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Abstract

In this paper the estimation problem and the problem of designing experiments in a nonlinear regression

model, used in microbiology, are studied. The model is called Monod model, de�ned imlicitly by a di�erential

equation for the regression function and has numerous applications in microbial growth kinetics, water research,

pharmacokinetics and plant physiology. It is proved that least squares parameter estimates are asymptotically

unbiased and normally distributed. The asymptotic covariance matrix of the least squares estimator is the

basis for construction of eÆcient designs of experiments. In particular locally D-, E-and c-optimal designs

are determined and their properties are studied. Moreover the performance of the designs (determined by the

asymptotic theory) is con�rmed in simulation experiments for realistic sample sizes. If certain intervals for

the nonlinear parameters can be speci�ed based on microbiological background, locally optimal designs can

be constructed, which are robust with respect to misspeci�cation of the initial parameters and which allow

eÆcient estimation of the parameters in the Monod model. The results indicate that parameter variances can

be decreased by a factor two by simply sampling at optimal times during the experiment.

Keywords and phrases: Monod model, microbial growth kinetics, least squares estimate, locally optimal designs,

D-optimality, E-optimality, c-optimality.
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1 Introduction

The Monod model is widely applied for modelling biodegradation rates. It is used for describing

microbial growth and substrate degradations in all kinds of applications, e.g. batch and continuous

fermentation, activated sludge wastewater treatment, pharmacokinetics, plant physiology etc. [see

e.g. Pirt (1975), Holmberg, (1982)]. Much of the versatility of the Monod model is due to the

fact that it can describe biodegradation rates following zero-one �rst order kinetics with respect

to the target substrate concentration [see Holmberg (1982)]. Roughly speaking the model consists

of a �rst-order di�erential equation, that is

�

0

(t) = �(t)�(t);(1.1)

where the function � is de�ned by

�(t) = #

1

s(t)

s(t) + #

2

;(1.2)

and the function s is given by the expression

s(t)� s

0

= (�

0

� �(t))=#

3

;(1.3)

(here s

0

= s(0); �

0

= �(0) are given initial conditions). In microbiology a traditional notation is

used for the unknown parameters of the Monod model [see e.g. Pirt (1975)]. The parameter #

1

denotes the maximum growth rate and is usually denoted by �

max

or V

max

, #

2

is the saturation

of aÆnity constant and is often denoted by K

s

. The parameter #

3

is the yield coeÆcient (often

denoted by Y ) and �(t) and s(t) denote the concentration of microorganisms and the concentration

of the substrate, respectively. The explanatory variable t usually denotes the time, which varies in

a compact interval [0; T ], where the maximal time T can be of quite di�erent size. The minimum

is several hours for optimal microbiological media, while the maximum is one year or more for

specialized groups of microorganisms. Due to natural biological conditions we can assume #

i

> 0;

i = 1; 2; 3, the initial conditions s

0

and �

0

are usually known and positive and the explanatory

variable t varies in an interval, say [0; T ].

In a number of recent papers the problem of parameter estimation and the problem of designing

experiments for this model was discussed by an extensive empirical study [see Vanrolleghem, Van

Daele and Dochaine (1995); Merkel, Schwarz, Fritz, Reuss and Krauth (1996); Ossenbruggen

(1996)] . The results of these authors indicate that the information quality of the experiments

is highly dependent on the design and major improvements can be obtained by choosing the

observations at appropriate allocations [see Vanrolleghem et. al. (1995)].

It it the purpose of the present paper to provide some more theoretical background for statistical

inference in the Monod model. To be precise we assume that at experimental conditions t

1

; : : : ; t

n

independent observations y

1(1)

; : : : ; y

1(r

1

)

; : : : ; y

n(1)

; : : : ; y

n(r

n

)

are available, which are given by

y

j(i)

= �(t

j

; �) + "

j(i)

; i = 1; : : : ; r

j

; j = 1; : : : ; n;(1.4)

where � = �(�; �) is a solution of the Monod equation de�ned by (1.1). In other words r

j

denotes the

number of observations at time point t

j

(j = 1; : : : ; n), "

j(i)

are independent identically distributed

random values with zero mean and constant variance �

2

> 0 and � = (#

1

; #

2

; #

3

)

T

denotes the

vector of parameters. Throughout this paper the "true" value for � in the model (1.1) will be

denoted by �

�

= (#

�

1

; #

�

2

; #

�

3

)

T

.
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In Section 2 we demonstrate that statistical inference in this model is closely related to analysis

in an equivalent linear regression model and we establish consistency and asymptotic normality

of the least squares estimator (LSE)

^

� = (

^

#

1

;

^

#

2

;

^

#

3

)

T

, which minimizes the expression

n

X

j=1

r

j

X

i=1

(y

j(i)

� �(t

j

; �))

2

:(1.5)

For suÆciently large sample size we show that the covariance matrix of the least squares estimator

can be approximated by the inverse of the Fisher information matrix

N

�

2

 

n

X

j=1

r

j

N

@

@#

i

�(t

k

; �)

�

�

�

�=�

�

@

@#

j

�(t

k

; �)

�

�

�

�=�

�

!

3

i;j=1

;(1.6)

where N =

P

n

j=1

r

j

denotes the total number of observations. In the second part of this paper we

will study locally optimal designs [see Cherno� (1953)] for estimating the parameters in the non-

linear regression function obtained as a solution of the Monod equation. These designs minimize

an appropriate functional of the Fisher information matrix de�ned in (1.6) [see Fedorov (1972),

Silvey (1980), Atkinson and Donev (1992) or Pukelsheim (1993)]. Although the regression func-

tion in the Monod model is only given implicitly, we are able to obtain an explicit representation

of the information matrix (1.6), which can be used for the construction of locally optimal designs.

Exemplarily we determine optimal designs with respect to the D-, E- and c- optimality criterion.

Section 3 deals with theD-optimality criterion. We �nd the best three point designs and show that

these designs are D-optimal within the class of all designs if the design region [0; T ] is suÆciently

large and the initial value �

0

is suÆciently close to 0. These results are used for the construction

of eÆcient designs (with respect to the D-criterion) on arbitrary design spaces. In Section 4 we

present some numerical results, compare the D-optimal designs with the uniform design (which

is commonly used for this type of problems) and study the sensitivity of the locally D-optimal

designs with respect to changes of the initial values for the parameters. Locally E-optimal designs

and optimal designs for estimating the individual parameters are investigated in Section 5, which

also contains some numerical results. Some conclusions and recommendations are given in Section

6, while all technical details are deferred to an appendix in Section 7. Finally it must be stressed

at this point that locally optimal designs are inuenced by a preliminary "guess" for the parameter

values. Our results demonstrate that without any prior information locally optimal designs for

the Monod model are not robust with respect to misspeci�cation of the initial parameters and

therefore give some arguments in favour of more robust optimality criteria [see e.g. Pronzato and

Walter (1985), Chaloner and Larntz (1989) or Haines (1995) among many others]. The results

of the present paper provide a �rst step in the construction of optimal designs for the Monod

model with respect to these more sophisticated criteria and also indicate that the determination

of Bayesian- or robust optimal designs in the Monod model seems to be an extremely hard and

challenging problem (even numerically). On the other hand, if certain intervals for the nonlinear

parameters can be speci�ed based on microbiological background, we are able to construct locally

optimal designs, which are robust with respect to misspeci�cation of the initial parameters and

allow eÆcient estimation of the parameters in the Monod model. In many applications of the

Monod model the statistical inference is made in two steps and some information regarding the

parameters in the model is available from the �rst step, which can be used for the construction of

eÆcient designs in the second step [see e.g. Merkel et. al. (1996)]. In such cases the application of

3



the optimal designs determined in this paper is well justi�ed and yields a substantial improvement

with respect to the accuracy of the parameter estimates.

2 Approximate designs, equivalent regression models and asymptotic

properties of the LSE.

Following Kiefer (1974) we introduce the concept of approximate design, which means that an

experimental design is determined by a discrete probability measure

� =

�

t

1

: : : t

n

w

1

: : : w

n

�

;(2.1)

where t

1

; : : : ; t

n

2 [0; T ] are the distinct experimental conditions at which observations have to

be taken and w

1

; : : : ; w

n

> 0 (

P

n

j=1

w

j

= 1) are positive weights representing the proportions

of total observations taken at the corresponding points [see Fedorov (1972), Silvey (1980) or

Pukelsheim (1993)]. Throughout this paper we will call any (approximate) experimental design of

the form (2.1) simply a design for the sake of brevity. If N observations can be taken a rounding

procedure is applied to obtain integers r

j

from the not necessarily integer valued quantities w

j

N

(j = 1; : : : n) [see Pukelsheim and Rieder (1992)]. The analogue (up to the constant N=�

2

) of the

Fisher information matrix (1.6) is the matrix

M(�; �

�

) =

 

n

X

k=1

w

k

@

@#

i

�(t

k

; �)

�

�

�

�=�

�

@

@#

j

�(t

k

; �)

�

�

�

�=�

�

!

3

i;j=1

;(2.2)

which is called the information matrix of the design �. Our �rst result shows that least squares

estimates based on an approximate design and a simple rounding procedure are consistent and

asymptotically normal distributed. The proof can be found in the Appendix.

