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Abstract

The purpose of this note is to establish a link between recent results on asymp-

totics for classical orthogonal polynomials and random matrix theory. Roughly

speaking it is demonstrated that the ith eigenvalue of a Wishart matrix W (I

n

; s) is

close to the ith zero of an appropriately scaled Laguerre polynomial, when

lim

n;s!1

n=s = y 2 [0;1):

As a by-product we obtain an elemantary proof of the Mar�cenko-Pastur and the

semicircle law without relying on combinatorical arguments. Moreover, our ap-

proach also allows a simple treatment of the case y = 1, where a new semicircle

law can be established for the s largest eigenvalues of the Wishart matrix.

AMS 1991 Subject Classi�cations: Primary 60F15; Secondary 33C45

Key words and phrases: Random matrix theory, Mar�cenko-Pastur law, semi-circle law,

Laguerre polynomials, roots of orthogonal polynomials, strong approximation

1 Introduction

The study of sample covariance matrices is important in multivariate statistics and since

the pioneering work of Mar�cenko and Pastur (1967) much e�ort has been devoted to this

subject [see e.g. Silverstein (1985), Bai and Yin (1988a,b, 1993), Johnstone (2001) among
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many others]. In this note we present a new approach for the derivation of the asymptotic

sprectral distribution of a Wishart matrix W (I

n

; s), when the parameters n and s both

converge to in�nity at appropriate rates. This method relies on a close connection between

the eigenvalues of the Wishart matrix and the zeros of classical orthogonal polynomials.

To be precise, let V

s

2 R

n�s

denote a random matrix with i.i.d. standard normally

distributed entries, de�ne

M

s

=

1

s

V

s

V

T

s

2 R

n�n

(1.1)

as the sample covariance matrix and let �

1

� �

2

� : : : � �

n

denote the ordered eigenvalues

of the matrix M

s

, where the double index has been omitted for the sake of simplicity; i.e.

�

i

= �

(n)

i

. It is well known that the joint densitiy of the eigenvalues is proportional to the

function

n

Y

1�i<j�n

j�

i

� �

j

j

n

Y

i=1

�

(s�n�1)=2

i

e

��

i

=2

and a typical vector of ordered eigenvalues should be close to the mode of this density. By

classical results of Stieltjes [see e.g. Szeg�o (1959)] the above density becomes maximal for

the zeros of the Laguerre polynomial. The asymptotic properties of these polynomials have

been recently investigated independently from the random matrix literature in the context

of approximation theory. We refer to Gawronski (1993) and Bosbach and Gawronski

(1998) for some results on strong asymptotics for Laguerre polynomials with varying

coeÆcients and to Faldey and Gawronski (1995), Dette and Studden (1995), Kuijlaars

and Van Assche (1999) for recent results on the asymptotic zero distribution of these

polynomials.

It is the purpose of the present paper to provide a link between the results in random

matrix theory and the theory of orthogonal polynomials. To this end we derive an almost

sure approximation of the eigenvalues of the Wishart matrix M

s

de�ned in (1.1) by the

zeros of appropriately scaled generalized Laguerre polynomials, when

lim

n;s!1

n=s = y 2 [0;1]: (1.2)

This generalizes recent work of Silverstein (1985), who established almost sure convergence

of the smallest eigenvalue of the Wishart matrix W (I

n

; s), when

lim

n;s!1

n=s = y 2 (0; 1):

Note that our results include the case y =1, which was not considered so far. As a by-

product we obtain a simple proof of the Mar�cenko-Pastur law for the empirical spectral

distribution function

F

M

s

(x) =

1

n

#fi j �

i

� xg (1.3)

[note that this function has already been appropriately standardized] by using recent

results on weak asymptotics for classical orthogonal polynomials. Additionally, we provide

a new proof of the classical semicircle law when n=s ! 0 and our method allows the

derivation of a new semicircle law for the largest s eigenvalues of an approriately scaled

Wishart matrix in the case n; s!1, n=s!1.
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2 Eigenvalues of Wishart matrices and zeros of La-

guerre polynomials

Throughout this paper let for k = 0; 1; : : : ; n L

(�

n

)

k

(x) denote the kth generalized Laguerre

polynomial orthogonal with respect to the weight function x

�

n

exp(�x)I

(0;1)

