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Abstract

In a recent paper Ahmad and Li (1996) proposed a new test for symmetry of the

error distribution in linear regression models and proved asymptotic normality for the

distribution of the corresponding test statistic under the null hypothesis and consistency

under �xed alternatives. The present paper has three purposes. On the one hand we

derive the asymptotic distribution of the statistic considered by Ahmad and Li (1996)

under �xed alternatives and demonstrate that asymptotic normality is still valid but

with a di�erent rate of convergence. On the other hand we generalize Ahmad and Li's

(1996) test of a symmetric error distribution to general nonparametric regression models.

Moreover, it is also demonstrated that a bootstrap version of the new test for symmetry

has good �nite sample properties.

AMS Classi�cation: Primary 62G05
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1 Introduction

Consider the common nonparametric regression model

Y

i;n

= m(x

i;n

) + "

i;n

; i = 1; : : : ; n(1.1)

where m(�) denotes the (unknown) regression function, x

1;n

; : : : ; x

n;n

are �xed design points and

"

1;n

; : : : ; "

n;n

are i.i.d. random variables with expectation E("

i;n

) = 0 and constant variance

Var("

i;n

) = �

2

> 0 (i = 1; : : : ; n):Much e�ort has been devoted to the problem of estimating the

regression function m(�) and variance �

2

[see e.g. H�ardle (1990), Fan and Gijbels (1996), Wand

and Jones (1995), Hall, Kay and Titterington (1990) and Hall and Marron (1990) among many

others] or testing for a parametric form of these quantities [see e.g. H�ardle and Mammen (1993),

Gonzalez-Manteiga and Cao Abad (1993), Azzalini and Bowman (1993), Dette and Munk (1998)

among many others]. In many cases the eÆciency of the methods can be improved under the

additional assumption of a symmetric error distribution [see for example Bickel (1982) in the

case of adaptive estimation of a parametric model, Azzalini and Bowman (1993) or Kulasekera

and Wang (2001) in the case of testing].

For these reasons we are interested in a test for symmetry of the error distribution in the

nonparametric regression model (1.1), that is

H

0

: f(x) = f(�x) a.e.(1.2)

where f denotes the density of the error distribution in the nonparametric regression model

(1.1). Note that this problem has been considered by several authors in the case m � 0; i.e.

testing for symmetry of a density function [see e.g. Huskova (1984), Hollander (1988) for reviews

on this subject, Baringhaus and Henze (1992), Ahmad and Li (1996) and the recent work of

Caba~na and Caba~na (2000) among many others]. Recently, Fan and Gencay (1995) and Ahmad

and Li (1996) proposed tests of symmetry in linear regression models (i.e. m(x) =

P

p

j=1

�

j

g

j

(x)

for some known functions g

1

; : : : ; g

p

and unknown parameters �

1

; : : : ; �

p

) using the residuals

from the parametric �t, but to the knowledge of the authors a test of symmetry in the general

nonparametric regression model (1.1) has not been considered so far.

The present paper has three purposes. At �rst we will demonstrate that under certain assump-

tions of regularity the test of Ahmad and Li (1996) can also be used for testing symmetry

in nonparametric regression models if the residuals from the parametric �t are replaced by

residuals from an appropriate nonparametric �t. We prove that under the null hypothesis of

symmetry the new test statistic has also an asymptotic normal law. Secondly, we give a more

detailed analysis of the asymptotic distribution under a �xed alternative. While Ahmad and Li

(1996) only proved consistency in this case our results show that in the case of a nonsymmetric

density an appropriate standardized version of the test statistic is still asymptotically normal

distributed but with a di�erent rate of convergence. This result allows a simple calculation

of the probability of the type II error, which is of particular importance if the null hypothe-

sis cannot be rejected [see e.g. Berger and Delampady (1987) or Sellke, Bayarri and Berger

(2001)]. Finally, because it is well known that goodness-of-�t statistics based on nonparametric

residuals have poor accuracy with respect to the approximation of the asymptotic level [see

e.g. H�ardle and Mammen (1993), Hjellvik, Yao and Tj�stheim (1998)] we investigate the �nite

sample properties of a wild bootstrap version of the new test.

The remaining part of this paper is organized as follows. In Section 2 we review the approach

introduced by Ahmad and Li (1996) in the context of testing for a symmetric density (i.e.

2



m � 0) and extend their asymptotic analysis under the null hypothesis to the case of �xed

alternatives. We prove asymptotic normality of the corresponding statistic under �xed alterna-

tives with a

p

n rate and give some hints how this result could be used for the analysis of the

probability of the type II error if the hypothesis of symmetry has not been rejected. Section

3 deals with the problem of testing symmetry in the general nonparametric regression model

(1.1). We prove asymptotic normality of an appropriately scaled test statistic obtained from

nonparametric residuals under the hypothesis of symmetry and under �xed alternatives with

di�erent rates corresponding to these cases. In Section 4 a simulation study is presented, which

illustrates the �nite sample properties of a wild bootstrap version of the new test. Here it is

demonstrated that the bootstrap yields a reasonable approximation of the nominal level, even

in relatively small samples. Finally, the more technical proofs of all results are deferred to the

appendix.

