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Optimality of Type I Orthogonal Arrays for Cross-over Models
with Correlated Errors
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Abstract

We show that binary designs for cross-over models obtained from orthogonal arrays

are universally optimal under correlated errors.

Some key words: Carry-over effect; Change-over design; Cross-over design;
Dependent observations; Generalized least-squares; Optimal design; Orthogonal

arrays; Repeated measurements design.

1. Introduction

We consider cross-over designs, often referred to as repeated measurements designs,
with more than two treatments, where the within-block errors are assumed correlated
with a known but arbitrary correlation structure. It is assumed for a design d that the

measurement 4, on unit (or subject) u at period p satisfies
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ydup = zd(u,p) + pd(u,pfl) + ap + ﬁu + eup 4

where 7, . is the direct effect of the treatment d(u,p), assigned to the unit u at
period p by the design d, p,, . 18 the carry-over effect of the treatment received in

the preceding period, ¢, and 3, are the effects of the p-th period and the u-th unit

respectively, and the e ,1<u<n,1< p <k are the errors, which have expectation 0.

up >
We assume that the errors between different units are uncorrelated, while the errors
within each unit are correlated, all with the same known correlation structure, such
that the covariance matrix of the errors within one unit equals ¢S, where S is a
known (k % k) matrix while 6> maybe unknown. We are looking for a design d which

is optimal for the weighted least squares estimate, using S, of direct treatment

contrasts, for given numbers of treatments ¢, periods & and units .

It has been a long-standing theoretical problem to find optimal designs when there are
carry-over effects. The additional treatment parameters make it impossible in general
to consider the information matrix for the direct effects. Some restricted solutions to
the problem are discussed in §2. In this note we are able to use a new result of

Kushner (1997) to find, when £>£, binary designs which are optimal over a much

wider class of designs.

2. Optimality of binary designs

In vector notation, with ¥'= (3, , ..., Y1k «-e» ynk)T, our model can be rewritten as
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Y=T1+F,p+(1,®)o+(,®1,)5+e, (1)

where T, is the (nk x f) treatment design matrix, F, is the (nk x f) carry-over design
matrix, ® is the Kronecker product, 7, is the n x n identity matrix and 1, is the n-

vector of ones. The model assumes for the covariance-matrix of the errors that

Cove=1 ®S.

As in Kunert (1991, formula (2)), the information matrix of a repeated measurements

design d in model (1) can be written as

1 1 1
C, =Tj(1n ® S 2}&{(1” ®S 2][1,, ®1,,1, ®Ik,Fd]}(1n ®S 2]Td,

where for any a x b matrix M, we define @ (M)=1,— M(M" M)  M" (with

1
(M" M)~ denoting a generalized inverse) and where S 2 is a (k x k) matrix with the

1 1

property § 28 2=8"",

To show a design is universally optimal, we use Kiefer's (1975) Proposition 1. It

suffices to derive an upper bound for tr Cg7 and to show that there is a design d* with a
. . . |
completely symmetric information matrix aB, where B, =1, ——1,1, for some scalar
t

a, such that tr Cg* equals this upper bound. Then d* is universally optimum and every
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other design must have the same information matrix as d* when it is optimal under

any of the optimality criteria considered by Kiefer (1975).

As in Kunert (1991), it is easy to show that

1 1 1
C, srj(zn ®S ZJwLH(In ®S 2][5 ®1k,FdBt]H(1n ®S Z]Td =C,,

where A<B means B-4 is non-negative definite. Equality holds for any design which is
uniform on the periods, i.e. where each treatment appears equally often in each period.

Here C , 1s the information matrix in the model which leaves out o and replaces F, by

F B, in equation (1).