(x). We note

that the orthogonalizing measure is varying with the degree n and that we are interested in

a comparison of the roots x

1

< : : : < x

n

of appropriately scaled versions of the polynomial

L

(�

n

)

n

(x) with the ordered eigenvalues �

1

� �

2

� : : : � �

n

of the matrix M

s

(or an

appropriately scaled version) de�ned in (1.1). The scaling of the polynomial and the

Wishart matrix depends on the limit y in (1.2) and we use the roots of the polynomial

L

(s�n+1)

n

(sx)

in the case y 2 (0;1), the zeros of the polynomial

L

(s)

n

(2

p

nsx + s+ n)

in the case y = 0 and the roots of the polynomial

L

(s�n)

n

(2

p

nsx + n)

in the case y = 1 for a comparison. The scaling of the Laguerre polynomials is moti-

vated by weak asymptotic properties of their zeros [see Theorem 2.4], which were recently

obtained by Gawronski (1993), Bosbach and Gawronski (1998), Faldey and Gawronski

(1995), Dette and Studden (1995), Kuijlaars and Van Assche (1999). Throughout this

paper I

k

denotes the k�k identity matrix. The main result of this paper is the following.

Theorem 2.1.

a) Let �

1

� : : : � �

n

denote the ordered eigenvalues of the sample covariance matrix

M

s

de�ned in (1.1) and x

1

< : : : < x

n

denote the zeros of the Laguerre polynomial

L

(s�n+1)

n

(sx). If n; s!1, n=s! y 2 (0;1), then

lim

n!1

1

n

n

X

j=1

j�

j

� x

j

j

2

= 0 a.s.

b) Let �

1

� : : : � �

n

denote the ordered eigenvalues of the sample covariance matrix

N

s

=

1

2

p

ns

fV

s

V

T

s

� sI

n

g (2.1)

and x

1

< : : : < x

n

denote the zeros of the Laguerre polynomial L

(s)

n

(2(

p

ns)x + s+ n). If

n; s!1, n=s! 0, then

lim

n!1

1

n

n

X

j=1

j�

j

� x

j

j

2

= 0 a.s.
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c) Let �

1

� : : : � �

n

denote the ordered eigenvalues of the sample covariance matrix

P

s

=

1

2

p

ns

fV

s

V

T

s

� nI

n

g (2.2)

and �

1

2

p

n=s = x

1

= : : : = x

n�s

< x

n�s+1

< : : : < x

n

denote the zeros of the Laguerre

polynomial L

(s�n)

n

(2

p

nsx+ n). If n; s!1, n=s!1, then

lim

n!1

1

n

n

X

j=1

j�

j

� x

j

j

2

= lim

n!1

1

n

n

X

j=n�s+1

j�

j

� x

j

j

2

= 0 a.s.

Proof:

a) For a proof of part (a) we assume at �rst that y 2 (0; 1), that is s � n for suÆciently

large n. According to Silverstein (1985; p. 1366) the matrix M

s

is orthogonally similar

to a triangular matrix

~

A = (~a

i;j

)

n

i;j=1

with entries

~a

i;i

=

1

s

(Y

2

n�i+1

+X

2

s�i+1

) i = 1; : : : ; n;

~a

i;i+1

=

1

s

X

s�i+1

Y

n�i

; i = 1; : : : ; n� 1;

~a

i+1;i

=

1

s

X

s�i+1

Y

n�i

; i = 1; : : : ; n� 1;

where Y

2

n

= 0, X

2

i

� �

2

i

; Y

2

i

� �

2

i

are independent chi-square distributed random variables

(X

i

� 0; Y

i

� 0). Therefore it is easy to see that the matrix M

s

has the same eigenvalues

as the matrix A = (a

i;j

)

n

i;j=1

de�ned by

a

i;i

= ~a

n�i+1;n�i+1

=

1

s

(Y

2

i

+X

2

s�n+i

) i = 1; : : : ; n;

a

i;i+1

= ~a

n�i;n�i+1

=

1

s

X

s�n+i+1

Y

i

i = 1; : : : ; n� 1;

a

i+1;i

= ~a

n�i+1;n�i

=

1

s

X

s�n+i+1

Y

i

i = 1; : : : ; n� 1:

Now consider the kth Laguerre polynomial

^

L

(s�n+1)

k

(x)

orthogonal with respect to the weight function x

s�n+1

exp(�x)I

(0;1)

(x) with leading co-

eÆcient 1. According to Chihara (1978) we have the recursion (�

n

= s� n + 1)

^

L

(�

n

)

k+1

(x) = (x� f2k + 1 + �

n

g)

^

L

(�

n

)

k

(x)� k(k + �

n

)

^

L

(�

n

)

k�1

(x) (2.3)

with initial conditions

^

L

(�

n

)

�1

(x) = 0;

^

L

(�

n

)

0

(x) = 1. It is now straightforward to see that the

zeros of the polynomial

^

L

(�

n

)

n

(sx) are precisely the eigenvalues of the triangular matrix

4



B = (b

i;j

)

n

i;j

, where

b

i;i

=

1

s

(�

n

+ 2i� 1) i = 1; : : : ; n;

b

i;i+1

=

1

s

p

i(i+ �

n

) i = 1; : : : ; n� 1;

b

i+1;i

=

1

s

p

i(i+ �

n

) i = 1; : : : ; n� 1:

This follows by factorizing (�1)

n

; (

1

s

)

n

in the determinant equation

det(B � �I) = 0;

and identifying the recursion (2.3) for the polynomial

^

L

(�

n

)

n

(s�):

Now the discussion following Lemma 2.3 in Bai (1999) yields for the distance between the

eigenvalues of the matrix M

s

and the zeros of the polynomial

^

L

(s�n+1)

n

(sx)

1

n

n

X

i=1

j�

j

� x

j

j

2

�

1

n

tr(A�B)

2

=

1

n

n

X

i;j=1

(a

i;j

� b

i;j

)

2

=

1

n

n

X

i=1

(a

i;i

� b

i;i

)

2

+

2

n

n�1

X

i=1

(a

i;i+1

� b

i;i+1

)

2

; (2.4)

where the �rst equality follows from the symmetry of the matrices A and B.

The two terms in (2.4) are estimated seperately. For the �rst term we have with some

�nite constant c > 0 (observing Y

2

n

= 0)

c �

n

X

i=1

(a

i;i

� b

i;i

)

2

�

n�1

X

i=1

�

Y

2

i

� i

s

�

2

+

�

n

s

�

2

+

n

X

i=1

�

X

2

s�n+i

� s + n� i

s

�

2

� 2n �M

2

n

+

�

n

s

�

2

;

where the the random variable M

n

is de�ned by

M

n

= max

n

max

1�i�n�1

j

Y

2

i

� i

s

j; max

s�(n�1)�i�s

j

X

2

i

� i

s

j

o

: (2.5)

From Silverstein (1985, p. 1367) it follows that M

n

! 0 a.s. and we obtain

1

n

n

X

i=1

(a

i;i

� b

i;i

)

2

! 0 a.s. (2.6)

For the remaining term in (2.4) we have

1

n

n�1

X

i=1

(a

i;i+1

� b

i;i+1

)

2

=

1

n

n�1

X

i=1

�

�

�

X

s�n+i+1

Y

i

s

�

p

i(i + �

n

)

s

�

�

�

2
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�

1

n

n�1

X

i=1

�

�

�

�

X

2

s�n+i+1

� (s� n + i+ 1)

s

�

�

�

1=2

�

�

�

Y

2

i

� i

s

�

�

�

1=2

+

r

i+ s� n + 1

s

�

�

�

Y

2

i

� i

s

�

�

�

1=2

+

r

i

s

�

�

�

X

2

s�n+i+1

� (s� n + i+ 1)

s

�

�

�

1=2

)

2

� (M

n

+ 2

p

M

n

)

2

! 0 a.s. ;

where the random variable M

n

is de�ned in (2.5) and we have used the inequality

ja b� abj � ja

2

� a

2

j

1=2

jb

2

� b

2

j

1=2

+ jbjja

2

� a

2

j

1=2

+ jajjb

2

� b

2

j

1=2

for nonnegative a; b; a; b [see Silverstein (1985)]. Observing (2.4) the assertion (a) of the

Theorem 2.1 follows in the case y 2 (0; 1).