2 A test of symmetry revisited and its asymptotic prop-

erties under �xed alternatives

Let "

1

; : : : ; "

n

denote i.i.d. random variables with bounded and continuous density f [that is

we put m � 0 in (1.1), and put Y

i

= "

i

] and assume that we are interested in a test of the

hypothesis of symmetry (1.2) where f denotes the density of the "

i

: Recently, Ahmad and Li

(1996) proposed

^

I

n

=

Z

R

[f

n

(x)� f

n

(�x)] dF

n

(x)(2.1)

as a test statistic for this problem, where

f

n

(x) = (na)

�1

n

X

i=1

k

�

x� "

i

a

�

(2.2)

ist the common estimator of the density at the point x [see e.g. Rosenblatt (1956)] with

bandwidth a > 0 and F

n

denotes the empirical distribution function of the random variables

"

1

; : : : ; "

n

: Note that a similar approach has been considered by Rosenblatt (1975) in the context

of testing independence of a bivariate density and that

^

I

n

is a consistent estimate of

I =

Z

R

(f(x)� f(�x))dF (x) =

1

2

Z

R

(f(x)� f(�x))

2

dx;(2.3)

where F denotes the distribution function of the random variables "

1

; : : : ; "

n

and the last

equality follows from standard calculations. For the asymptotic analysis of the distributional

properties of the statistic

^

I

n

under the null hypothesis (1.2) of symmetry Ahmad and Li (1996)

assumed for the kernel k in the density estimator (2.2)

k is a bounded and symmetric density

(2.4)

lim

jxj!1

jxjk(x) = 0;

Z

R

x

2

k(x)dx <1;

Z

R

k

2

(x)dx <1

3



and for the bandwidth a = a

n

in (2.2)

a! 0 and na!1(2.5)

as n!1: If these conditions are satis�ed the weak convergence

n

p

a(

^

I

n

� c(n))

D

�! N (0; 4�

2

)(2.6)

can be established, where c(n) = k(0)=na; the asymptotic variance is given by

�

2

=

Z

R

k

2

(x)dx

Z

R

f

2

(x)dx(2.7)

and a consistent estimator of �

2

is obtained from

�

2

"

=

Z

R

k

2

(x)dx

Z

R

f

n

(x)dF

n

(x)

P

�! �

2

(2.8)

[see Ahmad and Li (1996) for more details]. The asymptotic analysis of the distribution of

^

I

n

under �xed alternatives requires some additional assumptions on the underlying kernel, density

and bandwidth. To be precise suppose that for some r � 2

k satis�es (2.4) and is a continuously di�erentiable kernel of order r, i.e.

(2.9)

Z

k(u)u

j

du

8

>

<

>

:

= 1 : j = 0

= 0 : 1 � j � r � 1

6= 0 : j = r

[see Gasser, M�uller and Mammitzsch (1985)],

f 2 C

(r)

(R)(2.10)

and assume for the bandwidth in (2.2)

a! 0; na!1; na

2r

! 0(2.11)

as n!1: Under these assumptions the following result provides a re�nement in the asymptotic

analysis of the statistic

^

I

n

under �xed alternatives. The proof is deferred to the appendix.

Theorem 2.1: If the assumptions (2.9), (2.10), (2.11) are satis�ed and the hypothesis (1.2)

of symmetry is not satis�ed, then we have as n!1

p

n

�

^

I

n

� I � c(n)

�

!N (0; 4�

2

)(2.12)

where the asymptotic variance is given by

�

2

= Var[f(F

�1

(U))� f(�F

�1

(U))](2.13)

and U denotes a random variable with rectangular distribution, that is U � U [0; 1]:
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Remark 2.2: Note that Theorem 2.1 o�ers a simple possibility to estimate the probability of

the type II error of the test, which rejects the hypothesis (1.2) of symmetry, if

n

p

a(

^

I

n

� c(n))

2�

"

> �

�1

(1� �);(2.14)

where � denotes the cumulative distribution function of the standard normal distribution. A

standard calculation shows that in the case of non-symmetry H

1

: I 6= 0 we have

P (type II error) = P

�

n

p

a(

^

I

n

� c(n))

2�

"

� �

�1

(1� �)

�

�

�

H

1

�

� �

�

1

p

na

�

"

�

�

�1

(1� �)�

p

nI

2�

�

� �

�

�

p

nI

2�

�

;

where I denotes the measure of non-symmetry de�ned by (2.3) and �

2

is given by (2.13). Now

I is estimated by

^

I

n

; �

2

can be rewritten as

�

2

=

Z

R

f(x)ff(x)� f(�x)g

2

dx� I

2

and consequently a consistent estimator of �

2

is given by

�

2

"

=

Z

ff

n

(x)� f

n

(�x)g

2

dF

n

(x)�

^

I

2

n

:

This yields as estimate for the probability of a type II error

P (type II error) � �

�

�

�1

(1� �)

p

na

�

"

�

"

�

p

n

^

I

n

2�

"

�

:

3 Testing symmetry in nonparametric regression models

We are now discussing the problem of testing symmetry in the general model (1.1). In order to

avoid a tedious discussion of boundary e�ects we assume that m is periodic. This assumption

can be dropped, either by considering modi�ed estimates near the boundary 0 or 1 [see e.g.

