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On testing variance components in ANOVA models�

Joachim Hartung and Guido Knapp

Department of Statistics� University of Dortmund� D������ Dortmund� Germany

Abstract� In this paper we derive asymptotic ���tests for general linear hypotheses on variance

components using repeated variance components models� In two examples� the two�way nested

classi�cation model and the two�way crossed classi�cation model with interaction� we explicitly

investigate the properties of the asymptotic tests in small sample sizes�

Key Words� Wald� and likelihood ratio test statistic� repeated variance components

model� linear hypotheses on variance components

� Introduction

In this paper we consider linear hypotheses on variance components as

H� � K� � d � 	�


where � � 	��
� � � � � � �

�
m


T denotes a vector of unknown variance components� K is a known

	p �m
�matrix with rk 	K
 � p � m and d � IRp a known constant� For special linear

combinations of variance components exact F� and ���tests can be derived and in El�

Bassiouni and Seely 	��
�
 it is shown that under certain circumstances these tests are

uniformly most powerful unbiased� However� no exact tests for example are known for

testing that the variance of a certain factor is equal to a given d� � � or that the di�erence

between two variance components equals a certain value� Here� we develop asymptotic

���tests for such hypotheses�

� To appear in� S T A T I S T I C S

�



In section � we consider the class of variance components models of commutative quadratic

type 	see e� g� Seely 	����
� Humak 	��
�
� Rao and Kle�e 	��


� Elpelt 	��
�
� Har�

tung 	��
�� sec� �
� Hartung� Elpelt� and Voet 	����

 and introduce repeated variance

components models 	cf� Brown 	����

� Then� Wald and likelihood ratio test statistics

are considered in section � using the approach of a repeated variance components model�

where the asymptotic results refer to a �large� number of observations resp� degrees of

freedom in the experimental designs which can be interpreted as several independent

observations from a reduced design� In practice� however� we deal with non�repeated

models� Thus� in section � we consider� as examples� the two�way nested classi�cation

model and the two�way crossed classi�cation model with interaction� where we explicitly

study hypotheses about the di�erences of two variance components� In both models we

can directly give the Wald test statistics for the hypotheses as well as the estimators of

maximum likelihood type� In the two�way nested classi�cation model� however� we use a

numerical algorithm to maximize the likelihood function under the hypothesis� whereas

in the two�way crossed classi�cation model with interaction we give in addition an ex�

plicit approximation of the likelihood ratio test statistic which does not need a numerical

algorithm� In a simulation study we examine the �nite properties of the derived tests�

especially in situations where the sample sizes are really �small� and show that the asymp�

totic works satisfactorily in these cases� Hereby� a clear preference of the likelihood ratio

test can be stated� on the whole�

Throughout this paper we use the following notation� For a real matrix A let AT denote

the transposed� A� the Moore�Penrose�inverse� rk 	A
 the rank� tr 	A
 the trace� and

R	A
 the range of A� Further we denote by � the Kronecker product� by Ir the 	r � r
�

identity matrix� by �r the vector of r ones� by Jr � �r�
T
r the 	r � r
�matrix of ones� and

by �s�t the 	s� t
�matrix of zeros�

�



� The repeated variance components model

We consider a q�dimensional observable random vector� say Y � that follows the general

linear variance components model

E 	Y 
 � X� and Cov 	Y 
 �
mX
i��

��
i Ui � 	�


where the 	q � l
�matrix X and the symmetric positive semide�nite 	q � q
�matrices

U�� � � � � Um are known� whereas the parameter vector � varies in IRl and the parameter

vector � � 	���� � � � � �
�
m


T varies in �� a subset of IRm
���� the nonnegative orthant of IRm�

The variance component ��
m is assumed to be strictly positive and Um is positive de�nite

to ensure the positive de�niteness of the variance�covariance matrix�

In this model we make the following assumptions�

Assumption �� The random vector Y has a q�dimensional normal distribution�

Assumption �� � � spanfXX�� U�� � � � � Umg forms a 	m��
�dimensional commutative

quadratic subspace of all real symmetric 	q � q
�matrices� i� e� � is a subspace and

A�B � � implies A� � � and AB � BA�

By lemma � in Seely 	����
 there exists a basis P�� P�� � � � � Pm of � with P� � XX�� where