In the case y > 1 (which means n > s for suÆently large n) the result is established

by interchanging the roles of s and n and from a representation for generalized Laguerre

polynomials with negative parameter. To be precise, we note that in this case the matrix

M

s

is orthogonally similar to an n�n matrix A with principal s� s block containing the

(s-dimensional) rows

1

s

(X

2

n

+ Y

2

s�1

; Y

s�1

X

n�1

; 0; : : : ; 0);

1

s

(Y

s�i+1

X

n�i+1

; X

2

n�i+1

+ Y

2

s�i

; Y

s�i

X

n�i

; 0; : : : ; 0);

(i = 2; : : : ; s� 1) and

1

s

(0; : : : ; 0; Y

1

X

n�s+1

; X

2

n�s+1

) ;

where all other entries in the matrix A are 0 and the meaning of the random variables

X

i

; Y

i

; X

2

i

; Y

2

i

is the same as in the prevoius paragraph. Observing the identitiy

L

(�k)

n

(x) = (�x)

k

(n� k)!

n!

L

(k)

n�k

(x) (2.7)

[see Szeg�o (1959), Section 5.2)] the assertion now follows by similar arguments as given

for the case y 2 (0; 1).

The remaining case y = 1 is proved by considering two subsequences corresponding to

the cases s � n and s < n, respectively.

b) By the same argument as given in the proof of part a) the eigenvalues of the matrix

N

s

de�ned in (2.1) are obtained as the eigenvalues of the tridiagonal matrix A de�ned by

a

i;i

=

1

2

p

sn

(Y

2

i

+X

2

s�n+i

� s)

a

i;i+1

= a

i+1;i

=

1

2

p

sn

X

s�n+i+1

Y

i

:

6



Now consider the Laguerre polynomials with leading coeÆcient 1 and parameter �

n

= s

and de�ne polynomials

p

k

(x) =

^

L

(s)

k

(2

p

nsx+ s + n):

The zeros of the polynomial p

n

(x) are given by the eigenvalues of the matrix B de�ned

by

b

i;i

=

1

2

p

ns

(�

n

+ 2i� 1� n� s) =

1

2

p

ns

(2i� 1� n) ; i = 1; : : : ; n

b

i;i+1

= b

i+1;i

=

1

2

p

ns

p

i(i+ �

n

) =

1

2

p

ns

p

i(i + s) ; i = 1; : : : ; n� 1

where �

n

= s: The assertion now follows by similar arguments as given in the proof of

part a).

c) The asymptotic properties in the case y = 1 follow from a combination of the argu-

ments given in the proof of part a) for the case y > 1 and the proof of part b). The matrix

P

s

de�ned in (2.2) is orthogonally similar to an n�n matrix A with principal s� s block

containing the (s-dimensional) rows

1

2

p

ns

(X

2

n

+ Y

2

s�1

� n; Y

s�1

X

n�1

; 0; : : : ; 0);

1

2

p

ns

(Y

s�i+1

X

n�i+1

; X

2

n�i+1

+ Y

2

s�i

� n; Y

s�i

X

n�i

; 0; : : : ; 0);

(i = 2; : : : ; s� 1) and

1

2

p

ns

(0; : : : ; 0; Y

1

X

n�s+1

; X

2

n�s+1

� n) ;

where all other entries in the matrix A are 0 and the meaning of the random variables

X

i

; Y

i

; X

2

i

; Y

2

i

is the same as in the proof of part a). From (2.7) we have for some constant

c 6= 0

L

(s�n)

n

(2

p

nsx+ n) = c � (2

p

nsx + n)

n�s

L

(n�s)

s

(2

p

nsx + n) ;

where the s positive zeros of the polynomial on the right hand side are obtained as the

eigenvalues of the tridiagonal matrix B with elements

b

i;i

=

1

2

p

ns

(2i� 1� s) ; i = 1; : : : ; s

b

i;i+1

= b

i+1;i

=

1

2

p

ns

p

i(i + n� s) ; i = 1; : : : ; s� 1 :