Gasser and M�uller (1984), Wand and Jones (1995) or Fan and Gijbels (1996)] or restricting the

subsequent investigations to an interval of the form [Æ; 1� Æ] � [0; 1] for some Æ > 0: The basic

idea for the construction of the test statistic is very simple: the unknown errors "

i;n

in (1.1) are

replaced by nonparametric residuals "̂

i;n

= Y

i;n

�m̂(x

i;n

); where m̂(x

i;n

) is the Nadaraya-Watson

estimator at the point x

i;n

; given by

m̂(x

i;n

) :=

P

n

l=1

K

�

x

i;n

�x

l;n

~a

�

Y

l;n

P

n

l=1

K

�

x

i;n

�x

l;n

~a

�

;(3.1)

[see Nadaraya (1964) or Watson (1964)]. Note that we use a di�erent bandwidth ~a in the

de�nition of the kernel estimate. To be precise let

^

f

n

(") = (na)

�1

n

X

i=1

k

�

"� "̂

i;n

a

�

(3.2)

5



denote the density estimator and

^

F

n

(") =

1

n

n

X

j=1

I("̂

j;n

� ")(3.3)

the empirical distribution function based on the sample of the nonparametric residuals "̂

1;n

; : : : ; "̂

n;n

:

The empirical measure of symmetry is de�ned by

T

n

=

Z

[

^

f

n

(")�

^

f

n

(�")] d

^

F

n

(")(3.4)

= (n

2

a)

�1

n

X

i=1

n

X

j=1

h

k(

"̂

i;n

� "̂

j;n

a

)� k(

"̂

i;n

+ "̂

j;n

a

)

i

and for the asymptotic analysis of this statistic we need several assumptions, which are stated

below. First note that there appear two kernels in the de�nition of T

n

; the kernel k(�) in the

density estimator (3.3) and the kernel K(�) used for the construction of the curve estimator

(3.1). For the kernel k(�) we assume

k 2 C

(m+1)

(R); k

(m+1)

is bounded for some m � 1(3.5)

k

(s)

is of bounded variation for s = 1; : : : ; m

and the design points are supposed to satisfy a Sacks and Ylvisaker (1970) condition, i.e.

Z

x

i;n

0

p(x)dx =

i

n

; i = 1; : : : ; n; n 2 N ;(3.6)

where p is positive density on the interval [0; 1]: We assume further for some r � 2

p;m 2 C

(r)

[0; 1];(3.7)

K is continuously di�erentiable, of order r and has compact support(3.8)

E[j"

i;n

j

4

] <1:(3.9)

Finally, the bandwidth ~a = ~a

n

is supposed to satisfy

~a = c

n

�

logn

n

�

1

2r+1

(3.10)

and some positive sequence (c

n

) which satis�es 0 < c

0

� c

n

� c

00

< 1 for all n 2 N : The

relation between the bandwidths a and ~a in the density and regression estimate is speci�ed by

p

a = o(~a);

�

logn

n

�

r(m+1)

2r+1

n

a

m+3=2

! 0;

�

logn

n

�

2r

2r+1

n

p

a! 0(3.11)

as n ! 1: Note that condition (3.10) is suÆcient for the strong uniform consistency of the

nonparametric regression estimate [see e.g. M�uller (1985), who considered an asymptotically

equivalent estimator ]. Our �rst result speci�es the asymptotic distribution of the test statistic

6



T

n

under the null hypothesis of a symmetric error distribution. The second statement gives the

corresponding result under a �xed alternative. The proofs are given in the appendix.

Theorem 3.1: If the assumptions (2.4), (2.5), (3.5) - (3.11) are satis�ed and the hypothesis

of a symmetric error distribution in the regression model (1.1) is valid, then the statistic T

n

de�ned in (3.4) is asymptotically normal distributed. More precisely,

n

p

a(T

n

� c(n))

D

�! N (0; 4�

2

) ;

where c(n) = k(0)=na and �

2

is de�ned by (2.7) and can consistently be estimated by

�

2

"̂

=

Z

k

2

(u) du

Z

^

f

n

(")d

^

F

n

(") :(3.12)

Theorem 3.2: If the assumptions (2.9) - (2.11) and (3.5) - (3.11) are satis�ed and the hy-

pothesis of a symmetric error distribution is not valid, then the statistic T

n

de�ned by (3.4) has

an asymptotic normal law, i.e.

p

n(T

n

� I � c(n))

D

�! N (0; 4�

2

) ;

where the bias I and the asymptotic variance �

2

are de�ned in (2.3) and (2.13), respectively.

4 Finite sample properties

In this section we investigate the �nite sample properties of a test which can be obtained from

the results given in Section 3. More precisely, Theorem 3.1 shows that an asymptotic level �

test can be obtained by rejecting the null hypothesis of a symmetric error distribution whenever

n

p

a(T

n

� c(n))

2�

"̂

> �

�1

(1� �)(4.1)

where �

�1

(1� �) denotes the (1� �) quantile of the standard normal distribution. Moreover,

the proof of this theorem shows that an alternative asymptotic level � test is given by rejecting

the null hypothesis whenever

n

p

a

2�

"̂

T

2n

> �

�1

(1� �);(4.2)

where the statistic T

2n

is de�ned in (5.14) and obtained from T

n

by omitting the pairs with

(i; j) with i = j in the de�nition (3.4) of the statistic T

n

: The results of Ahmad and Li (1996)

indicate a better performance of the test (4.2) because of its neglectible bias and for this reason

we will restrict ourselves to a discussion of tests based on the statistic T

2n

: It was observed by

many authors [see e.g. H�ardle and Mammen (1993) or Hjellvik, Yao and Tj�stheim (1998)] that

the normal approximation for testing hypotheses regarding the mean function m(�) is rather

poor and most authors recommend the application of the bootstrap for this type of problems.