Theorem 1 Let � denote an arbitrary design of the form (2.1) on the interval [0; T ], n � 3 and

assume that r

j

observations are taken at the points t

j

, where the values r

j

are obtained by rounding

the values w

j

N to integers such that

P

n

j=1

r

j

= N . If �

0

; s

0

> 0,

�

�

2 
 = f� = (#

1

; #

2

; #

3

)

T

: #

i

> 0; i = 1; 2; 3g;(2.3)

then nonlinear least squares estimate

^

� of the parameter �

�

minimizing (1.5) satis�es

p

N(

^

� � �

�

)

D

=) N (0; �

2

M

�1

(�; �

�

)) N !1 :

In other words the vector

p

N(

^

� � �

�

) has asymptotically a normal distribution with mean zero

and covariance matrix �

2

M

�1

(�; �

�

).

Note that Theorem 1 provides asymptotic unbiasedness and normality of the least squares esti-

mator

^

� in the Monod model (1.1). Moreover, asymptotically the covariance matrix of the vector

p

N

^

�

N

is given by

�

2

M

�1

(�; �

�

);
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where the information matrix is de�ned in (2.2). Following Cherno� (1953) we assume that �

0

is

a prior guess of the "true" parameter �

�

and call a design �

�

�

0

locally D-optimal design, if

detM(�

�

�

0

; �

0

) = max

�

detM(�; �

0

);

where the maximum is taken over all designs on the interval [0; T ]. The concept of local optimality

for nonlinear regression models requires two assumptions:

� The number of observations is suÆciently large such that the asymptotic theory is applicable.

� If the design is optimal for prior guess �

0

, then it is also eÆcient for the "true" (but unknown)

parameter �

�

, i.e.

I

�

�

(�

�

�

0

) =

�

detM(�

�

�

0

; �

�

)

detM(�

�

�

�

; �

�

)

�

1=m

> 1� Æ;

where m is the number of parameters (m = 3 in this case), Æ is a small positive constant.

The quantity I

�

�

(�

�

�

0

) is called "relative eÆciency" of the design �

�

�

0

with respect to the (unknown)

design �

�

�

�

and I

�1

�

�

(�

�

�

0

) represents the (relative) additional amount of observations which is nec-

essary to obtain the same accuracy with the design �

�

�

0

compared to the "ideal" (but unknown)

design �

�

�

�

. The �rst assumption can be veri�ed by simulations, while the second assumption can

be veri�ed by a robustness study, if the locally D-optimal designs are known [see Section 4 for

an example]. If these assumptions can be justi�ed the problem of searching a locally D-optimal

design for the Monod model (1.1) is equivalent to the problem of searching a D-optimal design

for the linear regression model

�

T

f(t) = �

T

@

@�

�(t; �)

�

�

�

�=�

0

;

and all results from the classical linear theory can be transferred to local optimality criteria.

For example the local D-optimality criterion guarantees (asymptotically) a minimum volume of

the con�dence ellipsoid if the random errors in the model (1.4) follow a normal distribution [see

Karlin, Studden (1966), Ch. X] and the local D-optimality can be characterized by the celebrated

equivalence theorem of Kiefer, Wolfowitz (1960), which shows, that a design �

�

�

0

is locally D-

optimal if and only if

f

T

(t)M

�1

(�

�

�

0

; �

0

)f(t) � m; 8t 2 [0; T ];(2.4)

where m is the number of parameters in the model. Moreover, the D-eÆciency of a given design

with respect to a locally D-optimal design can be evaluated by Kiefer's inequality without an

explicit construction of a locally D-optimal design. This inequality yields for the D-eÆciency

�

detM(�; �

0

)

max

�

detM(�; �

0

)

�

1=m

� e

1�v=m

;(2.5)

where the constant v is de�ned by

v = max

t2[0;T ]

f

T

(t)M

�1

(�; �

0

)f(t)

[see Pukelsheim (1993)]. Two further optimality criteria will be discussed in Section 5, which have

been proposed as alternative for the Monod model [see for example Vanrolleghem et. al. (1995)
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or Versyck, Bernaerts Geeraerd and Van Impe (1999)]. A design is called locally E-optimal if it

maximizes the minimum eigenvalue

�

min

�

M(�; �

0

)

�

(2.6)

of the information matrix in the class of all (approximate) designs. An E-optimal design mimini-

mizes the worst variance

max

p

T

p=1

Var(p

T

^

�);

taken over the variances of all (normalized) linear combinations of the parameter estimates p

T

^

� =

P

m

i=1

p

i

^

#

i

for the speci�c value �

0

. If only one linear combination is of interest, say c

T

�, the locally

c-optimality criterion might be useful which determines a design minimizing the quantitiy

c

T

M

�

(�; �

0

)c;(2.7)

where A

�

denotes the generalized inverse of the matrix A and the minimum is taken over the class

of all designs � for which the linear combination c

T

� is estimable, that is c 2 range(M(�; �

0

)) [see

Pukelsheim (1993)]. Note that for the special choice of a unit vector c = e

k

= (0; : : : ; 0; 1; 0; : : : ; 0)

T

the c-optimal design minimizes the variance of the least squares estimate for the parameter #

k

,

k = 1; : : : ; m, for the speci�c value �

0

.

Locally optimal designs have been constructed for several nonlinear regression models [see Box

and Lucas (1959), Melas (1978), Rasch (1990), Ford, Torsney and Wu (1992), Haines (1992,1993),

Sitter and Torsney (1995), He, Studden and Sun (1996), Dette and Wong (1999) among many

others]. The problem of determining optimal designs for the Monod model under consideration

is substantially more complex because the regression function in the model (1.1) is only de�ned

implicitly and the model has two non-linear parameters. The main step in the solution of this

design problem consists in a derivation of an alternative representation of the information matrix

de�ned in (2.2). For this purpose we introduce the notation

c = c(�) = s

0

#

3

+ �

0

;

b = b(�) = #

2

#

3

=c;

(2.8)

Combining formulas (1.2) and (1.3) we obtain from (1.1) the di�erential equation

�

0

(t) = #

1

s

0

#

3

+ �

0

� �(t)

s

0

#

3

+ �

0

� �(t) + #

2

#

3

�(t) = #

1

c� �(t)

c(1 + b)� �(t)

�(t) :(2.9)

From the initial conditions s

0

> 0, �

0

> 0, #

i

> 0, i = 1; 2; 3 it follows that

�

0

(0) = #

1

s

0

#

3

s

0

#

3

+ #

2

#

3

> 0:

and the following lemma describes some general properties of the regression function �.

Lemma 1 Let � denote a non-constant solution of the Monod equation (1.1) and T > 0 , then

�(t) > 0 ; �

0

(t) > 0 ; t 2 [0; T ];

�

0

� �(t) < c ; t 2 [0; T ];

lim

t!1

�(t) = c
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Note that the function � is strictly increasing on the interval [0; T ] and consequently for a �xed

vector � the inverse

t(x) = t(x; �) = �

�1

(x; �)(2.10)

exists on the interval [�

0

; �(T )] and satsi�es t(�

0

) = 0. From (2.9) it follows by a straightforward

calculation

d�

dt

=

d�

dt

�

�

�

t=�

�1

(u)

= #

1

�

1 + b

u

+

b

c� u

�

�1

dt

du

=

d�

�1

du

=

1

#

1

�

1 + b

u

+

b

c� u

�

;

and integrating the last formula we obtain

t(x) =

Z

x

�

0

1

#

1

�

1 + b

u

+

b

c� u

�

du =

1

#

1

�

(1 + b) ln

x

�

0

+ b ln

c� x

c� �

0

�

:(2.11)

Throughout this paper let

X = f�(t; �

0

) j t 2 [0; T ] g(2.12)

denote the induced design space, then any design � of the form (2.1) on the interval [0; T ] with

0 � t

1

< t

2

< : : : < t

n

� T induces a design � on X by the transformation

�

i

= �(t

i

; �

0

); i = 1; : : : ; n:(2.13)

In the following we will prove that the matrix M(�; �

0

) can be represented as a function of the

points �

1

; : : : ; �

n

. Note that such a relation is obvious for linear models [see Pukelsheim (1993),

p.3], but in general not clear for the Monod model under consideration, because the information

matrix for this model contains the partial derivatives of the regression function � evaluated at the

points t

i

. In order to prove this dependency we di�erentiate the identity

�(t(x; �); �) � x ; � 2 
 ; x 2 [�

0

; c](2.14)

with respect to the parameters #

i

(i = 1; 2; 3) and obtain

@�(t; �)

@t

@t(x; �)

@#

i

+

@�(t; �)

@#

i

= 0 ; i = 1; 2; 3(2.15)

with t = t(x; �), x = �(t; �). Now observing (2.11) and (2.15) it follows by a direct computation

that for any t � 0

@�(t; �)

@�

= K'(x);(2.16)

where x = �(t; �) and the matrix K 2 R

3�3

is de�ned by

K =

0

@

1+b

#

1

b

#

1

0

�

b

#

2

�

b

#

2

0

�

b�

0

c#

3

�

b�

0

c#

3

�

b

#

3

1

A

:(2.17)
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Here

'(x) = ('

1

(x); '

2

(x); '

3

(x))

T

denotes a vector of regression functions with components

'

1

(x) = '

1

(x; �) = v(x) ln

x

�

0

;

'

2

(x) = '