The assertion now follows by similar arguments as given in the proof of part a). 2

The following results is an immediate consequence of Theorem 2.1 and recent results on

the location of the zeros of classical orthogonal polynomials.
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Corollary 2.2.

a) Let �

1

� : : : � �

n

denote the ordered eigenvalues of the sample covariance matrix

M

s

de�ned in (1.1) and x

1

< : : : < x

n

denote the zeros of the Laguerre polynomial

L

(s�n+1)

n

(sx). If d

1

� d

2

� : : : � d

n

denote the ordered di�erences j�

i

�x

i

j and n; s!1,

n=s! y 2 (0;1), then

lim

n;s!1

n=s!y2(0;1)

d

bntc

= 0 a.s.

for all t 2 (0; 1). In particular we obtain for the smallest and largest eigenvalue of the

matrix M

s

and for the smallest and largest zero of the polynomial L

(s�n+1)

n

(sx)

lim

n;s!1

n=s!y2(0;1]

x

1

= lim

n;s!1

n=s!y2(0;1]

�

1

= (1�

p

y)

2

a.s.

lim

n;s!1

n=s!y2(0;1)

x

n

= lim

n;s!1

n=s!y2(0;1)

�

n

= (1 +

p

y)

2

a.s.

and in the case y � 1

lim

n;s!1

n=s!y2[1;1)

x

n�s+1

= lim

n;s!1

n=s!y2[1;1)

�

n�s+1

= (1�

p

y)

2

a.s.

b) Let �

1

� : : : � �

n

denote the ordered eigenvalues of the sample covariance matrix

N

s

de�ned in (2.1) and x

1

< : : : < x

n

denote the zeros of the Laguerre polynomial

L

(s)

n

(2

p

nsx + s + n). If d

1

� d

2

� : : : � d

n

denote the ordered di�erences j�

i

� x

i

j and

n; s!1, n=s! 0, then

lim

n;s!1

n=s!0

d

bntc

= 0 a.s.

for all t 2 (0; 1). In particular we obtain for the largest and smallest eigenvalue of the

matrix N

s

and for the smallest and largest zero of the polynomial L

(s)

n

(2

p

nsx + s+ n)

lim

n;s!1

n=s!0

x

1

= lim

n;s!1

n=s!0

�

1

= 1 a.s.

lim

n;s!1

n=s!0

x

n

= lim

n;s!1

n=s!0

�

n

= � 1 a.s.

c) Let �

1

� : : : � �

n

denote the ordered eigenvalues of the sample covariance matrix

P

s

de�ned in (2.2) and x

1

< : : : < x

n

denote the zeros of the Laguerre polynomial

L

(s�n)

n

(2

p

nsx + n). If 0 = d

1

= : : : = d

n�s

� d

n�s+1

� d

2

� : : : � d

n

denote the

ordered di�erences j�

i

� x

i

j and n; s!1, n=s!1, then

lim

n;s!1

n=s!1

d

bntc

= 0 a.s.

for all t 2 (0; 1). In particular we obtain for the largest and (n � s + 1)th smallest

eigenvalue of the matrix P

s

and for the (n � s + 1)th smallest and largest zero of the

polynomial L

(s�n)

n

(2

p

nsx+ n)

lim

n;s!1

n=s!1

x

n�s+1

= lim

n;s!1

n=s!1

�

n�s+1

= � 1 a.s.

lim

n;s!1

n=s!1

x

n

= lim

n;s!1

n=s!1

�

n

= 1 a.s.
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Proof: The �rst part is an immediate consequence of Theorem 2.1. The assertion regard-

ing the largest and smallest eigenvalue follows similary to the proof of Theorem 2.1 by an

application of the Theorem of Ger�sgorin (1931) [see Silverstein (1985)]. The results for

the largest and smallest zero of the Laguerre polynomial can be obtained from Theorem

4.4 in Dette and Studden (1985) and formula (2.7). 2

The asymptotic properties of the largest and smallest eigenvalue in part a) of Corollary