7



We have implemented a wild bootstrap procedure for the problem of testing for a symmetric

error distribution in the nonparametric regression model (1.1) based on the statistic T

2n

de�ned

in (5.14). To be precise, let

"̂

i;n

= Y

i;n

� m̂(x

i;n

) ; i = 1; : : : ; n ;

denote the nonparametric residuals obtained from the Nadaraya-Watson estimate. Let V

i;n

; : : : ; V

n;n

denote i.i.d. random variables (independent of the Y

i;n

) with

P (V

i;n

= 1) = P (V

i;n

= �1) =

1

2

;

de�ne the bootstrap sample by

Y

�

i;n

= m̂(x

i;n

) + V

i;n

"̂

i;n

(4.3)

and the corresponding statistic obtained from the bootstrap sample by T

�

2n

: The hypothesis of

symmetry is rejected if T

2n

> t

�

2n;1��

; where t

�

2n;1��

denotes the (1��) quantile of the bootstrap

distribution, i.e.

P (T

�

2n

> t

�

2n;1��

) = �:

For our study we choose B = 200 bootstrap replications and 1000 runs for each scenario. We

use an equidistant design (i.e. p(x) � 1); the quartic kernel

K(x) =

15

32

(7x

4

� 10x

2

+ 3)I

[�1;1]

(x)

for the Nadaraya-Watson estimate and the Gaussian kernel

k(x) =

1

p

2�

exp(�

x

2

2

)

for the construction of the test statistic T

2n

(note that this kernel is di�erentiable of in�nite

order). Only the residuals in the interval [Æ; 1� Æ] with Æ = 0:05 are used for the construction

of the statistic T

2n

in order to exclude boundary e�ects. The application of boundary kernels

[see Gasser and M�uller (1984)] or local polynomial estimators [see Wand and Jones (1995) or

Fan and Gijbels (1996)] yields similar results with a slight improvement with respect to power.

The choice of the bandwidths is important and we use

a =

�

�

n

�

2=9

; ~a =

�

� logn

n

�

1=9

(4.4)

in accordance with condition (3.11), where m = 5; r = 4 [note that for any � > 0 the quantities

a

(1+�)

and ~a satisfy assumption (3.11)], and �

2

is the variance of the error distribution. We

simulated the proportion of rejections of of the test for the level � = 2:5%, 5%, 10% and 20%

and for samples of size n = 20, 30, 40, 50 and 100.

Our �rst results show the simulated level of the bootstrap test for a standard normal distributed

error and regression functionsm(x) = x

2

(Table 4.1) and m(x) = sin(2�x) (Table 4.2). In Table

4.3 we considered a similar scenario for the more heavy tailed t-distribution with �ve degrees of

freedom. We observe a reasonable approximation of the level in nearly all cases and a slightly

better performance (especially in small samples) in the case of a gaussian error disribution.
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n=20 n=30 n=40 n=50 n=100

0.025 0.042 0.036 0.032 0.039 0.034

0.05 0.066 0.061 0.059 0.07 0.057

0.10 0.123 0.114 0.118 0.122 0.93

0.20 0.218 0.204 0.207 0.203 0.211

Table 4.1: Simulated level of the wild bootstrap test of symmetry in the nonparametric regres-

sion model (1.1) for a standard normal distributed error and regression function m(x) = x

2

.

n=20 n=30 n=40 n=50 n=100

0.025 0.038 0.042 0.025 0.032 0.048

0.05 0.061 0.064 0.047 0.053 0.078

0.10 0.098 0.106 0.088 0.097 0.112

0.20 0.216 0.213 0.181 0.2 0.195

Table 4.2: Simulated level of the wild bootstrap test of symmetry in the nonparametric re-

gression model (1.1) for a standard normal distributed error and regression function m(x) =

sin(2�x).

n=20 n=30 n=40 n=50 n=100

0.025 0.047 0.052 0.043 0.048 0.03

0.05 0.071 0.077 0.072 0.069 0.053

0.10 0.116 0.118 0.118 0.131 0.099

0.20 0.215 0.228 0.219 0.224 0.203

Table 4.3: Simulated level of the wild bootstrap test of symmetry in the nonparametric regres-

sion model (1.1) for a t

5

-distributed error and regression function m(x) = sin(2�x).

In order to illustrate the performance of the wild bootstrap test under the alternative of non-

symmetry, we consider again the regression functions m(x) = x

2

, m(x) = sin(2�x). For the

error disrtibution we choose a normalized �

2

-distribution with 1 and 2 degrees of freedom

such that E["

i;n

] = 0 and Var["

i;n

] = 1. The results are displayed in Table 4.4 - 4.7 and

demonstrate that the non-symmetry is detected with reasonable probabilities in all cases. Note

that the proportion of rejections in the �

2

2

-case is smaller than in the �

2

1

-case, which corresponds

with our intuition. Moreover, for small sample sizes the rejection probabilities in the case

of a more oscillating regression function m(x) = sin(2�x) are substantially lower than the

corresponding probabilities in the smooth case m(x) = x

2

. This can be heuristically explained

by the observation that in small samples an oscillating regression function produces arti�cal

symmetry of the residuals, which is not caused by the error distribution. Nevertheless with

increasing sample sizes the regression function can be estimated with suÆcient precision and

the test of symmetry behaves similar in the smooth and oscillating case.