2

(x; �) = v(x) ln

c�x

c��

0

;

'

3

(x) = '

3

(x; �) = v(x)

x��

0

c�x

;

(2.18)

and

v(x) = v(x; �) =

x(c� x)

(1 + b)c� x

:(2.19)

Note that for each � the function �(t) = �(t; �) is strictly increasing with limit lim

t!1

�(t) = c

[see Lemma 1]. Thus it is possible to extend this function by the de�nition �(1) = c. By the

above discussion we can now transfer the original (locally) optimal design problem for the Monod

model to a design problem for a linear model on the induced design space X . To this end let

� =

�

x

1

: : : x

n

w

1

: : : w

n

�

; �

0

� x

1

< x

2

< : : : < x

n

� �c(2.20)

denote an arbitrary design on the interval [�

0

; �c], where �c � c, and de�ne

�

�

=

�

t

1

: : : t

n

w

1

: : : w

n

�

;(2.21)

with t

i

= t(x

i

; �

0

), i = 1; : : : ; n as the corresponding design on the original design space [0; T ] with

T = t(�c; �

0

). We de�ne

�

M(�) =

�

M(�; �

0

) =

n

X

j=1

w

j

'(x

j

)'(x

j

)

T

;

as the information matrix of the design � in the (homoscedastic) linear regression model

�

T

'(x) ;(2.22)

where � = (�

1

; �

2

; �

3

) denotes the vector of parameters. It follows from (2.2) and formula (2.16),

that

M(�

�

; �

0

) = K

�

M(�; �

0

)K

T

;

detM(�

�

; �

0

) =

b

4

(#

0

1

#

0

2

#

0

3

)

2

det

�

M(�; �

0

):

(2.23)

The following results are now obvious from these considerations.

Theorem 2 A design �

�

is a locally D-optimal design for the Monod model (1.1) on the interval

[0; T ] if and only if the induced design � is D-optimal for the regression model (2.22) on the interval

[�

0

; �c], �c = �(T ), under the standard assumptions about the measurement errors.

8



Theorem 3 A design �

�

is a locally E � (e

k

�)optimal design for the Monod model (1.1) on the

interval [0; T ] if and only if the design � is E � (e

k

�) optimal for regression function �

T

K'(x)

on the interval [�

0

; �c], �c = �(T ), under the standard assumptions on the measurement errors.

Consequently, it is suÆcient to construct locallyD-optimal designs for the regression model (2.22)

and locally E- and e

k

-optimal designs for the regression model �

T

K'(x). The locally optimal

designs for the Monod model (1.1) are simply obtained by tranforming the design � in (2.20) to

the design �

�

in (2.21). We will illustrate this method in the following sections discussing the

di�erent optimality criteria seperately.

3 Locally D-optimal designs

Due to Theorem 2 it will be suÆcient to study D-optimal designs for the linear regression model

(2.22) under the standard assumptions about measurements errors. Recall the notation c =

�(1; �

0

), �c = �(T; �

0

) � c, then it is easy to see that the de�nition of the vector of regression

functions ' in the model (2.22) can be continuously extended by putting

'

i

(c) = 0; i = 1; 2

'

3

(c) =

c��

0

b

=

s

0

c

#

2

:

In other words the vector of regression functions in the model (2.22) is well de�ned on intervals

[�

0

; �c], where �c = �(T; �

0

), 0 < T � 1, �c � c. Let us denote designs that are D-optimal in the

class of all designs supported at k support points as D-optimal k-point designs (E- and e

k

-optimal

k-point designs are de�ned similary). It is well known [see Karlin, Studden (1966), Ch. X] that

if the number of design points is less than the number of estimated parameters in the regression

model, then the information matrix is singular. Thus the D-optimal design has at least three

support points. The following result determines the best 3-point design for the regression model

(2.22). The proof is deferred to the Appendix.

Lemma 2 Assume that �

0

2 
 and that x

�

1

; x

�

2

are determined by the relation

�(x

�

1

; x

�

2

; �

0

) = max

n

�(x

1

; x

2

; �

0

)

�

�

�

�

0

� x

1

< x

2

� �c

o

;(3.1)

where the function � is de�ned by

�(x

1

; x

2

; �

0

) = det('

i

(x

j

))

3

i;j=1

;(3.2)

with x

3

= �c. The design

�

�

�c

=

�

x

�

1

x

�

2

�c

1=3 1=3 1=3

�

(3.3)

is a D-optimal 3-point design for the regression model (2.22) on the interval [�

0

; �c] for any �c with

�

0

< �c � c.

In general it is not clear if there exist better designs (with respect to the D-criterion) with more

than three support points. In our numerical study we did not �nd D-optimal designs for the

9



regression model (2.22) with more than three support points, but a general proof of this property

for arbitrary design regions seems to be diÆcult. However, it is possible to obtain theoretical

results in this direction if the right endpoint �c of the design space is suÆciently large and the

initial condition �

0

is suÆciently small. For this purpose we consider at �rst the design problem

for the regresion model (2.22) on the interval [0; c]. In this case the vector of the regression

functions can be rewritten in a more convenient form by the substitution x! cx

'̂(x) = cv(x)

�

ln

x

~�

0

; ln

1� x

1� ~�

0

;

x� ~�

0

1� x

�

T

;

where ~�

0

= �

0

=c. Thus we can assume without loss of generality that c = 1 and the D-optimal

designs on the general interval [0; c] are obtained by a rescaling from the D-optimal designs on the

interval [0; 1] (calculated for c = 1 and initial condition ~�

0

= �

0

=c). Because D-optimal designs

are not changed under nonsingular transformations of the regression functions, the problem is

reduced to the investigation of D-optimal designs for the regression model �

T

~'(x; ~�

0

), where the

vector ~' is de�ned by

~'(x; ~�

0

) = ( ~'

1

(x); ~'

2

(x); ~'

3

(x))

T

= v(x)

�

ln(x=~�

0

)

� ln ~�

0

; ln

1� x

1� ~�

0

;

x� ~�

0

1� x

�

T

:

A direct computation shows that for ~�

0

! 0

~'(x; ~�

0

)!  (x)

~

�(x

1

; x

2

; �

0

) = det( ~'

i

(x

j

))

3

i;j=1

! 	(x

1

; x

2

):

(in the last equation we put x

3

= 1), where the functions  and 	 are de�ned by

 (x) = v(x)

�

1; ln(1� x);

x

1� x

�

T

;

(3.4)

	(x

1

; x

2

) =

1

b

v(x

1

)v(x

2

)[ln(1� x

1

)� ln(1� x

2

)]

=

1

b

ln(1� x

1

)� ln(1� x

2

)

(1� x

1

+ b)(1� x

2

+ b)

x

1

x

2

(1� x

1

)(1� x

2

):

Lemma 3

(1) For for any b = #

2

#

3

> 0 the unique D-optimal design for the regression model �

T

 (x) on

the interval [0; 1] is given by

~

� =

�

~x

1

~x

2

1

1=3 1=3 1=3

�

;

where the points ~x

1

= ~x

1

(b) and ~x

2

= ~x

2

(b) are determined by the relation

	(~x

1

; ~x

2

) = max

n

	(x

1

; x

2

)

�

�

�

0 � ~x

1

< ~x

2

< 1

o

;(3.5)

and the function 	 is de�ned in (3.4).

10



(2) There exist positive numbers " > 0 and Æ > 0 such that for any �

0

< " and any �c > c� Æ the

design given in Lemma 2 by formula (3.3) is the unique D-optimal design for the regression

model (2.22) with design region [�

0

; �c]. Moreover, if �

0

! 0 and �c! 1 we have

V

T

�

M

�1

(�

�

�c

)V !

~

M

�1

(

~

�);

where

~

M(�) is the information matrix of design � in the regression model �

T

 (x),

�

M(�) is the

information matrix of design � in the regression model �

T

'(x) and V = diag(�1= ln �

0

; 1; 1).

In particular it follows that

e

T

3

�

M

�1

(�

�

�c

)e

3

! 3b

2

:

The following theorem is now obtained by the combination of Lemma 2, 3 and Theorem 2.

Theorem 4 Consider the Monod model de�ned by (1.1) - (1.3) on the interval [0; T ].

(1) For any �

0

2 
 and 0 < T � 1 a locally D-optimal 3-point design is given by

�

�

T

=

�

t

�

1

t

�

2

T

1=3 1=3 1=3

�

;(3.6)

where

t

�

i

=

1

#

1

h

(1 + b) ln(x

�

i

=�

0

) + b ln

c� �

0

c� x

�

i

i

; i = 1; 2

and the points x

�

i

are determined by the relation (3.1).

(2) The design �

�

T

determined by (3.6) is the unique locally D-optimal design for suÆciently large

T and suÆciently small �

0

.