2.2 were already observed by Silverstein (1985), but we did not �nd the result for sample

covariance matrices for the case n=s ! 0 or n=s ! 1 in the literature [for a proof of

the analogue for n=s ! 0 in the case of Wigner matrices see Bai and Yin (1988b)]. The

following example illustrates the quality of approximation in Corollary 2.2.

n 10 15 20

�

j

x

j

�

j

x

j

�

j

x

j

-0.74099 -0.72672 -0.76857 -0.76658 -0.78275 -0.78866

-0.57733 -0.57065 -0.64970 -0.65404 -0.68759 -0.69867

-0.43048 -0.42409 -0.54791 -0.55201 -0.60781 -0.61862

-0.28494 -0.27741 -0.45075 -0.45334 -0.53318 -0.54254

-0.13478 -0.12609 -0.35486 -0.35519 -0.46089 -0.46816

0.02480 0.03340 -0.25757 -0.25592 -0.38926 -0.39427

0.19766 0.20499 -0.15823 -0.15433 -0.31717 -0.32007

0.39190 0.39425 -0.05522 -0.04934 -0.24446 -0.24499

0.62150 0.61121 0.05261 0.06015 -0.17025 -0.16852

0.93142 0.88111 0.16661 0.17546 -0.09418 -0.09021

Table 2.1. The 10 smallest zeros of the scaled Laguerre polynomials p

n

(x) de�ned in

(2.8) and the n smallest eigenvalues of the standardized Wishart matrix N

10n

de�ned in

(2.9) for various values of n.

Example 2.3. Consider the case s = 10n and note that for �nite samples the limits

n=s! y 2 (0;1) and n=s! 0 cannot be distinguished. Therefore both approximations

of part a) and b) in Theorem 2.1 could be used in prinicple. For the sake of brevity we

use only case b). Table 2.1 shows the zeros x

1

; : : : ; x

n

of the Laguerre polynomial

p

n

(x) = L

(10n)

n

(2n

p

10x + 11n) (2.8)

and the eigenvalues �

1

; : : : ; �

n

of the standardized matrix

N

10n

=

1

2n

p

10

(V

10n

V

T

10n

� 10nI

n

) (2.9)

9



for n = 10; 15; 20: These eigenvalues have been obtained by simulations based on 100.000

runs. For the sake of brevity only the ten smallest eigenvalues and zeros are displayed.

We will use Theorem 2.1 for an alternative proof of the famous Mar�cenko-Pastur and

semicircle law in the normal case using recent results for the asymptotic zero distribution

of classical orthogonal polynomials. Additionally we provide a semicircle law for the s

largest eigenvalues of the appropriately scaled Wishart matrix, when n; s!1 n=s!1,

which seems to be unknown in the literature. Conversely the arguments given in this

paper show that the Mar�cenko-Pastur and semicircle law could also be used to provide an

alternative proof for the asymptotic zero distribution of the Laguerre polynomials with

varying integer valued parameters. For the sake of completeness we recall a result on

the asymptotic zero distribution for the zeros of the Laguerre polynomials with varying

(not necessarily integer valued) parameters. A proof can be found in Dette and Studden

(1995) [see also Faldey and Gawronski (1995), Dette and Wong (1995) or Kuijlaars and

Van Assche (1999)]. For a real sequence (�

n

)

n2N

with elements > �1 let

N

(�

n

)

(�) := #

�

x j L

(�

n

)

n

(x) = 0; x � �

	

(2.10)

denote the number of zeros of the generalized Laguerre polynomial L

(�

n

)

n

(x) less or equal

than �, then we have the following result.