9



n=20 n=30 n=40 n=50 n=100

0.025 0.671 0.908 0.963 0.984 1

0.05 0.765 0.934 0.977 0.992 1

0.10 0.84 0.96 0.99 0.996 1

0.20 0.918 0.987 0.998 1 1

Table 4.4: Simulated power of the wild bootstrap test of symmetry in the nonparametric re-

gression model (1.1) for a standardized �

2

1

-distributed error and regression function m(x) = x

2

.

n=20 n=30 n=40 n=50 n=100

0.025 0.47 0.683 0.822 0.907 0.996

0.05 0.576 0.764 0.876 0.948 0.999

0.10 0.681 0.847 0.916 0.967 1

0.20 0.79 0.913 0.951 0.985 1

Table 4.5: Simulated power of the wild bootstrap test of symmetry in the nonparametric re-

gression model (1.1) for a standardized �

2

2

-distributed error and regression function m(x) = x

2

.

n=20 n=30 n=40 n=50 n=100

0.025 0.307 0.57 0.702 0.83 0.993

0.05 0.389 0.655 0.779 0.879 0.995

0.10 0.531 0.758 0.862 0.929 0.998

0.20 0.686 0.869 0.933 0.969 1

Table 4.6: Simulated power of the wild bootstrap test of symmetry in the nonparametric re-

gression model (1.1) for a standardized �

2

1

-distributed error and regression function m(x) =

sin(2�x).

n=20 n=30 n=40 n=50 n=100

0.025 0.239 0.429 0.535 0.661 0.961

0.05 0.316 0.54 0.628 0.762 0.978

0.10 0.427 0.66 0.729 0.854 0.989

0.20 0.568 0.774 0.842 0.916 0.998

Table 4.7: Simulated power of the wild bootstrap test of symmetry in the nonparametric re-

gression model (1.1) for a standardized �

2

2

-distributed error and regression function m(x) =

sin(2�x).
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5 Proofs

Proof of Theorem 2.1: For the sake of a transparent presentation we omit the index n in

the model (1.1), i.e. "

i

= "

i;n

; Y

i

= Y

i;n

etc. We introduce the decomposition [see Ahmad and

Li (1996)]

^

I

n

� c(n) =

^

I

1n

+

^

I

2n

;

where

^

I

1n

= (n

2

a)

�1

n

X

i=1

h

k(0)� k

�

2"

i

a

�i

� c(n)(5.1)

^

I

2n

= (n

2

a)

�1

n

X

i=1

n

X

j=1

i6=j

h

k

�

"

i

� "

j

a

�

� k

�

"

i

+ "

j

a

�i

:(5.2)

A standard calculation shows

^

I

1n

= o

p

(n

�1=2

); assumption (2.11) implies

E[

^

I

2n

] =

n� 1

n

I + o(

1

n

) = I + o(

1

p

n

)(5.3)

and consequently the assertion of Theorem 2.1 can be established by proving the weak conver-

gence

p

n(

^

I

2n

� E[

^

I

2n

])

D

�! N (0; 4�

2

):(5.4)

In a �rst step we calculate the asymptotic variance and obtain

E[

^

I

2

2n

] =

1

n

4

a

2

X

i6=j

X

l 6=k

E

nh

k

�

"

i

� "

j

a

�

� k

�

"

i

+ "

j

a

�ih

k

�

"

l

� "

k

a

�

� k

�

"

l

+ "

k

a

�io

:(5.5)

The sum with di�erent indices gives the contribution

�

1

=

n(n� 1)(n� 2)(n� 3)

n

4

a

2

�

E

h

k

�

"

1

� "

2

a

�

� k

�

"

1

+ "

2

a

�i�

2

=

(n� 1)(n� 2)(n� 3)

n

3

I

2

+ o(

1

n

):

Secondly, there appear 4 cases where there is one index in common and all cases yield the same

contribution to the asymptotic variance, which is given by

�

2

= E

n

1

n

4

a

2

X

i6=j;k

h

k

�

"

i

� "

j

a

�

� k

�

"

i

+ "

j

a

�ih

k

�

"

i

� "

k

a

�

� k

�

"

i

+ "

k

a

�io

=

n(n� 1)(n� 2)

n

4

Z Z Z

k(u)k(w)f(x)

�

f(x� au)f(x� aw)

�f(x� au)f(aw � x)� f(au� x)f(x� aw) + f(au� x)f(aw � x)

�

dudwdx

=

1

n

Z

f(x)(f(x)� f(�x))

2

dx+ o

�

1

n

�

:

11



Finally, the sums with more than one index in common are of order o(1=n) and we obtain from

the representation (5.3)

Var(

^

I

2n

) = �

1

+ 4�

2

�

�

n� 1

n

�

2

I

2

+ o(

1

n

)(5.6)

=

4

n

Z

f(x)(f(x)� f(�x))

2

dx �

4

n

I

2

+ o(

1

n

)

= 4�

2

+ o(

1

n

)

where the last equality follows from the de�nition of �

2

in (2.13).

