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Abstract

The forecasting of time series is one of the primary tasks in the

analysis and modeling of unknown processes. Knowledge of predictabil-

ity of a given time series can also be used to initially introduce a

coarse classi�cation for the modeling of the underlying processes. The

main aim is to �nd a facility for the separation into well-predictable

and not-well-predictable processes without any information about the

functional relationship of the process and with only the given data.

We proposed a criterion for determination of predictable time series,

which is given by the size of the Lyapunov exponent.

1 Introduction

For the description and the analysis of time series it is useful to initially intro-

duce a coarse classi�cation in order to be able to choose the most appropriate

tools for the more detailed analysis.
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One important classi�cation is to discriminate between well-predictable

and not-well-predictable processes. Information about the predictability of

a process facilitates e.g. a sensible choice of the forecasting window. In the

case of chaotic time series the prediction accuracy can decrease considerably

already after only a few time-steps in contrast to a stationary stochastic

process (Abarbanel 1996), (Casdagli and Eubank 1992).

A formal identi�cation of predictable time series can be achieved by ana-

lyzing the Lyapunov spectrum or the largest Lyapunov exponent of the time

series (this is often just referred to as the Lyapunov exponent). Originally,

the Lyapunov exponent was de�ned for non-stochastic, deterministic systems.

Anyhow, the concept behind the Lyapunov exponent can be embedded into

a statistical framework.

The remainder of this article is organized as follows. After a short out-

line of the Lyapunov exponent and its mathematical derivation in Section 2

its interpretation with respect to the determination of predictability will be

introduced (Sec. 3). Experimental results illustrate the method to determine

the Lyapunov exponent in Section 4.

2 Lyapunov exponent

One possibility to distinguish between well-predictable and not-well-predictable

time series is given by the computation of the largest Lyapunov exponent (of-

ten brie
y called the Lyapunov exponent). Firstly, it will be introduced for

deterministic processes (see Sec. 2.1). In Section 2.2, it will be shown that it

can also be derived for stochastic processes with additive noise.

2.1 Lyapunov exponent in a deterministic context

The dynamics of deterministic processes is de�ned by

x

t+1

= f

t

(x

0

) = f(x

t

) ; (1)

with initial point or initial state x

0

2 IR

k

, x

t

describes the state at time

t. The sequence of states or observations x

t

is called 
ow or observation

series in order to distinguish it from a time series of a random process.

The functional relationship is described by f and it is assumed that f is

di�erentiable everywhere. In this work, we set k = 1 in equation (1).

2



A speci�c deterministic process is a chaotic process, if its asymptotic

behavior is locally unstable in contrast to a regular deterministic or to an er-

godic stochastic system (Abarbanel 1996) (Tong 1993) (Eckmann and Ruelle

1982). In this respect unstable means non-uniform asymptotic behavior.

The Lyapunov exponent �(x

0

) of a 
ow fx

t

g is formally de�ned by (Eck-

mann and Ruelle 1982):

�(x

0

) := lim

N!1

1

N

N�1

X

i=0

ln jf

0

(x

i

)j (2)

This characteristic feature describes the long time behavior of the average

logarithmic derivative. It illustrates the divergence of two di�erent trajecto-

ries. This can be motivated as follows:

x 0

x*
0

∆

∆ 0

x*

x*
N

x
N

N

Figure 1: Two trajectories are regarded over time, in order to observe the

convergence or divergence of a process.

In Fig. 1 the behavior of two nearby trajectories is shown. The trajecto-

ries of the observation series, which started from two di�erent initial points,

converge or diverge when N grows to in�nity. x

0

and x

�

0

denote the two

di�erent initial points for the 
ow (see equation (1)). The starting point x

�

0

is \nearby" but displaced from x

0

. Furthermore, the trajectories follow the

same functional relationship. The distance between x

0

and x

�

0

is given by

�

0

= jx

�

0

� x

0

j: (3)

Hence, the distance after one iteration can be approximated by applying the

�rst order Taylor expansion follows as:

�

1

= jx

�

1

� x

1

j = jf(x

�

0

)� f(x

0

)j � jf

0

(x

0

)j � jx

�

0

� x

0

j:
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For the analysis of the long time behavior of the 
ow it is important to eval-

uate the distance of the two trajectories after N iterations. Using equations

(1) and (3) and the chain rule this leads to:

�

N

= jx

�

N

� x

N

j

�

�

�

�

�

d

dx

f

N

(x

0

)

�

�

�

�

� jx

�

0

� x

0

j

=

�

�

�

�

d

dx

f

N

(x

0

)

�

�

�

�

��

0

= jf

0

(x

0

)j � jf

0

(x

1

)j : : : jf

0

(x

N�1

)j ��

0

=

N�1

Y

i=0

jf

0

(x

i

)j ��

0

;

where f

N

= f Æ � � � Æ f

| {z }

N times

.