Pi� i � �� �� � � � � m� is idempotent and PiPj � �q�q� i �� j� Then there is a nonsingular

		m� �
� 	m� �

�matrix

�� � 		�ij
i�j�������� �m
 	�


so that

Ui �
mX
j��

�ijPj � i � �� �� � � � � m� with U� � P� � XX� � 	�


Assumption �� For all j � �� � � � � m and � � � it holds

	j �
mX
i��

�ij �
�
i � � � 	�


�



The vector 	 � 		�� � � � � 	m

T can be expressed as

	 � �T� � 	�


where the nonsingular 	m � m
�matrix � is the submatrix of ��� which results from

deleting the �rst row and the �rst column of ���

The three assumptions are in most cases ful�lled in balanced variance components models

if� as it is usually assumed� the residual variance is strictly positive� note that for example

in Humak 	��
�� p� �
�
 a balanced variance components model is given which does not

ful�ll these assumptions�

Let us consider the quadratic forms

Tj � Y TPjY
fj � j � �� � � � � m� 	�


where tr 	Pj
 � fj� j � �� � � � � m� In model 	�
 it holds that these quadratic forms are

stochastically independent and that fj � Tj
	j� j � �� � � � � m� is central ���distributed

with fj degrees of freedom� It follows that the expectation vector of the random vector

T � 	T�� � � � � Tm

T is given by the vector 	 and the variance�covariance matrix of T is

the diagonal 	m�m
�matrix

D	�
 � � � diag 		 �� � � � � � 	 �m
 � 	



Now the model 	�
 is ��times statistically independently repeated� i� e� we observe inde�

pendent random vectors Y�� � � �� � � � � �� which have the same distributional properties

as Y from 	�
� Thus� we get the following model

�Y � 	Y T
� � Y

T
� � � � � � Y

T
� 
T

with E 	 �Y 
 � 	�� �X
� � Cov 	 �Y 
 �
mP
i��

��i 	I� � Ui
 �
	�


Due to 	�
 the variance�covariance matrix of �Y can be expressed as

Cov 	 �Y 
 �
mX
i��

��
i 	I� � Ui
 �

mX
j��

	j 	I� � Pj
 � 	��


where 	� is a linear combination of 	�� � � � � 	m�

�



Note that in the repeated model 	�
 with 	�� �X
	�v �X
� � 	�
�J� �XX�
 the set

�� � spanf�
�J��XX�� I��U�� � � � � I��Umg does not form a 	m��
�dimensional com�

mutative quadratic subspace of all real symmetric 	q�q
�matrices as in the corresponding

non�repeated model 	�
� which can be seen from the number of minimal su�cient statis�

tics in the following lemma�

Lemma ��

In model 	�
 it holds

i
 them�� matrices 	I��Pi
� i � �� �� � � � � m� are idempotent and mutually orthogonal

matrices�

ii
 the m� � statistics

	�� � P�
 �Y � �Y T 		I� � �

�
J�
� P�
 �Y � � �Y T 	I� � Pj
 �Y � j � �� � � � � m � 	��


are minimal su�cient statistics for this model�

Proof�

i
 It is 	I� � Pi

� � I� � P �

i � I� � Pi� i � �� �� � � � � m�

and 	I� � Pi
	I� � Pj
 � I� � PiPj � In � �q�q� i �� j�

because the m�� matrices Pi� i � �� �� � � � � m� are idempotent and mutually orthogonal�

ii
 The result is given following the lines of the proof of Theorem � in Seifert 	����
�

Lemma ��

An quadratic unbiased estimator of 	j� j � �� � � � � m� in model 	�
 is given by

�	j �
�

tr 	I� � Pj

�Y T 	I� � Pj
 �Y � j � �� � � � � m�

Proof�

The expected value of �Y T 	I� � Pj
 �Y � j � �� � � � � m� is given by

E 	 �Y T 	I� � Pj
 �Y 
 � tr 	I� � Pj
Cov 	 �Y 
 � 	j � tr 	I� � Pj
�

because PjX � �q�l� j � �� � � � � m�

Due to 	�
 we have a unique relation between 	 and �� Hence� we use the quadratic forms