For the proof of asymptotic normality in (5.4) we note that

U

n

=

^

I

2n

� E[

^

I

2n

] =

1

n

2

n

X

i=1

n

X

j=1

i6=j

H

n

("

i

; "

j

) ;(5.7)

where the kernel H

n

is de�ned by

H

n

("

i

; "

j

) =

1

a

n

k(

"

i

� "

j

a

)� k(

"

i

+ "

j

a

)� E

h

k(

"

i

� "

j

a

)� k(

"

i

+ "

j

a

)

io

:(5.8)

Following Powell, Stock and Stoker (1989) we de�ne

r

n

("

i

) = E[H

n

("

i

; "

j

) j "

i

](5.9)

and a linear approximation of the statistic U

n

by

^

U

n

=

2

n

n

X

i=1

r

n

("

i

) =

n

X

i=1

�

i

(5.10)

where the last line de�nes the random variables �

i

, i.e.

�

i

=

2

na

n

E

��

k

�

"

i

� "

j

a

�

� k

�

"

i

+ "

j

a

��

�

�

�

"

i

�

(5.11)

� E

�

k

�

"

i

� "

j

a

�

� k

�

"

i

+ "

j

a

��

o

A straightforward calculation gives

E[H

2

n

("

i

; "

j

)] = O(

1

a

) = o(n)

and Lemma 3.1 of Powell, Stock and Stoker (1989) proves

p

n(U

n

�

^

U

n

) = o

p

(1) :(5.12)

Consequently, the assertion (5.4) can be established by proving the asymptotic normality of

^

U

n

; which can easily be done by checking the assumptions of Ljapuno�'s theorem. Note that

by the �rst part of this proof we have

�

2

n

= Var(

^

U

n

) =

4

n

�

2

+ o

�

1

n

�

12



and a straightforward calculation gives

1

�

4

n

n

X

i=1

E[j�

i

j

4

] =

n

X

i=1

O

�

1

n

4

�

�

4

n

�

2

+ o

�

1

n

��

2

E

h�

1

a

Z

k

�

"

i

� x

a

�

f(x) dx

�

1

a

Z Z

k

�

x� y

a

�

f(x)f(y) dxdy �

1

a

Z

k

�

"

i

+ x

a

�

f(x) dx

+

1

a

Z Z

k

�

x + y

a

�

f(x)f(y) dxdy

�

4

i

= O(

1

n

) :

This establishes the condition of Ljapuno�'s theorem and implies asymptotic standard normal-

ity of

^

U

n

=2�

n

: The assertion of the theorem now follows from (5.4), (5.7), (5.12) and Slutsky's

Lemma using that under the alternative of non-symmetry it follows that �

2

> 0:

2

Proof of Theorem 3.1 and 3.2: Throughout this proof we will replace the Nadaraya-Watson

estimate m̂(x

i;n

) in (3.1) by a slightly modi�ed version

m̂

i

(x

i;n

) :=

P

n

l=1

l6=i

K

�

x

i;n

�x

l;n

~a

�

Y

l;n

P

n

l=1

l6=i

K

�

x

i;n

�x

l;n

~a

�

;(5.13)

which simpli�es the proofs substantially. Note that the di�erence of both estimates is of order

O

p

((n~a)

�1

) = o

p

((n

p

a)

�1

) = o

p

(

p

n);

which shows that it is suÆcient to prove Theorem 3.1 and 3.2 for the residuals obtained from

the modi�ed estimate.

Because both assertions in Theorem 3.1 and 3.2 are proved similary, we will restrict ourselves

to the proof of Theorem 3.1. This is obtained by a reduction of the assertion to the statement

(2.6) which was proved by Ahmad and Li (1996). More precisely, de�ne

T

1n

= (n

2

a)

�1

n

X

i=1

h

k(0)� k(

2"̂

i

a

)

i

� c(n)

(5.14)

T

2n

= (n

2

a)

�1

n

X

i=1

n

X

j=1

i6=j

h

k(

"̂

i

� "̂

j

a

)� k(

"̂

i

+ "̂

j

a

)

i

then T

n

� c(n) = T

1n

+ T

2n

and we will show

^

I

1n

� T

1n

= o

p

((na

1=2

)

�1

)

(5.15)

^

I

2n

� T

2n

= o

p

((na

1=2

)

�1

);

where the statistics

^

I

1n

and

^

I

2n

are de�ned in (5.1) and (5.2) respectively. The �rst assertion

of Theorem 3.1 then follows from (2.6) observing the identity

^

I

n

� c(n) =

^

I

1n

+

^

I

2n

. The

consistency of the variance estimator is then obtained from (2.8) and

�

2

"

� �̂

2

"̂

= o

p

(1):(5.16)
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1) For a proof of the �rst estimate in (5.15) recall the de�nitions (5.1) and (5.14) and note that

a Taylor expansion yields

^

I

1n

� T

1n

= (n

2

a)

�1

n

X

i=1

h

k(

2"̂

i

a

)� k(

2"

i

a

)

i

=

m

X

s=1

1

s!

A

s

+

1

(m + 1)!