(3) For N !1, T !1 �

0

! 0 the following relation holds:

N

�

2

D(

^

#

3

) ! 3#

�2

1

:

4 A numerical study of locally D-optimal designs

4.1 Some locally D-optimal designs for the Monod model

We begin with a numerical construction of the design �

�

c

de�ned by (3.3), which is D-optimal for

the regression model (2.22) on the interval [0; c] according to the second part of Lemma 3. The

function �(x

1

; x

2

; �

0

) de�ned in (3.2) for x

3

= c is of the from

�(x

1

; x

2

; �

0

) = v(x

1

)v(x

2

)

h

ln

x

1

�

0

ln

c� x

2

c� �

0

� ln

x

2

�

0

ln

c� x

1

c� �

0

i

�

c� �

0

b

;(4.1)

where the function v is de�ned by (2.19). The maximum of � on the set f (x

1

; x

2

) j �

0

� x

1

<

x

2

� c g can be calculated by a standard gradient method. De�ne ~�

0

= �

0

=c then it is again

suÆcient to consider only the case c = 1 [see the discussion in Section 3]. The designs �

�

c

on

the interval [�

0

; c] can be simply obtained from the designs on the interval [~�

0

; 1] multiplying the
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support points with c. Table 4.1 shows locallyD-optimal 3-point designs on the interval [~�

0

; 1] and

the diagonal elements of the corresponding covariance matrix for various values of the parameters

b = #

2

#

3

and ~�

0

. According to Lemma 2 these designs are locally D-optimal among all designs

with three support points. The optimality in the class of all designs was checked by an application

of Kiefer's equivalence theorem [see Kiefer and Wolfowitz (1960) or equation (2.4)]. We observed in

all considered cases that the checking condition was satis�ed and our numerical study shows that

the D-optimal 3-point designs are in fact D-optimal within the class of all approximate designs

on interval [�

0

; c].

Table 4.1: Locally D-optimal 3-point designs �

�

1

for the equivalent regression model (2.22) on the interval [~�

0

; 1]

for various values of ~�

0

and b = #

2

#

3

. These designs are of the form (3.3) and determined by Lemma 2. The table

also shows the diagonal elements �m

ii

(i = 1; 2) of the matrix

�

M

�1

(�

�

1

) rounded to integers. Optimal designs on

the interval [~�

0

c; c] can be obtained by rescaling the design �

�

1

with the factor c. The value of �m

33

= (

�

M

�1

(�

�

1

))

33

is given by 3b

2

=(1� ~�

0

)

2

.

b x

�

1

x

�

2

�m

11

�m

22

�m

33

x

�

1

x

�

2

�m

11

�m

22

�m

33

~�

0

= 0:2 ~�

0

= 0:1

0.1 0.70 0.95 31 23 0.05 0.67 0.95 13 19 0.04

0.25 0.65 0.93 71 70 0.29 0.61 0.92 28 57 0.23

0.75 0.59 0.91 279 367 2.64 0.55 0.89 101 284 2.08

1 0.58 0.90 428 593 0.54 4.69 0.89 153 456 3.70

2 0.56 0.89 1321 2013 18.7 0.51 0.88 458 1521 14.8

~�

0

= 0:05 ~�

0

= 0:01

0.1 0.65 0.94 7 17 0.03 0.62 0.94 2 15 0.03

0.25 0.59 0.92 14 50 0.21 0.56 0.91 5 43 0.19

0.75 0.52 0.89 49 244 1.87 0.49 0.88 16 205 1.72

1 0.51 0.88 74 389 3.32 0.48 0.87 24 325 3.06

2 0.48 0.87 217 1286 13.3 0.45 0.86 69 1065 12.24

We will now discuss the corresponding designs for the Monod model de�ned by the di�erential

equation (1.1), which are related to the D-optimal designs for the linear regression model (2.22) by

the relations (2.20) and (2.21). Because �(1) = c the corresponding designs for the Monod model

have a support point at T = 1 and cannot be realized in practice. This fact was also observed

empirically by Vanrolleghem et. al. (1995), who showed that for the commonly used optimality

criteria (including the D-, A-, and E-criterion) the optimal strategies yield to prohibitively long

experiments. However, even if the D-optimal designs are not directly implementable, they can

be used as a basis for evaluating the eÆciency of other designs, which are used in practice. For

example consider the following design

^

� =

�

t

�

1

t

�

2

t

3

1=3 1=3 1=3

�

;(4.2)

where t

�

i

= t

�

i

(�

0

); i = 1; 2 are points of the design

�

�

1

=

�

t

�

1

t

�

2

1

1=3 1=3 1=3

�

on the in�nite design space [0;1], which was determined in Theorem 4. We will now choose the

12



point t

3

such that the eÆciency of the design

^

� with respect to the design �

�

1

I =

 

detM(

^

�)

detM(�

�

1

)

!

1=3

=

 

det

�

M(�

^

�

)

det

�

M(�

�

�

1

)

!

1=3

(4.3)

is equal to a given value 1� Æ (note that �

�

�

1

= �

�

c

). The corresponding values of the point t

3

are

represented in Table 4.2 for various values of Æ, b and �

0

. From this table we can conclude that for

t

3

= 2t

�

2

the eÆciency of the design

^

� is at least 0:98 for all considered parameter combinations.

Thus if t

�

2

< T=2, the designs

�

�

D

=

�

t

�

1

t

�

2

2t

�

2

1=3 1=3 1=3

�

:(4.4)

are close to the locallyD-optimal designs on the interval [0;1] and they can be realized in practice.

Note that the true eÆciency of these designs on the interval [0; T ] is usually larger than 1 � Æ,

because our comparison is based on a design for an in�nite design space and the locally D-optimal

design on the interval [0; T ] has always a smaller determinant than the locally D-optimal design

�

�

1

on the in�nite design space [0;1]. In other words the designs given in (4.4) have at least D-

eÆciency 1� Æ for the concrete interval [0; T ], whenever t

�

2

� T=2.

Table 4.2: The third support point t

3

of the design

^

� de�ned in (4.2), such that the relative D- eÆciency (4.3) is

at least 1� Æ. The last two columns show the ratio k(1� Æ) = t

3

=t

�

2

.

1� Æ

b �

0

t

�

1

t

�

2

0.9 0.95 0.98 0.99 k(0:95) k(0:99)

t

3

0.25 0.1 2.5 3.4 4.2 4.4 4.7 4.9 1.3 1.4

0.5 0.1 3.0 4.4 6.0 6.5 7.1 7.4 1.5 1.7

0.75 0.1 3.5 5.4 7.8 8.5 9.3 9.9 1.6 1.8

1 0.1 4.0 6.5 9.7 10.5 11.6 12.4 1.6 1.9

1.5 0.1 5.1 8.5 13.3 14.6 16.2 17.4 1.7 2.1

2 0.1 6.1 10.5 17.0 18.7 20.8 22.5 1.8 2.1

0.25 0.2 1.7 2.5 3.4 3.6 3.9 4.0 1.4 1.6

0.25 0.05 3.3 4.2 5.1 5.3 5.6 5.8 1.2 1.4

0.25 0.01 5.2 6.2 7.1 7.3 7.6 7.8 1.2 1.2

We now compare the design �

�

D

de�ned in (4.4) with the uniform design

�

u

=

�

T=n 2T=n : : : T

1=n 1=n : : : 1=n

�

:(4.5)

A numerical study indicates that the information matrix of the uniform design for n � 10, T >

1:5t

�

2

does not depend sensitively on the parameters n and T (these results are not displayed for

the sake of brevity). Exemplarily we consider the case n = 10; T = 2t

�

2

, other situations give

similar results. A comparison of the uniform design �

u

and the design �

�

D

given in (4.4) with

respect to the D-criterion shows that the D-eÆciencies

I(�

u

) =

�

detM(�

u

)

detM(�

�

D

)

�

1

3

(4.6)
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of the uniform design vary between 150% and 200% [see Table 4.3]. This indicates a rather poor

performance of the uniform design �

u

. A more re�ned comparison is obtained by looking at the

the asymptotic variances of the estimators for the parameters #

1

, #

2

and #

3

. Note that the ratio

of these variances is given by

d

i

=

(M

�1

(�

u

))

ii

(M

�1

(�

�

D

))

ii

; i = 1; 2; 3:(4.7)

We observe from Table 4.3 that the uniform design produces a smaller (asymptotic) variance of the

estimator for the parameter #

3

compared to the design (4.4). On the other hand the asymptotic

variances obtained for the estimators for the parameters #

1

and #

2

are substantially smaller

than the corresponding variances obtained from the uniform design (4.5). However in realistic

situations [see Pirt (1975) and Blok (1994) and the simulations of the following paragraph] an

eÆcient estimation of #

1

and #

2

is more important, because the parameter #

3

is usualy estimated

with much higher precision than the parameters #

1

and #

2

. Moreover, the loss of eÆciency using

the unifom design for estimating #

1

and #

2

is substantially larger than the loss of eÆciency using

the design �

�

D

for estimating the parameter #

3

. Thus, if we consider estimation of the parameters

#

1

and #

2

as more important, the design �

�

D

yields a reduction of approximately 50% of the variance

compared to the uniform design �

u

[see the results in Table 4.3] provided that the sample size N

is suÆciently large.

Table 4.3: The eÆciency of the design �

�

D

de�ned in (4.4) in relation to the uniform design �

u

de�ned in (4.5) in

the Monod model (1.1). Here the eÆciency d

i

de�ned in (4.7) (i = 1; 2; 3) corresponds to the estimation of the

individual parameters #

1

; #

2

; #

3

and depends only on the parameters ~�

0

= �

0

=c and b. I(�

u

) corresponds to the

D-criterion and is de�ned in (4.6).

