samples are of heuristic nature �e�g� Atkinson and
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Mulira� ��� Bacon
Shone and Fung� ���� Barnett and Lewis� ��� p� ��� ��� Bhandary�

���� others are of consecutive testing type �see Barnett and Lewis� ��� chap� ���� Caroni

and Prescott� ��� Hara� ���� Hawkins� ���� chap� �� Wilks� ����� In this article� we

discuss the approach of one
step outlier identi�cation rules�

Our paper is organized as follows� In Section �� we make precise in a formal way how

we understand the task of outlier identi�cation and we give a de�nition of a multivariate

outlier identi�er� For comparing the behaviour of such identi�ers� performance criteria are

needed� In Section �� we deal with the masking breakdown point as a worst
case criterion

and its relation to the �nite
sample breakdown points of the estimators� the identi�cation

rule is based on� Finally� we give a small example�

� Multivariate outlier identi�cation

The identi�cation of outliers heavily relies on the assumption of some underlying model

for the data� An observation can �nally only be considered as an outlier with respect to

such a model in mind� Here� we look at the p
variate normal distribution N� ��� as a

model distribution� where � IRp� � � IRp�p� � positive de�nite �p�d��� In analogy to the

de�nition of Davies and Gather ���� p� ���� for the case of the univariate normal� Gather

and Becker ���� p� ��� give the general concept of an � outlier which can also be applied

to the multivariate normal case� An � outlier with respect to N� ��� is then de�ned as an

element of the set

out��� ��� �� fx � IRp � �x� �T����x� � � ��p����g

for � � ��� ��� ��p���� denoting the �����
quantile of the ��p
distribution� The set out��� ���

itself is called the � outlier region of N� ���� Thus� we have

P�X � out��� ���� � � for X � N� ���

and for usual choices of � �� � ����� � � ���� this re�ects the idea of an outlier being an

observation which is rather unlikely under the assumed model and also situated �outside the

main mass of the distribution	�
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The size of the outlier region may be adjusted to the sample size� For a sample of size

N � one may consider out��N � ���� where� as in the univariate case� �N can be chosen

according to the condition

P�Xi � IRpnout��N � ���� i � �� � � � � N� � �� � ���

for Xi � N� ���� i � �� � � � � N � and some given � � ��� ��� Thus� �N � �� ��� ����N �

Our aim is now to detect all �N outliers in a given sample xN � �x�� � � � �xN� of size N �

As the parameters and � are unknown� the outlier region itself is unknown� and our task

is equivalent to the task of estimating the �N outlier region of the model distribution from

data which themselves may not all be �clean��

This motivates the following de�nition �Gather and Becker� ��� p� �����

Let �N � ��� ��� xN � �xrn� x
�
k� with xrn �� �xr�� � � � �xrn� be a sample of size n of i�i�d�

N� ��� distributed random vectors� let the remaining k observations �x��� � � � �x�k� �� x�k be

�N outliers with respect to N� ��� for some �N � ��� ��� where k � N � n� k � N	�� k� �N

unknown� An �N outlier identi�er is de�ned as a region

OR�xN � �N � �� fx � IRp � �x�m�TS���x�m� � cg�

where S � S�xN � � PDS�p�� m � m�xN� � IRp� and c � c�p�N� �N � � IR� c � �� not

depending on the arrangement and the existence of any �N outliers in xN at all� All points

x � OR�xN � �N � are identi�ed as �N outliers with respect to N� ����

Here� PDS�p� � fS � IRp�p � S p�d� and symmetricg� and c�p�N� �N � is a normalizing

constant� Several normalizing conditions are possible in order to �x c appropriately� We will

restrict ourselves to the condition �following ����

P�Xi � IRpnOR�XN � �N�� i � �� � � � � N� � �� � ���

for � � ��� �� and �N � � � �� � ����N � where XN � �X�� � � � �XN�� X�� � � � �XN i�i�d�

according to N� ���� This means that with probability � � � in a sample of size N from

the p
variate normal� no observation will be identi�ed as an outlier�

All further considerations will be restricted to a�ne equivariant identi�ers OR� Given

an a�ne linear transformation xN �� AxN �b� A � IRp�p� A nonsingular�b � IRp� an a�ne
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equivariant outlier identi�er ful�lls

x � OR�xN � �N � � Ax� b � OR�AxN � b� �N �

with AxN � b �� �Ax� � b� � � � � AxN � b�� This condition holds� if one chooses m and S as

a�ne equivariant estimators of location and covariance�

� Relations between �nite�sample breakdown points

and the masking e�ect

For the comparison of outlier identi�cation rules one can think of various di�erent criteria