A

m+1

(5.17)

where

A

s

= (n

2

a)

�1

n

X

i=1

k

(s)

(

2"

i

a

)

h

�2(m̂(x

i

)�m(x

i

))

a

i

s

; s = 1; : : : ; m

(5.18)

A

m+1

= (n

2

a)

�1

n

X

i=1

k

(m+1)

�

2~"

i

a

�h

�2(m̂(x

i

)�m(x

i

))

a

i

m+1

;

and ~"

i

= "

i

� �

i

(m̂(x

i

)�m(x

i

)) for some 0 < �

i

< 1. For the estimation of the last term A

m+1

we use a similar argument as given in the proof of Lemma 2.2 in M�uller (1985) and obtain

sup

x2[0;1]

jm̂(x)�m(x)j = O

�

~a

r

+

�

logn

n~a

�

1=2

�

= O

��

logn

n

�

r=(2r+1)

�

(5.19)

which gives [using assumption (3.11)]

EjA

m+1

j = O

�

1

na

m+2

�

logn

n

�

r(m+1)

2r+1

�

= o

�

1

n

p

a

�

:

Similary, we obtain for the expectation of jA

1

j; : : : ; jA

m

j

EjA

s

j = O

��

logn

n

�

rs

2r+1

1

na

s

�

= o

�

1

n

p

a

�

;

where the last equality follows again from the assumption (3.11). Combining these estimates

we have from Markov's inequality

A

s

= o

p

�

1

n

p

a

�

; s = 1; : : : ; m + 1

and observing (5.17) the �rst estimate in (5.15) follows.

2) For a proof of the second assertion in (5.15) we introduce the decomposition

^

I

2n

� T

2n

= D

1n

�D

2n

(5.20)

where

D

1n

= (n

2

a)

�1

n

X

i=1

n

X

j=1

i6=j

h

k(

"̂

i

+ "̂

j

a

)� k(

"

i

+ "

j

a

)

i

(5.21)

D

2n

= (n

2

a)

�1

n

X

i=1

n

X

j=1

i6=j

h

k(

"̂

i

� "̂

j

a

)� k(

"

i

� "

j

a

)

i

:
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We will show in the following that

D

jn

= o

p

�

1

n

p

a

�

; j = 1; 2(5.22)

which completes the proof of the second part of (5.15). To this end we note that both terms

are treated similary and for the sake of brevity only the case j = 1 is considered. Recalling the

de�nition of D

1n

in (5.21) we obtain by means of a Taylor expansion

D

1n

=

m

X

s=1

1

s!

B

s

+

1

(m+ 1)!

B

m+1

;(5.23)

where

B

s

= (n

2

a

s+1

)

�1

n

X

i=1

n

X

j=1

i6=j

k

(s)

(

"

i

+ "

j

a

)(m(x

i

)� m̂(x

i

) +m(x

j

)� m̂(x

j

))

s

(5.24)

(s = 1; : : : ; m) and

B

m+1

= (n

2

a

m+2

)

�1

n

X

i=1

n

X

j=1

i6=j

k

(m+1)

( 

ij

)(m(x

i

)� m̂(x

i

) +m(x

j

)� m̂(x

j

))

m+1

(5.25)

with

 

ij

=

"

i

+ "

j

+ �

ij

(�m̂(x

i

) +m(x

i

)� m̂(x

j

) +m(x

j

))

a

;

where 0 < �

ij

< 1 (i; j = 1; : : : ; n). We prove (5.22) by showing that all coeÆcients in this

Taylor expansion (5.23) are of the appropriate order, i.e.

B

t

= o

p

�

1

na

1=2

�

; t = 1; : : : ; m;m+ 1 :(5.26)

To this end we consider exemplarily the random variable B

1

; which reduces by symmetry to

the statistic

B

1

= 2(n

2

a

2

)

�1

n

X

i=1

n

X

j=1

i6=j

k

0

(

"

i

+ "

j

a

)(m(x

i

)� m̂(x

i

)) =

~

B

1

(1 +O(1))(5.27)

where

~

B

1

is obtained from B

1

by replacing the density estimate

p̂

i

(x

i

) =

1

(n� 1)~a

X

j 6=i

K

�

x

i

� x

j

~a

�

by the true density p(x

i

); i.e.

~

B

1

=

2

n

2

(n� 1)~aa

2

n

X

i=1

n

X

j=1

j 6=i

n

X

l=1

l6=i

K

�

x

i

� x

l

~a

�

(m(x

i

)� Y

l

)k

0

�

"

i

+ "

j

a

�

1

p(x

i

)

:(5.28)
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Obviously it is suÆcient to show (5.26) (in the case t = 1) for the random variable

~

B

1

; which

will be done by a straightforward but tedious calculation of the expectation and variance of

~

B

1

: Using the representation Y

l

= m(x

l

) + "

l

and the independence of the errors we have

E[

~

B

1

] = E

1

+ E

2

where

E

1

=

2

n

2

(n� 1)~aa

2

n

X

i=1

n

X

j=1

j 6=i

n

X

l=1

l6=i

K(

x

i

� x

l

~a

)fm(x

i

)�m(x

l

)g

1

p(x

i

)

E[k

0

(

"

i

+ "

j

a

)]

E

2

=

2

n

2

(n� 1)~aa

2

n

X

i=1

n

X

j=1

j 6=i

K(

x

i

� x

j

~a

)

1

p(x

i

)

E[k

0

(

"

i

+ "

j

a

)"

j

]

Note that the symmetry of the kernel k yields

E[k

0

�

"

i

+ "

j

a

�

] = 0 ;

which gives E

1

= 0: Moreover, observing that

R

R

k

0

(u)du = 0 a straightforward calculation

shows E

2

= O(n

�1

) and it follows that

E[

~

B

1

] = O

�

1

n

�

= o

�

1

n

p

a

�

:(5.29)