Let $* denote S~ —(1;S7'1,)"'S"1,1; S =S @ (S7"*1,)S™"*. Then this upper

bound of the information matrix can be written as
~ _ ~ ~ —~— ~T
Cd - Cdll - Cd12 Cd22 CdlZ’

where C,, =T/ (I, ® S¥)T,,
C,, =T) (I, ® S*) F,B,
and

Cyn =B,F] (I, ® S*)F,B,.
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It is easy to come up with a candidate for an optimal design. It was shown by Martin

and Eccleston (1997) that letting d* be a type I orthogonal array OA[(n, £k, t, 2), with

the rows as periods and columns as units, we have

O
Il
™

d*

and that for all i, 7=1,2 we have C 1+ = a; B, for some appropriate number a;;. So for
the type I orthogonal array, Cg* is completely symmetric and it only remains to show

that d* maximizes the trace of C -

However, the trace of C , for an arbitrary design d cannot be calculated, because it
uses a generalized inverse of the matrix am , which depends on the design d. Since

there is no closed formula for tr C ,» the maximization of tr C, in the case of a

repeated measurements design appears to be difficult. There have been many attempts

to circumvent this problem, namely:

(1) attention is restricted to a subset of designs for which am is fixed, see e.g.
Cheng and Wu (1980),

(i1) in the case k = 2 there is a general solution for (N?;zz (see Hedayat and Zhao,
1990),

(iii) in the case t =2 (N?dzz has rank 1 and is proportional to By, and there is a general

formula for tr C ,» namely (see Kunert, 1991),
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trC,=trC,,,—(tr C,;,)* / tr C,,,, )

(iv) upper bounds for g’dzz are used (see e.g. Kunert, 1984).

None of these approaches are useful for the present situation: with correlated errors

the set of all designs with the same C 1>, 18 very small, we have more than two

treatments and more than two periods, and there is no upper bound for C 1, Which is

really useful.

However, Kushner (1997, Lemma 5.1) introduced a new general bound for tr Cy

which is given by (2), unless Edzz =0, when it is tr E’dn .

In what follows we maximize the bound in (2), and show that d* attains the
maximum. To do this we restrict to the case ¢ > k and to binary designs, i.e. designs
for which each unit receives each treatment at most once. Note that the type I

orthogonal array d* is a binary design.

Each of the E‘dij can be written as (see, e.g. Kunert, 1991),

where e.g. C 53 =T, S*F,B, andthe (k> {) matrices T, , F,, are the contributions

of unit u to the treatment design matrix 7, and the carry-over design matrix £,
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respectively. Now, for any binary design d each 7, can be written in the form

T, = [I PR U ]H . » Where IT , is a (¢ X £) permutation matrix (see, e.g. Kunert and

Utzig, 1993). Similarly, F,, =[V.0,,_,., 1. with the (k x k) matrix

S = O
—_ O

It follows that for any binary design and for any unit u#, we have

tr Ci) =t (T, S*F,B,)

(t—k)xk

Ik
- (Bt |:O(tk)><k :l S [V’Okm_k) ]J

=C12, Say,

1
=tr (HduBtH; [O k :lS * [V,ka(,_k)]J

which does not depend on the design d, but is the same for every binary design!

Similarly, tr C 5?3 =c¢,, and tr C 52 = c,, are the same for every binary design.
From the above results, it follows that for every binary design d we have

2
tr C,<nc,, —ncy, /¢y,
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with equality holding for d*, since C,. = C . Hence we have shown that the type I

orthogonal array d* is universally optimal for the estimation of direct effects over all
binary designs with the same number of treatments, experimental units and periods.

Note that this holds for any (known) correlation structure S.

3. Discussion

Although, under the stated conditions, we have obtained an optimal binary design for
the model (1), Kushner (1997) has shown that using mixtures of sequences, some of
which are non-binary, may be more efficient. However, the optimality of the binary
design is important because binary designs are widely used and are acceptable to
practitioners, and because the binary designs are optimal if the carry-over effects are

absent and the errors are uncorrelated.

The above result can be generalized easily to other cross-over models and situations.
Some examples are: if single within-unit differencing is necessary for stationarity, and
in the circular case when there is a preperiod.
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