Theorem 2.4. (Dette and Studden (1995))

a) If lim

n!1

�

n

n

= a � 0, then

lim

n!1

1

n

N

(�

n

)

(n�) =

1

2�

Z

�

r

1

p

(r

2

� x)(x� r

1

)

x

dx for all � 2 [r

1

; r

2

] ;

where r

1;2

= 2 + a� 2

p

1 + a

b) If lim

n!1

�

n

n

=1, then

lim

n!1

1

n

N

(�

n

)

(

p

n�

n

� + �

n

) =

1

2�

Z

�

�2

p

4� x

2

dx for all j�j � 2 :

Theorem 2.5. (Mar�cenko-Pastur and extended semicircle law)

a) If n ! 1; n=s ! y 2 (0;1) and F

M

s

denotes the empirical spectral distribution

function of the matrix M

s

de�ned in (1.1), then for all � 2 R

F

M

s

(�)! F

M

(�) a.s. (2.11)

where the distribution function F

M

has densitiy

f

M

(x) :=

1

2�y

p

(b� x)(x� a)

x

I

[a;b]

(x) ;

10



the quantities a and b are given by a = (1�

p

y)

2

; b = (1 +

p

y)

2

, respectively, and there

is an additional jump of size 1� 1=y in the case y > 1.

b) If n=s ! 0 and F

N

s

denotes the empirical spectral distribution function of the matrix

(2.1), then we have for any x 2 [�1; 1]

F

N

s

(x)! F

N

(x) :=

2

�

Z

x

�1

p

1� t

2

dt a.s. (2.12)

(F

N

s

(x)! 1 if x > 1; F

N

s

(x)! 0 if x < 1):

c) If n; s ! 1, n=s ! 1 and F

P

s

denotes the empirical distribution function of the s

largest eigenvalues of the matrix P

s

de�ned (2.2), then we have for any x 2 [�1; 1]

F

P

s

(x)! F

N

(x) =

2

�

Z

x

�1

p

1� t

2

dt a.s. (2.13)

(F

P

s

(x)! 1 if x > 1; F

P

s

(x)! 0 if x < 1):

Proof.

a) Consider at �rst the case (a) with y 2 (0; 1]. From Bai (1999) and Theorem 2.1 it

follows for the Levy distance L between the distribution functions F

M

s

and F

B

that

L

3

(F

M

s

; F

B

) �

1

n

n

X

i=1

j�

j

� x

j

j

2

! 0 a.s. ;

where

F

B

(�) =

1

n

#fx j

^

L

(�

n

)

n

(sx) = 0; x � �g

denotes the empirical distribution function of the zeros of the Laguerre polynomialL

(�

n

)

n

(sx)

with parameter �

n

= s� n+ 1. From the �rst part of Theorem 2.4 we therefore have for

any � 2 [r

1

; r

2

]

F

B

(�) =

1

n

#fx j

^

L

(�

n

)

n

(n

s

n

x) = 0; x � �g

(2.14)

=

1

n

N

(�

n

)

(n

s

n

�) �!

n!1

n

s

!y

1

2�

Z

�=y

r

1

p

(r

2

� x)(x� r

1

)

x

dx

where r

1;2

= (1 �

1

p

y

)

2

: Substitution and di�erentiation yields for the density of the

limiting distribution

1

2�y

�

p

(b� x)(x� a)

x

I

[a;b]

(x) ;

where

a = (1�

p

y)

2

b = (1 +

p

y)

2

:

11



The argument for the case y > 1 follows exactly in the same way using at �rst the identity

(2.7).

b) Again we obtain from Theorem 2.1

L

3

(F

N

s

; F

B

)! 0 a.s.

where F

B

denotes the empirical distribution function of the roots of the polynomial

L

(�

n

)

n

(2

p

n�

n

x+ s+ n) with �

n

= s, that is

F

B

(�) =

1

n

#fx j L

(�

n

)

n

(2

p

n�

n

x + s+ n) = 0; x � �g

=

1

n

N

(�

n

)

(2

p

n�

n

� + s+ n) :

Observing

n

p

n�

n

=

p

n

s

= o(1) and Example 2.7 in Dette and Studden (1995) the second

part of Theorem 2.4 now gives

lim

n!1

F

B

(�) = lim

n!1

1

n

N

(�

n

)

(2

p

n�

n

� + �

n

)

=

1

2�

Z

2�

�2

p

4� x

2

dx =

2

�

Z

�

�1

p

1� t

2

dt

whenever j�j � 1, which proves the assertion of Theorem 2.5 b).

c) This is proved in the same way using the identity (2.7). 2
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