~�

0

0.2 0.1

b 0.1 0.25 0.75 1 2 0.1 0.25 0.75 1 2

d

1

2.0 2.0 2.2 2.3 2.5 1.9 2.1 2.2 2.3 2.3

d

2

2.2 2.0 2.2 2.3 2.4 2.1 2.2 2.2 2.3 2.3

d

3

1.0 0.7 0.6 0.6 0.6 1.2 0.8 0.6 0.6 0.6

I(�

u

) 1.6 1.4 1.4 1.5 1.5 1.7 1.6 1.5 1.5 1.5

~�

0

0.05 0.01

b 0.1 0.25 0.75 1 2 0.1 0.25 0.75 1 2

d

1

3.0 2.1 2.3 2.3 2.4 2.8 2.5 2.4 2.5 2.4

d

2

3.4 2.2 2.2 2.3 2.4 3.0 2.6 2.4 2.5 2.4

d

3

1.4 0.9 0.7 0.7 0.6 1.7 1.2 0.8 0.7 0.7

I(�

u

) 2.1 1.6 1.6 1.5 1.6 2.4 2.0 1.7 1.7 1.7

In order to investigate how these asymptotic observations can be transferred to realistic sample

sizes a small simulation study was conducted. We simulated observations according to the model

(1.4) where the erors are normally distributed with variance �

2

= 0:01

2

and �

2

= 0:02

2

. The

parameter � = (#

1

; #

2

; #

3

)

T

was estimated by the least squares technique using the Nelder-Mead

simplex method. For the parameter �

�

we �xed the value (0:25; 0:5; 0:25)

T

which corresponds

to parameters observed in studies of microbial growth [see Pirt (1975) or Blok (1994)]. The

simulation was repeated 400 times for the sample sizes N = 20; 30; 40; 60 and the designs �

�

D

and �

u

de�ned in (4.4) and (4.5), respectively. The simulated variances of the estimators for the
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parameters #

1

, #

2

, #

3

are represented in Table 4.4 and 4.5 corresponding to the choices � = 0:01

and � = 0:02, respectively. For the sake of transparency these values are multiplied with N=�

2

(and rounded to integers). The results con�rm our asymptotic �ndings for realistic sample sizes.

The design �

�

D

de�ned in (4.4) allows a substantially more precise estimation of the parameters

#

1

and #

2

compared to the design �

u

. Note that the variances for the estimation of the parameter

#

3

are substantially smaller (independent of the design) than the corresponding variances of the

estimators for #

1

and #

2

. Finally, it is worthwhile to mention that the asymptotic considerations

of the previous paragraph are applicable if N � 30. Thus our simulation study con�rmed that

the design �

�

D

performs much better than the uniform design �

u

.

Table 4.4: Simulated and asymptotic variances of the estimates for the parameters in the Monod model (1.1) for

di�erent sample sizes (N). The variances are multiplied with N=�

2

(� = 0:01) and are presented for the uniform

design �

u

and the design �

�

D

in (4.4) obtained from the D-optimal design on an in�nite design space.

N 20 30 40 60 1

uniform design

�

1

771 606 575 529 551

�

2

17693 13637 12336 11944 12500

�

3

2.1 2.1 2.3 2.1 2.3

optimal design

�

1

432 295 195 180 269

�

2

10101 6789 4357 4070 6055

�

3

3.3 2.9 2.9 2.6 3.0

Table 4.5: Simulated and asymptotic variances of the estimates for the parameters in the Monod model (1.1) for

di�erent sample sizes (N). The variances are multiplied with N=�

2

(� = 0:02) and are presented for the uniform

design �

u

and the design �

�

D

in (4.4) obtained from the D-optimal design on an in�nite design space.

N 20 30 40 100 1

uniform design

�

1

2936 2080 1791 564 551

�

2

72541 49874 43325 13494 12500

�

3

4.0 3.8 3.7 3.6 2.3

optimal design

�

1

1056 867 798 278 269

�

2

23024 20390 14880 6359 6055

�

3

2.6 2.9 2.9 3.0 3.0

4.2 Robustness with respect to the inital parameter choice

For practical purposes it is important to study the sensitivity of the locally D-optimal design

with respect to misspeci�cation of the initial parameters. Up to now the optimal designs were

15



determined under the assumption that �

0

= �

�

but the "true" vector of parameters �

�

is not

known in practice and the vector �

0

is a preliminary guess, for example obtained from the least

squares estimates in a similar experiment or from a preliminary investigation as recommended by

Merkel et. al. (1996). In order to obtain some feeling about this sensitivity we choosed #

�

2

= 0:5,

#

�

3

= 0:25 for the nonlinear parameters in the Monod model and calculated the design �

�

D

de�ned

in (4.4) for � = �

�

. In Table 4.6 we show the eÆciency for estimating the individual parameters

#

1

; #

2

de�ned by

d

i

=

�

(M

�1

(�

�

0

))

ii

(M

�1

(�

�

D

))

ii

�

�1

; i = 1; 2;(4.8)

where �

�

0

denotes the locally optimal design (4.4) calculated under the preliminary assumption

#

0

2

= #

�

2

+ u, #

0

3

= #

�

3

+ v. Note that we did not present the quantity d

3

in this table, because

it is close to one in all cases under considerations. In other words the design given in (4.4) is

extremely robust for the estimation of the parameter #

3

with respect to misspeci�cation of the

initial parameters. However, we observe from Table 4.6 that misspeci�cation of #

�

2

and #

�

3

may

yield a substantial loss of eÆciency for the estimation of the parameters #

1

and #

2

. Because

estimation of #

1

and #

2

is usually considered as more diÆcult we conclude from our numerical

study that the design (4.4) derived from the locally D-optimal design is rather sensitive with

respect to misspeci�cation of the initial parameter �

0

.

Table 4.6: Sensitivity of the design (4.4) drived from the locally D-optimal design with respect to misspeci�cation

of the inital values. The table shows the loss of eÆciency de�ned in (4.8) for estimating the individual parameters

and the loss of D-eÆciency (I) if the initial parameters #

�

2

and #

�

3

have been misspeci�ed by an amount of u and

v, respectively.

u 0.05 0.05 -0.05 -0.05 0.1 0.1 -0.1 -0.1 0.15 0.15 -0.15 -0.15

v 0.05 -0.05 0.05 -0.05 0.1 -0.1 0.1 -0.1 0.15 -0.15 0.15 -0.15

I 1.12 1.02 1.01 1.23 1.45 1.18 1.02 3.01 1.92 1.92 1.04 50.0

d

1

1.42 1.14 0.98 2.09 2.70 1.87 0.98 35.70 5.30 8.08 0.96 18055

d

2

1.43 1.15 0.97 2.14 2.83 1.84 0.97 31.18 5.79 7.22 0.94 1017

Remark 4.1. The numerical results given in Table 4.6 can be used to give a recommendation for

practical applications. Usually intervals for the unknown parameters #

�

2

and #

�

3

can be speci�ed

by the experimenter, based on microbiological background. Assume that these intervals are given

by [�

1

; �

2

], and [�

1

; �

2

], respectively. In this case we propose as the design for the experiment with

the Monod model the locally D-optimal design for the parameter (#

2

; #

3

) = (�

2

; �

1

), because in

this case the true parameter (#

�

2

; #

�

3

) 2 [�

1

; �

2

] � [�

1

; �

2

] satsi�es #

�

2

= #

2

+ u and #

�

3

= #

3

+ v

with negative u and positive v. The results of Table 4.6 show that the designs constructed by this

procedure are extremely robust with respect to misspeci�cation of the initial parameter values.

5 Locally E- and e

k

-optimal designs

In this section we present a theoretical and numerical study of the locallyE- and e

k

-optimal designs

in the Monod model. The optimality criteria are de�ned in (2.6) and (2.7), respectively. Due to
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Theorem 3 it will be suÆcient to study the optimal designs for the regression model �

T

K'(x) on

the interval [�

0

; �c], where the matrix K is de�ned by (2.17). It will be shown in Proposition 1 of

the Appendix that the functions '

1

(x), '

2

(x) and '

3

(x) de�ned in (2.18) generate a Chebyshev-

system on the interval [�

0

; �c]. Then it is well known [see Karlin, Studden (1966), Ch. 1] that there

exists a function g(x),

g(x) = r

1

'

1

(x) + r

2

'

2

(x) + r

3

'

3

(x);(5.1)

with real coeÆcients r

1

, r

2

and r

3

, and (unique) points ~x

1

, ~x

2

and ~x

3

satisfying �

0

� ~x

1

< ~x

2

<

~x

3

� �c such that

g(~x

i

) = (�1)

i+1

; i = 1; 2; 3(5.2)

and such that the inequality

jg(x)j � 1;(5.3)

holds for all x 2 [�

0

; �c]: Counting the number of possible zeros of the function g

0

(x) shows that

at least one of the points ~x

i

has to be a boundary point of the interval [�

0

; �c]. Since g(�

0

) = 0 it

follows that ~x

3

= �c. The matrix

~

F =

�

e

T

i

K'(~x

j

)

�

3

i;j=1

:

is nonsingular, because the functions '

1

, '

2

and '

3

generate a Chebyshev-system on the interval

[�

o

; �c] and the matrix K is nonsingular. The following lemma gives the locally e

k

- and E-optimal

designs and will be proved in the Appendix.

Lemma 4

(1) If �

0

> 0 is suÆciently small, then the design

�

E

=

 

~x

1

~x

2

�c

~!