�Y T 	I� � Pj
 �Y � j � �� � � � � m� to make inference about the unknown vector of variance

components�

�



� Derivation of the test statistics

In model 	�
 we consider the quadratic forms �Y T 	I� �Pj
 �Y � j � �� � � � � m� and de�ne for

all j � �� � � � � m

T �
j � �Y T 	I� � Pj
 �Y

�
	� � fj
 � �

�

�X
���

Y T
� PjY�
fj �

�

�

�X
���

T �
j � 	��


where T �
j � Y T

� PjY�
fj� � � �� � � � � �� j � �� � � � � m�

Let us denote T � � 	T �
� � � � � � T

�
m


T then it holds

E 	T �
 � �T� � 	 � 	��


and the variance�covariance matrix of T � is a diagonal 	m�m
�matrix given by

D�	�
 � � � diag 		 �� 
	� � f�
� � � � � 	 �m
	� � fm

 � D	�

v � 	��


and D	�
 is the variance�covariance matrix of T from 	

 in the corresponding non�

repeated model 	�
�

For each � � �� � � � � � the random variables fj � T �
j 
	j� j � �� � � � � m� are independent ���

distributed random variables with fj degrees of freedom� Thus� we consider the likelihood

function

L	�
 �
�Y

���

mY
i��

	Ci

��

�
fi
	i

�fi��

	T �
i 


�fi����� exp

�
� �

�

fi � T �
i

	i

�
� 	��


where 	Ci

�� � �fi�� �	fi
�
� i � �� � � �m� and �	x
 denotes the gamma function�

So� the log�likelihood function reads

l	�
 �
�X

���

mX
i��

�
ln	Ci


�� �
fi
�
ln

�
fi
	i

�
�

�
fi � �

�

�
lnT �

i �
�

�

fi � T �
i

	i

�
� 	��


For the �rst derivatives of the log�likelihood function 	��
 we get


l	�



��
j

�
�X

���

mX
i��

�
fi
�	 �i

� �ij � T �
i �

fi
�	i

� �ij

�

�
mX
i��

�
� � fi
�	 �i

� �ij � T �
i �

� � fi
�	i

� �ij

�
� j � �� � � � � m� 	��


�



so that


l	�



�
� �	D�	�

��	T � � �T�
 � 	�



Due to 	�

 the maximum likelihood estimator of � has the form

�� � 	�T 
�� � T � � 	��


and thus� the maximum likelihood estimator of 	 is given by

�	 � T � � 	��


The maximum likelihood estimator in 	��
 coincides with the usual ANOVA�estimator

and asymptotically yields nonnegative estimates of the variance components 	cf� Brown

	����

�

For the second derivatives of the log�likelihood function 	��
 we obtain


�l	�



��j 
�
�
k

�
�X

���

mX
i��

�
� fi
	 �i
�ij �ik T

�
i �

fi
�	 �i

�ij �ik

�

�
mX
i��

�
� � � fi

	 �i
�ij �ik T

�
i �

� � fi
�	 �i

�ij �ik

�
� j� k � �� � � � � m� 	��


so that the mean values of these derivatives are

E

�

�l	�



��
j
�

�
k

�
� �

mX
i��

� � fi
�	 �i

�ij �ik � j� k � �� � � � � m � 	��


Thus� the information matrix is given by

I�	�
 � E

�
� 
�l	�



�
�T

�
� �	D�	�

���T 	��


� � � �	D	�

���T � � � I	�
 �

where I	�
 is the information matrix in the corresponding non�repeated model 	�
�

Due to the results of Anderson 	����
 and Brown 	����
� respectively� cf� also Schmidt

and Thrum 	��
�
� we can state the following theorem�

�



Theorem ��

In model 	�
 it holds that
p
� 	�� � �
 is asymptotically normally distributed with mean

vector � and variance�covariance matrix 	�	D	�

���T 
�� for � 	 
� and under the

hypothesis H� � K� � d�
p
� 	K�� � d
 is asymptotically normally distributed with mean

vector � and variance�covariance matrix K	�	D	�

���T 
��KT for � 	
�

Thus� the Wald�type test statistic for testing the general linear hypothesis 	�
 is given by

W � 	K�� � d
T 	K	�	D�	�

���T 
��KT 
��	K�� � d
 � 	��


which is under H� asymptotically ���distributed with rk 	K
 degrees of freedom 	cf� Rao