Obviously, the expansion rate of the trajectories can be expressed by

�

N

�

0

=

N�1

Y

i=0

jf

0

(x

i

)j (4)

=: e

N ��

N

(x

0

)

; (5)

where �

N

is the characteristic value dependent on time N and x

0

. This

expansion rate illustrates the behavior of the trajectories after N iterations

in dependence of �

0

and x

0

.

Now, it is possible to de�ne the asymptotic Lyapunov exponent by con-

sidering the asymptotic behavior N !1 and by transforming equation (5):

�(x

0

) := lim

N!1

1

N

ln

�

�

N

�

0

�

(6)

� lim

N!1

1

N

N�1

X

i=0

ln jf

0

(x

i

)j: (7)

The Lyapunov exponent measures the asymptotic average logarithmic ex-

pansion rate along two trajectories. Note that �(x

0

) depends on the initial

point x

0

.

The derivative f

0

of the function f is often unknown. It has to be evalu-

ated from the given observation series. On the one hand f

0

can be numerically
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evaluated, on the other hand the divergence of the two nearby trajectories

can be graphically analyzed. Various approaches for the evaluation of � have

been suggested in the literature (for more details see Abarbanel (1996), Eck-

mann and Ruelle (1982), Sano and Sawada (1985), Gencay (1996), Wolf et al.

(1985), Kantz and Schreiber (1997)). However, the Lyapunov exponent is an

attribute of the attractor, which does not depend on time. This property

implies that observations used for the evaluation of � must not be taken in

the so-called transient state. The series has to be in the asymptotic state for

the data to be used for the evaluation of f

0

. An inadequate evaluation of f

0

may be due to the observation series still lasting in the transient state.

2.2 Lyapunov exponent in a statistical context

In contrast to the deterministic processes a stochastic process is a functional

relationship with random noise �, which reads

X

t+1

= f

t

(X

0

) + � = f(X

t

) + �: (8)

It is assumed that such a process is a sequence of random variables, where

X

0

is the random variable realized in the initial point x

0

. The random vari-

able X

t

describes the state at time t, the realization or observation of which

is denoted by x

t

. In this work the functional relationship f is stochastically

disturbed with additive noise �. The asymptotic behavior of a stochastic

process should be independent of the initial state. In contrast to the 
ow the

realizations of the sequence of random variables X

t

is called time series. If

the stochastic process is stationary, its asymptotic behavior should be uni-

form (so-called "stable") and independent of the initial state (Kendall and

Ord (1990)).

Note that it is conceptually possible to transfer a deterministic observa-

tion series into a stochastic time series by assuming a functional relationship

and a noise � with a one-point distribution.

Moreover, if we compose the functional relationship f and the stochastic

error �, we obtain

X

t+1

= g(x); with g(x) = f(x) + � and g

0

(x) = f

0

(x): (9)

By generalizing equation 2 in an obvious way the Lyapunov exponent for
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stochastic processes is given by:

�(X

0

) := lim

N!1

1

N

N�1

X

i=0

ln jg

0

(X

i

)j (10)

= lim

N!1

1

N

N�1

X

i=0

ln jf

0

(X

i

)j (11)

The additive error disappears by the use of the derivative.

3 Prediction characterized by the Lyapunov

exponent

Now the Lyapunov exponent can be used to distinguish between well-predictable

and not-well-predictable processes. For this it is necessary to discuss the re-

lation between the Lyapunov exponent and the loss of information.

It is assumed that x

0

is in a ball I

0

, at time n x

n

is in I

n

and at time

n+ 1 it is in I

n+1

(see Fig. 2).

x
t

x
0

II

I

0

t

Figure 2: Information loss or increase from I

0

to I

t

In addition, in a small interval more information about the true position

of x

n

in I

n

exists in contrast to a larger interval (see Beck and Schl�ogl (1993)).

As a measure of the information content the (exponential) bit-number b

n

is

suggested, whereas b

n

is de�ned by

b

n

:= ln

1

�

n

= � ln(�

n

): (12)
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Thus, for the length �

n

of the interval I

n

follows by transformation of equa-

tion 12:

�

n

= exp(�b

n

): (13)

Now, the information loss is the di�erence of the bit-numbers before and

after the iteration step:

b

n

� b

n+1

= ln�

n+1

� ln�

n

� ln jf

0

(x

n

)j: (14)

Proof:

b

n

� b

n+1

= � ln�

n

+ ln�

n+1

= ln�

n+1

� ln�

n

= ln

�

�

n+1

�

n

�

� ln jf

0

(x

n

)j

because of

�

1

� jf

0

(x

0

)j ��

0

and thus

�

n+1

� jf

0

(x

n

)j ��

n

:

q.e.d

The di�erence (14) between the bit-numbers can be interpreted either as

a loss or an increase of information. Consequently, the Lyapunov exponent

can be interpreted as the average information loss or information increase,

since

�(X

0

) = lim

N!1

1

N

N�1

X

i=0

ln jf

0

(X

i

)j

= lim

N!1

1

N

N�1

X

i=0

(b

i

� b

i+1

):

The separation between well-predictable and not-well-predictable pro-

cesses is given by the sign of the Lyapunov exponent because of a positive or

negative expansion.