1

~!

2

~!

3

!

(5.4)

is a locally E-optimal design in the regression model �

T

K'(x) on the interval [�

0

; �c]. Here

the support points are de�ned by the condition (5.2) and (5.3) and the weights ~!

i

are given

by the formula

~!

i

= j

~

A

i

j

.

3

X

j=1

j

~

A

j

j ;(5.5)

where

~

A

i

= e

T

i

~

F

�1

r, i = 1; 2; 3, and r = (r

1

; r

2

; r

3

)

T

denotes the vector of coeÆcients of the

function g de�ned in (5.1) - (5.3).

(2) For arbitrary �c � c, �

0

> 0 the design �

E

de�ned by (5.4) is a locally E-optimal design for

the regression model �

T

K'(x) on the interval [�

0

; �c] if and only if the condition

r

T

�

M(�

E

)r = (r

T

(K

T

K)

�1

r)�

min

(K

�

M(�

E

)K

T

)

is satis�ed, where r = (r

1

; r

2

; r

3

)

T

denotes the vector of coeÆcients of the function g de�ned

in (5.1) - (5.3). In this case the design �

E

is the unique (locally) E-optimal design.
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(3) If �

0

> 0 is suÆciently small, then the design

�

e

k

=

 

~x

1

~x

2

�c

~!

1

(k) ~!

2

(k) ~!

3

(k)

!

:

is a locally e

k

-optimal design in the regression model �

T

K'(x) on the interval [�

0

; �c]. Here

the support points are de�ned by the condition (5.2) and (5.3) and the weights ~!

i

are given

by the formula

~!

i

(k) = j

~

A

ik

j

.

3

X

j=1

j

~

A

jk

j; k = 1; 2; 3;

with

~

A

ij

= e

T

i

~

F

�1

e

j

(i; j = 1; 2; 3).

(4) For arbitrary �

0

> 0 the design �

e

k

is a locally e

k

-optimal design for the regression model

�

T

K'(x) on the interval [�

0

; �c] if and only if

~

A

ik

� 0 ; i = 1; 2; 3 :

In this case the design �

e

k

is the unique (locally) e

k

-optimal design.

Note that it follows from Theorem 3 that a design � is locally E� (e

k

�) optimal for the regression

model �

T

K'(x) on the interval [�

0

; �c] if and only if the design �

�

induced by the transformation

(2.21) is locally E� (e

k

�) optimal for Monod model (1.1) on the interval [0; T ], where T = t(�c).

Therefore, if no constraints are imposed on the desired real time operation, the locally e

k

� and

E� optimal designs yield designs with prohibitively long experiments. This fact was also observed

empirically for the E-criterion by Vanrolleghem et. al. (1995).

For the numerical construction of the E-optimal design �

E

it is suÆcient to maximize the function

Q(x

1

; x

2

) = �

min

(K

T

�

M(�)K)

on the set

U = f(x

1

; x

2

)

T

; �

0

� x

1

� x

2

� �cg ;

where � is de�ned in (5.4) and (5.5). The design �

e

k

can be constructed in a similar way and the

optimality can be checked by the necessary and suÆcient characterizations (2) and (4) in Lemma

4. We conclude this section with a comparison of locally D, E- and e

2

-optimal designs. The

characteristics of the locally optimal designs can be found in Table 5.1, which shows the design

(4.4) derived from the D-optimal design and the E- and e

2

- optimal design

�

�

E

=

�

t

�

1E

t

�

2E

2t

�

2D

w

1

w

2

w

3

�

�

�

e

2

=

�

t

�

1E

t

�

2E

2t

�

2D

m

1

m

2

; m

3

�

on the interval [0; 2t

�

2D

]. Note that �

�

E

and �

�

e

2

have the same support points. In all cases considered

in our numerical study the necessary and suÆcient conditions from part (2) and (4) of Lemma 4
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were ful�lled which leads to the conjecture that the designs de�ned by formula (5.4) and (5.6) are

in fact locally E- and e

k

-optimal on any interval [0; T ] and for any initial condition �

0

> 0.

The designs were �rstly compared by their D-eÆciencies

I(�) :=

�

detM(�)

detM(�

�

D

)

�

1=3

(5.6)

and we did not observe substantial di�erences with respect to this criterion [see the last two

columns in Table 5.1]. For a more re�ned comparison we calculated the asymptotic eÆciencies

d

i

=

(M

�1

(�

�

E

))

ii

(M

�1

(�

�

D

))

ii

; i = 1; 2; 3

(5.7)

^

d

i

=

(M

�1

(�

�

e

2

))

ii

(M

�1

(�

�

D

))

ii

; i = 1; 2; 3

for estimating the individual coeÆcients in the Monod model. We observe a very similar behaviour

of the E- and e

2

-optimal design, which provide more eÆcient estimates for the parameters #

1

and

#

2

as the design �

�

D

derived from the D-optimal. On the other hand this design is more eÆcient

for the estimation of the parameter #

3

. However, if improvement of accuracy in the estimation

of the parameters #

1

and #

2

is considered as more important the E- and e

2

-optimal design have

some advantages.

6 Conclusions

In this paper we discussed the problem of estimation and design of experiments for the Monod

model, which is widely used for describing microbial growth and substrate degradations in acti-

vated sludge wastewater treatment, pharmacokinetics and plant physiology. Although the model

is only de�ned implicitly by a di�erential equation we demonstrate that asymptotic inference is

possible. It is shown that the least squares method provides consistent estimates of the parameters

in this model. The asymptotic covariance matrix derived from these estimators can be used for

the construction and evaluation of designs provided that the sample size is larger than N = 30

and locally D-, e

2

- and E-optimal designs are determined. A numerical study shows that uniform

designs are a good choice for an initial study. The performance of these designs is rather robust

with respect to misspeci�cation of the initial values for the parameters and its eÆciency with

respect to the locally D-optimal designs is approximately 50% for the estimation of the impor-

tant parameters in the Monod model. Moreover, locally E- (and also e

2

-) optimal designs have

similar properties as the designs determined by the D-criterion. They are slightly better than lo-

cally D-optimal designs but require di�erent numbers of experiments under di�erent experimental

conditions.

Locally optimal designs are rather sensitive with respect to a speci�cation of initial values for

the parameter in the model if no prior information is available. However, if certain intervals for

the nonlinear parameters can be speci�ed based on microbiological background, we are able to

construct locally optimal designs, which are robust with respect to misspeci�cation of the initial

parameters and allow eÆcient estimation of the parameters in the Monod model [see Remark 4.1
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Table 5.1: Comparison of D-, E-, e

2

-optimal designs for various values of b = #

2

#

3

. The E- and �

�

e

2

-optimal design

have the same suport t

�

1E

; t

�

2E

; 2t

�

2D

but di�erent weights w

1

; w

2

; w

3

and m

1

;m

2

;m

3

, respectively. The D-optimal

design has equal masses at the points t

�

1D

; t

�

2D

; 2t

�

2D

and the eÆciencies d

i

and

^

d

i

are de�ned in (5.7), while I(�) is

de�ned by (5.6).

b 0.1 0.25 0.5 0.75 1 1.5 2

t

�

1D

2.92 3.29 3.95 4.62 5.30 6.67 8.04

t

�

2D

3.51 4.25 5.45 6.64 7.82 10.18 12.54

(M

�1

)

11

42.3 110.5 269.8 486.4 760.4 1480.2 2428.5

(M

�1

)

22

24.9 103.0 423.9 1136.5 2460.0 8055.4 19914.0

(M

�1

)

33

3.00 3.00 3.00 3.00 3.00 3.00 3.00

t

�

1E

2.65 2.94 3.47 4.03 4.59 5.73 6.88

t

�

2E

3.52 4.26 5.48 6.68 7.88 10.26 12.65

w

1

0.45 0.42 0.41 0.40 0.40 0.40 0.40

w

2

0.35 0.36 0.37 0.37 0.37 0.37 0.37

w

3

0.20 0.21 0.22 0.22 0.23 0.23 0.23

m

1

0.40 0.39 0.39 0.39 0.39 0.39 0.40

m

2

0.39 0.39 0.38 0.38 0.38 0.38 0.37

m

3

0.21 0.22 0.23 0.23 0.23 0.23 0.23

d

1

0.80 0.82 0.83 0.84 0.84 0.84 0.84

d

2

0.84 0.85 0.85 0.85 0.85 0.85 0.85

d

3

1.66 1.58 1.52 1.49 1.48 1.47 1.47

^

d

1

0.82 0.83 0.84 0.84 0.84 0.84 0.84

^

d

2

0.83 0.84 0.85 0.85 0.85 0.85 0.85

^

d

3

1.60 1.50 1.47 1.46 1.46 1.46 1.46

I(�

�

E

) 1.12 1.11 1.10 1.10 1.10 1.10 1.10

I(�

�

e

2

) 1.11 1.10 1.10 1.10 1.10 1.10 1.10

for details]. Morover, in many applications of the Monod model the statistical inference is made

in two steps and some information regarding the parameters in the model is available from the

�rst step, which can be used for the construction of eÆcient designs in the second step [see e.g.

Merkel et. al. (1996)]. If prior information for the values of the parameters is available from the

data obtained in the �rst step, the eÆciency of the estimates can be substantially improved by

using locally D-, e

2

- or E-optimal designs. Additionally the results of the present paper provide

further insight in the optimal design problem for the Monod model, which will be useful for the

construction of Bayesian- or robust optimal designs.