The calculation of the second moment of

~

B

1

is more complicated, but nevertheless a straight-

forward manner. Note that

~

B

2

1

=

4

X

i=1

B

1i

(5.30)

where

B

11

=

4

n

4

(n� 1)

2

~a

2

a

4

X

K(

x

i

1

� x

l

~a

)K(

x

i

2

� x

k

~a

)k

0

(

"

i

1

+ "

j

1

a

)k

0

(

"

i

2

+ "

j

2

a

)(5.31)

�

"

k

p(x

i

1

)

"

l

p(x

i

2

)

B

12

=

�4

n

4

~a

2

(n� 1)

2

a

4

X

K(

x

i

1

� x

l

~a

)K(

x

i

2

� x

k

~a

)k

0

(

"

i

1

+ "

j

1

a

)k

0

(

"

i

2

+ "

j

2

a

)(5.32)

�

(m(x

i

2

)�m(x

k

))

p(x

i

1

)

"

l

p(x

i

2

)

B

13

=

�4

n

4

~a

2

(n� 1)

2

a

4

X

K(

x

i

1

� x

l

~a

)K(

x

i

2

� x

k

~a

)k

0

(

"

i

1

+ "

j

1

a

)k

0

(

"

i

2

+ "

j

2

a

)(5.33)

�

(m(x

i1

)�m(x

l

))

p(x

i

1

)

"

k

p(x

i

2

)

B

14

=

4

n

4

~a

2

(n� 1)

2

a

4

X

K(

x

i

1

� x

l

~a

)K(

x

i

2

� x

k

~a

)k

0

(

"

i

1

+ "

j

1

a

)k

0

(

"

i

2

+ "

j

2

a

)(5.34)

�

(m(x

i1

)�m(x

l

))

p(x

i

1

)

(m(x

i2

)�m(x

k

))

p(x

i

2

)
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where the summation is performed over all indices i

1

; j

1

; i

2

; j

2

; l; k 2 f1; : : : ; ng such that i

1

6=

j

1

; i

2

6= j

2

; l 6= i

1

; k 6= i

2

: Observing that for fl; kg 6� fi

1

; j

1

; i

2

; j

2

g the expectation of the

corresponding terms in the sum (5.31) is zero (see the above reasoning) it follows that we

only have to consider the cases where fl; kg � fi

1

; j

1

; i

2

; j

2

g for the calculation of E[B

11

]. We

consider exemplarily the case l = i

2

; k = i

1

and all other indices pairwise di�erent, for which

we obtain the expectation

4

n

4

(n� 1)

2

~a

2

a

4

X

i

1

6=j

1

6=i

2

6=j

2

K(

x

i

1

� x

i

2

~a

)K(

x

i

2

� x

i

1

~a

)

�

1

p(x

i

1

)

1

p(x

i

2

)

E

h

k

0

(

"

i

1

+ "

j

1

a

)k

0

(

"

i

2

+ "

j

2

a

)"

i

2

"

i

1

i

= O

�

1

n

2

~aa

4

��

E[k

0

�

"

i

1

+ "

i

2

a

�

"

i

1

]

�

2

= O

�

1

n

2

~aa

2

�

[

Z Z

k

0

(u)f(au� y)yf(y)dudy]

2

= O

�

1

n

2

~a

�

= o

�

1

n

2

a

�

;

where we have used the symmetry of the kernel k (which implies

R

k

0

(u)du = 0) and assumption

(3.11). The remaining cases are similar and are even of smaller order, which yields

E[B

11

] = o

�

1

n

2

a

�

:(5.35)

The terms B

12

; B

13

and B

14

can be treated by the same arguments and are also of order

o(n

�2

a

�1

): Consequently we obtain from (5.35), (5.29) and (5.30)

~

B

1

= o

p

�

1

n

p

a

�

;

which implies

B

1

= o

p

�

1

n

p

a

�

:

A similar argument gives the same order for the terms B

2

; : : : ; B

m

: Finally we investigate the

random variable B

m+1

in (5.25) using Lemma 2 in M�uller (1985) (with an obvious modi�cation

for the Nadaraya-Watson estimator) and obtain

EjB

m+1

j = O

��

logn

n

�

r(m+1)

2r+1

1

a

m+2

�

= o

�

1

n

p

a

�

by assumption (3.11) and Markov's inequality gives B

m+1

= o

p

(n

�1

a

�1=2

): The second assertion

in (5.15) now follows from the representation (5.20), (5.23) and a similar argument for the

statistic D

2n

.

3) The proof of the remaining assertion (5.16) follows by similar arguments. To be precise,

recall the de�nition of �

2

"

and �

2

"̂

in (2.8) and (3.12), respectively, then

(

Z

k

2

(u)du)

�1

(�

2

"

� �

2

"̂

) =

Z

R

f

n

(x)dF

n

(x)�

Z

R

^

f

n

(x)d

^

F

n

(x)

=

1

n

2

a

n

X

i;j=1

k

�

"

i

� "

j

a

�

� k

�

"̂

i

� "̂

j

a

�

= �D

2n

;
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where D

2n

is de�ned in (5.21). From (5.22) we have D

2n

= o

p

(n

�1

a

�1=2

) and the consistency

of �

2

"̂

now follows from (2.8).
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