�cf� Jain and Pingel� ���� Hampel� ���� Simono�� ���� Barnett and Lewis� ��� p� ������

Davies and Gather� ��� or Gather and Becker� ��� p� ��� f�� for some possibilities�� One of

them is the masking breakdown point which is a worst
case criterion� The possible occurrence

of the so
called masking e�ect is a well known problem when identifying outliers� It means

that it can happen that some extremely outlying observations prevent the procedure from

detecting even one outlier� In Davies and Gather ����� the masking breakdown point of a

univariate outlier identi�er is de�ned� roughly spoken� as the smallest proportion of outliers

in a sample needed to create a breakdown of the procedure by the masking e�ect� In the

multivariate case� we give the following de�nition�

For a sequence � ��N �N�IN � � � �N � �� � � ��� �� and regular observations xrn let


M �� 
M�OR� �N � x
r
n� k� �� �� inff 
 � � � there exist � outliers x�k such that

based on xN � �xrn� x
�
k� some 
 outlier will not be identi�ed as

�N outlier by ORg� ���

kM �� kM�OR� � xrn� �� �� minfk � 
M�OR� �n�k� x
r
n� k� �� � �g�

Then 
M is called masking point and

�M�OR� �� �M �OR� � xrn� �� ��
kM

n � kM

is called masking breakdown point of OR�
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The notion of breakdown is well known in the context of robust estimation� Donoho

and Huber ����� p� ���� developed the de�nition of the �nite
sample breakdown point

of an estimator� Lopuha�a and Rousseeuw ���� p� ���� extended the formal de�nition to

estimators of covariance� Tyler ���� introduces the concept of a uniform breakdown point

for pairs of location and scale estimators� which is also considered by Gather and Hilker

����� The general idea is to determine the minimum number of arbitrarily badly placed

observations in a sample needed to bring the estimator beyond all bounds� Formally� this

reads as follows�

Let xN � �xr�� � � � �xrN� be a sample from i�i�d� N� ��� distributed variables� Construct

y
N�k

� �xri�� � � � � xrin� y�� � � � � yk�� yj � IRp� j � �� � � � � k� N � n � k� by replacing k

observations from xN by arbitrary vectors�

First� consider a sequence T �� fT �xm�gm� IN of location estimates for � The �nite�sample

breakdown point of T is de�ned as

���xN � T � �� min
��k�N

f
k

N
� sup
y
N�k

kT �xN�� T �y
N�k

�k � �g�

Here� k�k denotes the euclidean norm�

Consider a sequence C �� fC�xm�gm� IN of estimators for the covariance matrix �� For

a symmetric matrix A � IRp�p let ���A� � � � � � �p�A� denote the eigenvalues� and for

A�B � IRp�p� A�B p�d�� letD be de�ned by D�A�B� �� maxfj���A�����B�j� j �
�p�A�

� �
�p�B�

jg�

Then

���xN � C� �� min
��k�N

f
k

N
� sup
y
N�k

D�C�xN �� C�y
N�k

�� � �g

is called �nite�sample breakdown point of C�

We will only consider estimators for which the breakdown point does not depend on the

special sample but only on the sample size N � As this condition is satis�ed for most of the

commonly used estimators� it does not seem to be too restrictive �cf� Donoho and Huber�

���� p� ���� Gordaliza� ��� p� ����

Because an outlier identi�er as de�ned above depends on estimators of location and

covariance� we may expect strong relationships between the behaviour of the estimators and

the behaviour of the identi�er� In the following� bounds are given on the masking
breakdown
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point of an identi�erOR depending on the �nite
sample breakdown points of the estimators

m and S used in OR�

Theorem ��� Consider an identi�er OR� based on estimators m and S for and �� Let

���xN �m� �� k�	N and ���xN � S� �� k�	N denote the �nite�sample breakdown points of m

and S with ki � N	�� i � �� �� Let further denote k �� minfk�� k�g� � ��N �N�IN � � �

�N � �� and � � ��� ��� Suppose that xrn � �xr�� � � � �xrn� is a sample of regular observations

from N� ���� Then

�M�OR� � xrn� �� �
k

N
�

where N � n � k�

The proof of this theorem is given in the Appendix� Theorem ��� gives a lower bound

for the masking breakdown point� In a similar way we can derive an upper bound�

Theorem ��� Assume the conditions of Theorem ��� with K �� maxfk�� k�g� Then

�M�OR� � xrn� �� 	
K

N
�

where N � n � K�

The proof is given in the Appendix� From Theorems ��� and ��� it can be seen that

the �nite
sample breakdown points of the estimators represent bounds for the masking

breakdown point of the resulting outlier identi�er� Therefore� the masking breakdown point

equals the �nite
sample breakdown points if ���xN �m� and ���xN � S� coincide� Together� the

theorems can be used to derive the maximum possible masking breakdown point� This is

done for samples where the regular observations are in general position� A p
variate sample

is said to be in general position if no more than p points of the sample lie in any �p � ��


dimensional subspace of IRp �cf� Rousseeuw� ���� S� �����

Theorem ��� Suppose that� under the conditions of Theorem ���� the sample xrn of regular

observations is in general position� and that n � p � �� Then

��N � p � ��	� 

N
	 �Mmax 	

�

�
�

where �Mmax � maxOR �M�OR� and �x denotes the integer part of x � IR�

�



The proof is given in the Appendix� From the results of the above theorems it becomes

clear that the use of high
breakdown estimators such as certain S
estimators in outlier iden


ti�ers will give the best possible protection against the masking e�ect� Rousseeuw and Yohai

����� introduce S
estimators in the context of robust regression� Davies ����� extends the

de�nition and derives a pair �m� S� of S
estimates for multivariate location and covariance�

showing that the maximum attainable breakdown point for �m� S� is ��N � p � ��	� 	N �

in which case we will denote them as SMB
estimators�

Corollary ��� Under the conditions of Theorem ��� let ORSMB
be an outlier identi�er

based on SMB�estimators for location and covariance� Then

�M�ORSMB
� �

��N � p � ��	� 

N
�

The same high masking breakdown point is attained by using the minimum volume

ellipsoid estimators introduced by Rousseeuw ����� if one chooses the number h of data

points on which the ellipsoid is based according to h � ��N � p � ��	� � in which case the

estimators have the best possible �nite
sample breakdown points� This leads to a similar

identi�cation procedure as introduced by Rousseeuw and van Zomeren ����� The di�erence

lies in the normalizing condition� In this paper� we adjust the critical value to the sample

size�

The use of SMB
estimators for the identi�cation of outliers is illustrated by the following

example�

Example ��� The identi�er ORBW based on Tukey�s biweight 	Beaton� Tukey� �
�� also

cf� Rocke� �

�� is given by

ORBW �� fx � IRp � �x�mBW�TS��BW�x�mBW� � cBW�p�N� �N �g�

where mBW and SBW are solutions of the minimization problem

min
S �PDS�p�

det�S�

under the restriction

�	N
N

i��

 �Xi �m�TS���Xi �m� � b��

�



Table �� Observation distances with respect to mBW and SBW

Observation Distance Observation Distance

� ����� �� �
��
� ��
�� �� �
��
� ����� �� �
��
� ����	 �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
�� �
�� �� �
��

�� ����	

Here�  � BW � IR� �� IR�

BW�d� �
d�	� � d		��c��� � d
	��c	�� � � 	 d 	 c�

c��	� � d � c�

�

c� � IR such that the �nite�sample breakdown point of SBW is maximal� That means c�

solves the equation E��D�� � r�c��� where r � ��N � p � ��	� 	N and D is a random

variable with D� � ��p� The value b� is determined by E��D�� � b� 	cf� Lopuha�a� �
�
�

Rocke� �

���

The constant cBW�p�N� �N � is calculated by simulation from the normalizing condition 	���

where we choose � � ����

We consider the data set known as �stackloss data� 	Brownlee� �
��� p� ���� which is

often investigated in the context of robust regression and outlier identi�cation� The data

come from an experiment for the oxidation of ammonia into nitric acid� Four variables

are recorded� rate of incoming ammonia� cooling water temperature� acid concentration� and

stackloss� In the regression approach� the stackloss is regarded as the dependent variable

which has to be explained by means of the remaining variables� The observations can also

be regarded as an unstructured multivariate data set� In this case� we have a sample of size

N � �� with p � � variables in which we are searching for outliers� The value of the normal�

izing constant c for the identi�cation procedure is then given as cBW��� ��� ������� � ������

�



Table �� Observation distances with respect to xN and SN

Observation Distance Observation Distance

� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
� �
�� �� �
��
�� �
�� �� �
��

�� ��
��

Table � shows the 	squared� distance �xi�mBW�TS��BW�xi�mBW� for each observation xi�

i � �� � � � � ��� of the data set�

The identi�er ORBW declares four observations as �N outliers� namely x�� x�� x	� x���

with �N � ������� Most authors who investigated this often analysed data agree on that

observations �� � and �� have to be regarded as outliers 	cf� also Rousseeuw and Leroy�

�
��� p� ��f��� Daniel� Wood 	�
���� Li 	�
��� and Andrews 	�
��� identify the same four

observations like ORBW� whereas Carroll and Ruppert 	�
��� declare observations �� ��

�� �� as conspicuous� Dempster and Gasko�Green 	�
��� as well as Andrews and Pregibon

	�
��� even detect �ve outliers 	�� �� �� �� ���� Although observation � shows a relatively

high distance� its identi�cation is not justi�ed by the robust procedure ORBW�

With the results of our outlier identi�er� the interpretation of observation �� becomes

somewhat di�erent to that of the previous investigations� All authors agree in regarding

this observation as the clearest outlier� In Table � it can be seen that we cannot support

this interpretation� But if we use the non�robust estimators xN � N
i�� xi	N and SN �

N
i���xi � xN��	�N � �� instead of mBW and SBW� we �nd a similar behaviour of the

resulting procedure as in the above mentioned investigations� Due to the masking e�ect�

observation �� has then the largest distance of all observations 	see Table ��� even though

it does not exceed the respective critical value c��� ��� ������� � ������ At the same time�

the distances of observations �� �� and � are not exceptionally large� Therefore� it can be





concluded that the strong outliers 	�� �� �� do not only mask themselves but also cause the

impression that the less di�ering observation �� is the most conspicuous one� The similarity

of this situation to the behaviour of the above mentioned procedures leads to the conclusion

that those procedures are still in�uenced by the strong outliers 	�� �� �� when they make

out observation �� as the clearest outlier� In contrast to this� ORBW is less in�uenced

by observations �� �� and � and therefore does not identify observation �� as the most

conspicuous one�

Appendix� Proofs

Proof of Theorem ���� Consider a situation with k � � outliers� Let xN�� � �xrn� x
�
k���

and x�k�� � �x��� � � � �x�k��� be an arbitrary constellation of � outliers� With k � N	� we have

�k � ��	�N � �� � k	N � Therefore� neither m nor S can break down� From this it follows

OR�xN��� �N��� 
� �� � � volume�IRpnOR� ���

and there exists a sphere Sp with radius r� � � r ��� such that IRpnOR � Sp� For example

choose r � km�xN���k � const ���S� where the constant is a factor of proportionality�

because the squared volume of the ellipsoid IRpnOR is proportional to the product of the

eigenvalues of S�

It now follows that

IRpnSp � OR�xN��� �N����

thus all points outside the sphere are identi�ed as �N�� outliers�

Now there exists some 
 � ��� ��� such that

Sp � IRpnout�
� ��� � fx � IRp � �x� �T����x� � 	 ��p����g�

The maximal value 
 ful�lling this relation is denoted by 
�� Thus� we have

out�
�� ��� � IRpnSp � OR�xN��� �N����

that means� every 
� outlier is identi�ed as an �N�� outlier� The same statement holds for

all 
 � 
��

��



Together with ��� this yields 
M��N��� xrn� k � �� �� � 
� � ��

The same steps are possible for all j with � 	 j � k instead of k � �� Therefore�

�M�OR�xN��� �N���� �
k � �

n � k � �
�

and

�M�OR�xN � �N�� �
k

n � k
�

k

N
�

Proof of Theorem ���� Assume �M�OR� � K	N � that means �M �OR� � �K � ��	�N �

�� � �K � ��	�n � K � ��� Together with the de�nition of �M it follows that kM � K � ��

Then there must exist some 
� � � with


M��n�K � x
r
n�K� �� � 
�

for arbitrary constellations of K observations which are placed as � outliers�

Now� because of ���� for any constellation x�K of � outliers all points in out�
�� ��� are

identi�ed as �n�K outliers� This means that

IRpnOR�xN � �N � � IRpnout�
�� ���

for arbitrary x�K� With this relation� the center of the ellipsoid IRpnOR�xN � �N � must lie

within a closed subset of IRp� On the other hand� the center is m�xN�� From this it follows�

that m will not break down for any constellation x�K� thus ���xN �m� � K	N � But this

contradicts the assumption on ���xN �m�� �nishing the proof�

Proof of Theorem ���� The proof follows immediately from Theorems ��� and ���� using

the following results for the �nite
sample breakdown points of a�ne equivariant estimators

m and S�
��N � p � ��	� 

N
	 max

m

���xN �m� 	
�

�

�Lopuha�a� Rousseeuw� ����

max
S

���xN � S� �
��N � p � ��	� 

N

�Davies� �����

��
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