7 Appendix

We will begin proving a Chebyshev property for a systems of functions, which will be crucial for

a proof of the statements in Section 2 - 5. Recall that a system of functions  

1

(t); : : : ;  

m

(t) is

called a Chebyshev system (T -system) on an interval [�; �] if

det ( 

i

(t

j

))

m

i;j=1

> 0
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for any � � t

1

< : : : < t

m

� � [see Karlin and Studden (1966), Ch.1] . The main property

of a Chebyshev-system is that any non trivial linear combination

P

m

i=1

�

i

 

i

(t) of the functions

 

1

; : : : ;  

m

has at most m� 1 distinct roots in the interval [�; �].

Proposition 1

a) The system of functions

�

1

u

;

1

b

1

� u

;

1

(b

1

� u)(b

2

� u)

�

is a Chebyshev system on any interval [a; b] � (0;1], whenever b

1

; b

2

� b;

b) If a system of functions  

1

(x); : : : ;  

m

(x) is a Chebyshev system on the interval [�

0

; b], then

the system of functions

Z

u

�

0

 

1

(x)dx; : : : ;

Z

u

�

0

 

m

(x)dx

is also a Chebyshev system on any interval [a; b] � (�

0

; b].

Proof.

a) Consider the determinant

J = det ( 

i

(u

j

))

3

i;j=1

; a � u

1

< u

2

< u

3

� b;

where  

1

(u) = 1=u;  

2

(u) = 1=(b

1

�u),  

3

(u) = 1=[(b

1

�u)(b

2

�u)]. Let us multiply i-th row

with u

i

(b

1

� u

i

)(b

2

� u

i

), i = 1; 2; 3. By a linear transformation of the columns the resulting

determinant can be reduced to the Vandermonde determinant

det(u

i�1

j

)

3

i;j=1

=

Y

j<i

(u

i

� u

j

) > 0

Hence J > 0 and the system  

1

(u);  

2

(x);  

3

(x) is a Chebyshev system on the interval

[a; b] � (0;1].

b) Let us suppose that assertion b) of Proposition 1 is not true. Then there exist real numbers

�

1

; : : : ; �

m

, not all equal to zero such that the linear combination

m

X

i=1

�

i

Z

u

�

0

 

i

(x)dx =: q(u)

has at least m distinct zeros in the interval [a; b] � (�

0

; b]. Moreover, we have q(�

0

) = 0, and

therefore the derivative

q

0

(u) =

m

X

i=1

�

i

 

i

(u)

has m di�erent roots in the interval [�

0

; b], which contradicts to the Chebyshev property of

the system f 

i

(u)g.
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7.1 Proof of Lemma 1:

The derivative of � is positive at the point t = 0 and by continuity it must also be positive in

a neighbourhood of the origin. Moreover, the function ��(t) � c is obviously a solution of the

di�erential equation (1.1). By the implicit function theorem [see Gunning and Rossi (1965)] it

follows that the di�erential equation (1.1) can not have two di�erentiable solutions which coincide

at a point. Thus the function � should be less than c for any t > 0 and must be increasing.

Consequently there exists the limit lim

t!1

�(t). Now equation (1.1) implies that the limit of the

derivative of � also exists. Because � is a bounded function it follows from (2.9) that

lim

t!1

�

0

(t) = 0

lim

t!1

�(t) = c;

which completes the proof of Lemma 1.

7.2 Proof of Theorem 1:

Recall the de�niton of the set 
 = f� = (#

1

; #

2

; #

3

)

T

: #

i

> 0; i = 1; 2; 3g in Theorem 1, then the

assertion of the theorem follows from results of Jennrich (1969) and the following Lemma.

Lemma 5 Let �(t; �) denote the regression function determined by (1.1)-(1.3).

(a) For any �xed vector � 2 
 there exist the derivatives

@�

@#

i

(t; �);

@

2

�

@#

i

@#

j

(t; �); i; j = 1; 2; 3:

(b) For any �xed �

0

2 
 the function

g(�) =

n

X

j=1

(�(t

j

; �)� �(t

j

; �

0

))

2

with 0 � t

1

< : : : < t

n

< 1 and n � 3 attains its minimum value (equal to zero) in the set 
 if

and only if � = �

0

.

(c) For any �

0

2 
 and for any design � with more than 3 support points it follows that

detM(�; �

0

) 6= 0:

Proof. Statement (a) is an immediate consequence of the identities (2.11) and (2.15). Let us

suppose that condition (b) is not valid. Then as n � 3 there exist two vectors �

(1)

and �

(2)

, such

that

�(t

i

; �

(1)

) = �(t

i

; �

(2)

); i = 1; 2; 3:(7.1)

De�ne �

i

= �(t

i

; �

(1)

) (i = 1; 2; 3) and consider the two functions

t

(j)

(x) = t(x; �

(j)

) = �

�1

(x; �

(j)

); j = 1; 2:
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Due to (7.1) we have t

(1)

(�

i

) = t

(2)

(�

i

) = t

i

(i = 1; 2; 3), and observing (2.11) we obtain

t

i

= a

1

(�

(j)

)

Z

�

i

�

0

1

u

du+ a

2

(�

(j)

)

Z

�

i

�

0

1

a

3

(�

(j)

)� u

du;

i = 1; 2; 3; j = 1; 2; where the constants a

i

(�) are given by

a

1

(�) =

1 + b

#

1

=

1

#

1

s

0

#

3

+ �

0

+ #

2

#

3

s

0

#

3

+ �

0

;

a

2

(�) =

b

#

1

=

1

#

1

#

2

#

3

s

0

#

3

+ �

0

;

a

3

(�) = c = s

0

#

3

+ �

0

:

It is easy to verify that the conditions a

i

(�

(1)

) = a

i

(�

(2)

), i = 1; 2; 3 imply �

(1)

= �

(2)

. Consequently,

there exist two di�erent vectors

a

(j)

= (a

1(j)

; a

2(j)

; a

3(j)

) = (a

1

(�

(j)

); a

2

(�

(j)

); a

3

(�

(j)

))

T

; j = 1; 2;

such that the equations

a

1(j)

Z

�

i

�

0

1

u

du+ a

2(j)

Z

�

i

�

0

1

a

3(j)

� u

du = t

i

;

are satis�ed for all i = 1; 2; 3; j = 1; 2: Subtracting the equalities for j = 2 from the equalities for

j = 1 we obtain

�

1

R

�

i

�

0

1

u

du � a

2(1)

R

�

i

�

0

�

3

(a

3(1)

�u)(a

3(2)

�u)

du+

+ �

2

R

�

i

�

0

1

a

3(1)

�u

du = 0;

(7.2)

for some constants �

i

= a

i(1)

� a

i(2)

, i = 1; 2; 3. From Proposition 1 it follows that the functions

 

1

(x) =

Z

x

�

0

du

u

;  

2

(x) =

Z

x

�

0

du

b

1

� u

;  

3

(x) =

Z

x

�

0

du

(b

1

� u)(b

2

� u)

;

form a Chebyshev-system on an interval (�

0

; d] whenever b

1

; b

2

� d. Inserting d = minfa

3(1)

; a

3(2)

g,

b

1

= a

3(1)

, b

2

= a

3(2)

, �

1

= �

1

, �

2

= �a

2(1)

�

3

, �

3

= �

2

we obtain from (7.2) that

3

X

i=1

�

i

 

i

(�

j

) = 0; j = 1; 2; 3;

where the coeÆcients �

i

are not all equal to zero and we have from Lemma 1 �

i

� minfa

3(1)

; a

3(2)

g

(i = 1; 2; 3). This equality contradicts to the main property of Chebyshev-systems and the proof

of the assertion (b) is completed.

Let us �nally prove that assertion (c) is valid. From Proposition 1 it follows that the functions

'

1

(x), '

2

(x), '

3

(x) de�ned in (2.18) generate a Chebyshev-system on the interval (0;1]. If n = 3

a direct calculation shows shows that

M(�; �

0

) = F

T

WF;(7.3)
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where W = diagfw

1

; w

2

; w

3

g,

F =

�

@�(t

i

; �

0

)

@#

j

�

3

i;j=1

:

Consequently it follows that

detM(�; �

0

) = w

1

w

2

w

3

(detF )

2

;(7.4)

while due to equality (2.16) we have

detF = detK � det ('

j

(�

i

))

3

i;j=1

6= 0;

where we used the Chebyshev property of the system f'

i

(x)g

3

i=1

. In the general case n > 3 let

� = (i

1

; i

2

; i

3

); �

�

=

�

t

i

1

t

i

2

t

i

3

w

i

1

w

i

2

w

i

3

�

; 1 � i

1

< i

2

< i

3

� n;

and denote by � the set of all di�erent multiindices �, then the Cauchy-Binet formula shows

detM(�; �

0

) =

X

�2�

detM(�

�

; �

0

);(7.5)

and all terms in the sum on the right-hand side are positive.