	����
� p� �



� For an application of the Wald test a consistent estimator of �� usually

the maximum likelihood estimator ��� has to be replaced in D�	�
�

Note that a Wald test statistic using iterated MINQUE is given by Schmidt and Thrum

	��
�
� Kle�e and Seifert 	��


� cf� also Khuri� Mathew and Sinha 	���
� p� ���
�

An asymptotically equivalent test to the Wald test is given by the likelihood ratio test�

Thus� we consider the ratio

max

� � K� � d

L	�

�

max

�

L	�
� 	��


Considering the Lagrangian function

L	�� �
 � l	�
� �T 	K� � d
� 	��


the maximum likelihood estimator of � under H�� say  � � 	 ��� � � � � �  �
�
m


T � is a solution of

	T � � 	
�D�	�
���KT� � �

K� � d �
	��


where � � IRp is a vector of Lagrange multipliers�






Theorem ��

The test statistic

LR � �
�
l	��
� l	 �


	
	�



is under H� � K� � d asymptotically ���distributed with rk 	K
 degrees of freedom�

Proof� We note that the likelihood function 	��
 is built of independent identically dis�

tributed random vectors T � � 	T �
� � � � � � T

�
m


T � � � �� � � � �� so that the proof is given using

standard arguments of maximum likelihood theory 	see e� g� Rao 	����
� p� ��
����
�

Using the representation of the log�likelihood function from 	��
 the likelihood ratio test

statistic 	�

 can also be expressed as

LR �
mX
i��

� � fi



T �
iPm

j�� �ij ��i
� ln

�
T �
iPm

j�� �ij ��
i

�
� �



	��


with T �
i �

Pm
i�� �ij��

�
i � i � � � � � � m�

� Two Examples

��� Two�way nested classi�cation model

We consider the balanced two�way nested classi�cation model with random e�ects given

by

yijk � �� ai � bij � eijk

i � �� � � � � r� j � �� � � � � s� k � �� � � � � t� n � rst�
	��


where � � IR is a �xed e�ect and a�� � � � � ar� b��� � � � � brs� e���� � � � � erst are independent

normally distributed random e�ects with E	ai
 � E	bij
 � E	eijk
 � � and Var	ai
 � ��a�

Var 	bij
 � ��
b � Var 	eijk
 � ��

e � � for all i� j� and k� so � � 	��a� �
�
b � �

�
e


T �

�



The unique basis of projection matrices in this model is given by

P� �
�
n
Jn �

Pa � 	Ir � �
r
Jr
� �

st
Jst � tr 	Pa
 � r � � �

Pb � Ir � 	Is � �
s
Js
� �

t
Jt � tr 	Pb
 � r	s� �
 �

Pe � Irs � 	It � �
t
Jt
 � tr 	Pe
 � rs	t� �
 �

	��


and the matrix � has the form

� �

�BBB�
st � �

t t �

� � �

�CCCA � 	��


With y � 	y���� y���� � � � � yrst

T let us denote the mean sum of squares of the random

e�ects as

M� � yTPay
	r� �
 �

M� � yTPby
	r	s� �

 �

M� � yTPey
	rs	t� �

 �

	��


For an application of the Wald test statistic we have to replaceD	�
 in 	��
 by a consistent

estimator� Using a result from Hartung and Voet 	��
�
 the best invariant unbiased

estimator for D	�
 is given by

dD	�
 � � � diag
�

M�
�

r � �
�

M�
�

r	s� �
 � �
�

M�
�

rs	t� �
 � �

�
� 	��


For testing the hypothesis H� � ��
a � ��b with K � 	����� �
T and d � � the Wald test

statistic has the form

W� �

�
�
st	M� �M�
� �

t 	M� �M�

��

�
s�t�

�
�M�

�
r � � �

� 	s� �
� M�
�

r	s� �
 � �
�

� s� M�
�

rs	t� �
 � �

� � 	��


which can also be expressed in terms of the maximum likelihood estimators ���
a and ���b as