� If �(x

0

) < 0 , �

N

< �

0

, the trajectory of the given time or observa-

tion series asymptotically reaches a stable limit point or a stable limit

cycle. Convergence is given in this case. The information increases.

Consequently, the process is well-predictable.

7



� If �(x

0

) � 0 , �

N

� �

0

, the process behaves like a random walk,

since for a random walk �

1

� 1 ��

0

, and thus �

N

� �

0

.

� If �(x

0

) > 0 , �

N

> �

0

, the trajectories of two di�erent, nearby

initial points diverge exponentially on average by a factor of e

N�

after

N iterations. In this case, the limiting behavior is not uniform, it is

unstable and in literature it is denoted by strange attractor (Eckmann

and Ruelle 1982), (Grassberger and Procaccia 1983a) (Grassberger and

Procaccia 1983b). The information decreases, as a result of which the

process is not-well-predictable.

This separation criterion can be used without any modeling of the pro-

cess. It is possible to distinguish well-predictable and not-well-predictable

processes by only the given time or observation series.

4 Experimental results

Neither the original time series nor its spectral density give much informa-

tion, which can be used to distinguish between well-predictable and not-well-

predictable time series (see Fig. 3). The Lyapunov exponent achieves this

classi�cation. It can be easily computed, if the functional relationship of the

time series is given. However, the underlying process is generally unknown

in case of real-world problems. Consequently, it is necessary to evaluate a

proper estimator

^

� from the given time series. The method, which is based

on work of Sano and Sawada (1985) and which was implemented by Kantz

and Schreiber (1997), is applied to the estimation of the Lyapunov exponent

in the following examples.

4.1 Experiments with well-predictable and not-well-

predictable sets

We applied the method of Lyapunov exponent estimation to the function

(15), which generates a well-predictable process, as well as to the function

(16), which does not create a well-predictable behavior. The well-predictable

time series is a stationary stochastic time series and the not-well-predictable

process is created by an chaotic observation series. Additionally, the exact

Lyapunov exponent of the processes can be evaluated analytically.
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Figure 3: A part of the stochastic time series from equation (15) is shown.

This process is an example for a well-predictable process.
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Figure 4: The Modulo function from equation (16) generates a chaotic time

series, an example for a not-well-predictable observation series.
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To generate a well-predictable time series a uniformly distributed noise

term, U [0; 1], is used in the following way:

x

t

= (0:9x

t�1

+ 0:5�); � � U [0; 1]: (15)

The not-well-predictable time series is generated by

x

t

= (2:5x

t�1

) mod 1: (16)

In both cases the initial point x

0

= 0:699 is used and the sample size is 1024.

Corresponding trajectories for the time series of equation (15) and equa-

tion (16) are illustrated in Fig. 3 and 4.

No cycles or trends can be detected in the �gures. Both the time series

and the observation series look like similar random processes.

If we observe the spectral densities of the time series (see Fig. 5 and 6),

we come to the same result. There are no obvious di�erences between the

stochastic and the chaotic time series. Additional usual time series char-

acteristics (e.g. autocorrelation function or partial autocorrelation function)

yielded likewise no separation.
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Figure 5: The well-predictability is not re
ected in the spectral density of

the process of equation (15).

However, it will be shown that the estimation of the Lyapunov expo-

nent yields good results with respect to predictability separation. For the

well-predictable process

^

� = �0:0945 was estimated with a real Lyapunov

exponent of � = �0:11, i.e.

^

� < 0, which describes a well-predictable process.
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Figure 6: The analysis of the spectral density of the chaotic process provides

no results with respect to predictability.

In the not-well-predictable situation the estimation of the Lyapunov expo-

nent leads to

^

� = 0:92 (� = 0:92), i.e. the property of

^

� > 0 is ful�lled. In

contrast to the evaluation of the original time series or the spectral densities

Lyapunov exponent estimation can correctly classify the di�erent processes.

5 Conclusion

We analyzed the Lyapunov exponent in the context of the separation between

well-predictable and not-well-predictable processes. A classi�cation seems

useful since it would facilitate a more detailed analysis of the underlying

process with respect to the choice of the appropriate tools. In this work it

was suggested the Lyapunov exponent for separation. This criterion describes

the \stable" or \unstable" asymptotic behavior of a process.

It was theoretically shown that the Lyapunov exponent can be used for

the evaluation of predictability. The Lyapunov exponent distinguishes well-

predictable and not-well-predictable processes only by using the given time

or observation series and without any information about the functional re-

lationship. In addition, well-predictable and not-well-predictable processes

were inspected with respect to separation. It was shown that the estimation

yields correct classi�cations for both forms of processes. In case of not-well-

predictable time series the estimate was even exactly evaluated with respect

to the true Lyapunov exponent.
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