7.3 Proof of Lemma 2

It follows by a standard argument that the optimal weights (with respect to the D-criterion) are

equal for any design with three support points. Consequently it is enough to verify that

@

@x

3

detF (x

1

; x

2

; x

3

) > 0

for �

0

� x

1

< x

2

< x

3

; where F (x

1

; x

2

; x

3

) = det('

i

(x

j

))

3

i;j=1

. To this end we introduce the

notation

L(x) =

@

@x

detF (x

1

; x

2

; x);

G(x) = det

0

@

f

1

(x

1

) f

2

(x

1

) f

3

(x

1

)

f

1

(x

2

) f

2

(x

2

) f

3

(x

2

)

f

1

(x) f

2

(x) f

3

(x)

1

A

:(7.6)

with f

i

(x) = '

i

(x)=v(x), then a direct computation shows that

0 � detF (x

1

; x

2

; x) = v(x

1

)v(x

2

)v(x)G(x)

and

L(x) = v(x

1

)v(x

2

)v

0

(x)G(x) + v(x

1

)v(x

2

)v(x)G

0

(x) :(7.7)

Consequently, we obtain

L(x) = v(x

1

)v(x

2

)v(x)G

0

(x)
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for x = x

1

; x

2

. Observing (2.18) and (7.6) it follows that the function G(x) has zeros at x =

�

0

; x

1

; x

2

. Hence there exist points u

1

; u

2

with �

0

< u

1

< x

1

< u

2

< x

2

and G

0

(u

i

) = 0, i = 1; 2.

Moreover, the functions ff

0

i

(x)g form a Chebyshev-system on the interval [�

0

; �c] and the functions

ff

i

(x)g have the same property on the interval (�

0

; �c] by Proposition 1. Therefore the functions

G

0

and G have at most two zeros in the interval (�

0

; �c] and we obtain from G(x) > 0, G

0

(x) > 0

for x > x

2

that both terms on the right-hand side of the equation (7.7) are positive for x > x

2

.

This implies L(x) > 0 for any x > x

2

and consequently the largest support point of the D-optimal

3-point design must be attained at the boundary, i.e. x

3

= �c.

7.4 Proof of Lemma 3.

Proof of the assertion (1). Let b > 0 be an arbitrary �xed number, � be an arbitrary �xed design

with at least n � 3 support points . Consider a transformation of the function of the equivalence

theorem for D-optimality in the linear regression model �

T

 (x) de�ned by (3.4), that is

d(x) = d(x; �) = d

1

(x)� d

2

(x);

where

d

1

(x) = d

1

(x; �) =

1

v

2

(x)

 

T

(x)

~

M

�1

(�) (x)�

3b

2

(1� x)

2

;

d

2

(x) =

3

v

2

(x)

�

3b

2

(1� x)

2

and v(x) is given by (2.19) for c = 1. We de�ne g(x) = g

1

(x)� g

2

(x), with

g

1

(x) = [x(1� x)

2

d

0

1

(x)]

000

;

g

2

(x) = [x(1� x)

2

d

0

2

(x)]

000

:

and introduce

0

@

A B C

B G E

C E F

1

A

=

~

M

�1

(�);

where

~

M(�) is the information matrix of the design � in the linear regression model �

T

 (x).

Assume for a moment that F = 3b

2

: In this case a direct computation gives

(1� x)

3

g

1

(x) = [�4Gx

2

+ (10G+ 2E)x� 6(E +G)];(7.8)

x

5

g

2

(x) = [144(1 + b)

2

� 36(2 + b)(1 + b)x]:

It is not diÆcult to see that all elements of the matrix

~

M

�1

(�) are positive and, in particular,

G > 0, E > 0. Moreover, for x 2 (0; 1) we have

g

2

(x) > 0; g

1

(x) < 0:

The �rst of these inequalities is obvious. The second inequality will be veri�ed by considerating

the roots x

(1)

and x

(2)

of the equation

�4Gx

2

+ (10G+ 2E)x� 6(E +G) = 0 ;
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which are given by

x

(1);(2)

=

E + 5G�

p

E

2

� 14EG+G

2

4G

:

Since E;G are positive it follows that x

(1)

; x

(2)

> 1 and we have from (7.8) g

1

(x) < 0 for x 2 (0; 1).

Therefore the function g(x) is strictly negative for x 2 (0; 1) if the condition F = 3b

2

is valid.

Now let

� =

�

x

1

x

2

: : : x

n

w

1

w

2

: : : w

n

�

; 0 � x

1

< : : : < x

n

� 1:

be a D-optimal design. From the proof of Lemma 2 and the Cauchy-Binet formula it follows that

x

n

= 1. Notice that for x! 0 we have  (x)! (0; 0; 0)

T

and consequently the left boundary x = 0

of the design space is not a support point of a D-optimal design, i.e. x

1

> 0. By the equivalence

theorem for D-optimality we have

~

d(x

i

) := v

2

(x

i

)d(x

i

) =  

T

(x

i

)

~

M

�1

(�) (x

i

)� 3 = 0 ; i = 1; : : : ; n;

(7.9)

~

d

0

(x

i

) = 0 ; i = 1; : : : ; n� 1:

Let us assume that the design � contains n > 3 points. From (3.4) we obtain

lim

x!1

v

2

(x)d(x) = 0

and it follows that F = 3b

2

. Consequently, the arguments of the previous paragraph are applicable

and we have from (7.9)

d

0

(x) = 0

for x = x

1

; x

2

; x

3

and for some points ~x

1

2 (x

1

; x

2

), ~x

2

2 (x

1

; x

2

). Thus the function d

0

(x) and

also the function x(1� x)

2

d

0

(x) has at least �ve roots in the interval (0; 1). Hence g(x) being the

third derivative of the function x(1 � x)

2

d

0

(x) has at least 5 � 3 = 2 zeros in the interval (0; 1).

But we proved above that this is impossible. Thus the assumption n � 4 yields a contradiction

and any D-optimal design for the regression model �

T

 (x) on the interval [0; 1] is supported at

exactly three points.

Let us �nally show that there exists a unique D-optimal design. The existence of a D-optimal

design follows from continuity of the function  (x) and compactness of the interval [0; 1]. Assume

that �

(1)

and �

(2)

are two di�erent D-optimal designs. Then it follows by a standard concavity

argument [see Fedorov (1972)] that the design

~

� := �

(1)

=2 + �

(2)

=2 is also D-optimal. But this is

impossible because the design

~

� contains more than three distinct points.

Proof of statement (2). From the proof of statement (1) it follows that the function

v

2

(x)d(x)

has at most three maxima on the interval [0; 1] and statement (2) follows by a continuity argument.
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7.5 Proof of Lemma 4.

We will only present a proof of assertion (1) and (2). The remaining statements regarding the e

k

-

optimal designs are proved similary. Let h(x) = K'(x), s = (K

T

)

�1

r and de�ne

N(�

E

) =

Z

h(x)h

T

(x)d�

E

(x) = K

�

M(�

E

)K

T

;(7.10)

then it is easy to see that the assunption in (2) can be rewritten as

r

T

�

M(�

E

)r = s

T

N(�

E

)s = (s

T

s)�

min

(N(�

E

)) :(7.11)

From (5.1) - (5.3) we obtain

s

T

h(x

i

) = (�1)

i+1

; i = 1; 2; 3(7.12)

s

T

h(x) � 1 8x(7.13)

and Elfvings theorem [Elfving (1952)] and (7.12) imply that the vector s is an eigenvector of the

matrix N(�

E

), that is N(�

E

)s = �s. Observing (7.12) and (7.11) it follows that

1 = s

T

N(�

E

)s = � � (s

T

s) =

�

�

min

(N(�

E

))

and we obtain from (7.13) the inequality

h

T

(x)

�

ss

T

s

T

s

�

h(x) �

1

s

T

s

= �

min

(N(�

E

)) 8x :

Part (2) of Lemma 4 now follows immediately from the corresponding equivalence theorems for

E-criterion [see Pukelsheim (1993)]. The design is unique, because the function g(x) de�ned in

(5.1) is unique [see e.g. Karlin, Studden (1966), Ch. 1].

To prove (1) let us note that for �

0

! 0 we have

~'

T

(x) = v(x)

�

�

ln

x

�

0

ln �

0

; ln

c� x

c� �

0

;

x� �

0

c� x

�

� v(x)

�

1; ln

c� x

c� �

0

;

x� �

0

c� x

�

=:

~

 (x)

and that any subset with two functions of

�

v(x); v(x) ln

c� x

c� �

0

; v(x)

x� �

0

c� x

�

generates a Chebyshev-system on the interval [�

0

; �c]. De�ne

~

K =

0

@

1+b

#

1

ln �

0

b

#

1

0

�

b

#

2

ln �

0

�

b

#

2

0

�

b�

0

c#

3

ln �

0

�

b�

0

c#

3

�

b

#

3

1

A

:

and

~

M(�) :=

Z

~

 (x)

~

 

T

(x)d�(x) :

A straightforward but tedious calculation shows that for suÆciently small �

0

the sign pattern of

the matrix

(

~

K

T

)

�1

(

~

M(�))

�1

~

K

�1
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is of the form

0

@

+ � +

� + �

+ � +

1

A

and consequently the matrix D has a simple eigenvalue for suÆcently small �

0

[see Gantmacher

(1959)]. It follows from general results on E-optimality [see Dette and Studden (1993)] that the

E-optimal design for the vector of regression functions

~

 (x) is supported on the Chebyshev points.

The assertion (1) of the Lemma is now obtained by a continuity argument.
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