W� �
	���a � ���b 


�dVar 	���a � ���b 

� 	��


We reject H� at level � if W� � ��
�	���� where ��

�	� denotes the ��quantile of the ���

distribution with one degree of freedom�

��



In order to apply the likelihood ratio test statistic for testingH� � �
�
a � ��b we have to make

use of a numerical algorithm to maximize the log�likelihood under H�� In the following

simulation studies� which have been carried out in SAS ���� using PROC IML� we use

the Newton�Raphson ridge optimization algorithm to obtain the maximum likelihood

estimator under H��

In the �rst simulation study we investigate the behaviour of the signi�cance level and

the power of both tests where we focus our attention on �small� degrees of freedom of the

mean sum of squares� Due to the fact that a given two�way nested classi�cation model

can possibly be interpreted as a replication of a reduced design� which depends on the

number r of levels of the A�factor� we only consider sample sizes with increasing r and

three pairs of sample sizes 	s� t
 to make the simulations not too complex� For the error

variance ��
e we always choose the value one� The variance component ��a is generated as

a random number from a uniform distribution over the interval 	�� ��
 in each run� and

the variance component ��
b is set equal to the generated value of ��a� In table � the results

for the Wald and the likelihood ratio test concerning the estimated size of the tests given

the nominal level of � � ���� and � � ����� respectively� are presented based on ������

replications of the model�

We observe that the estimated signi�cance levels of the likelihood ratio test are nearly

independent from the chosen sample sizes and exceed the nominal signi�cance levels� but

in a compatible manner� for small r the largest estimated sizes are observed� e� g� near

� ! for � � ����� and with increasing r the estimated sizes go towards the corresponding

nominal ones� The estimated signi�cance levels of the Wald test� however� do not show

such a homogeneous behaviour as the estimated sizes of the likelihood ratio test� For

all r with s � t � � the estimated sizes of the Wald test mostly fall below the nominal

signi�cance level� but for r � �� the simulation indicates that the actual size of the

test attains the nominal size� For the other two considered sample sizes of s and t the

estimated signi�cance levels are considerably larger than the nominal signi�cance levels�

and the larger s and t the larger the estimated sizes� But for increasing r the estimated

signi�cance levels of the Wald test becomes smaller and the case r � �� indicates that

for large r the actual size of the test may go towards the nominal signi�cance level�

��



Consequently� the likelihood ratio test seems to be preferable to the Wald test in small

sample sizes�

Yet� we generate another data to compare the power of both tests and we restrict to all

sample sizes r with s � � and t � �� Due to the fact that the Wald test is rather liberal

in these situations� in the power comparison we used as critical values of the likelihood

ratio and the Wald test the simulated empirical �� !�quantiles of the distributions of the

corresponding test statistics under H�� As possible alternative hypotheses we consider the

cases � � ��
b � ��

a � ���� �� �� �� ��� ��� ��� and ���� The results of this simulation study

are given in table �� where again every estimated point of the power function is based on

������ replications� We observe that in all considered cases the estimated power function

of the Wald test lies above the estimated power function of the likelihood ratio test� so

one would recommend the Wald test if the size of the likelihood ratio and the Wald test

are nearly the same�

��� Two�way crossed classi�cation model with interaction

Let us consider the balanced two�way crossed classi�cation random model with interaction

given by

yijk � �� ai � bj � 	ab
ij � eijk �

i � �� � � � � r� j � �� � � � � s� k � �� � � � � t� n � rst�
	��


where � � IR is a �xed e�ect and a�� � � � � ar� b�� � � � � bs� 	ab
��� � � � � 	ab
rs� e���� � � � � erst

are independent normally distributed random e�ects with E 	ai
 � E 	bj
 � E 		ab
ij
 �

E 	eijk
 � � and Var 	ai
 � ��a� Var 	bj
 � ��b � Var 		ab
ij
 � ��
ab� Var 	eijk
 � ��e � � for

all i� j and k� so � � 	��
a� �

�
b � �

�
ab� �

�
e


T �

Let M��M��M� and M
 represent the A�factor� B�factor� AB�interaction and residual

error mean squares� then it holds

E	M
 � �T�� M � 	M��M��M��M


T � 	�



��



and

� �

�BBBBBB�
st � � �

� rt � �

t t t �

� � � �

�CCCCCCA � 	��


where the unique basis of projection matrices is given by

P� �
�
n
Jn �

Pa �
�
Ir � �

r
Jr
	� �

st
Jst � tr 	Pa
 � r � � �

Pb �
�
r
Jr �

�
Is � �

s
Js
	� �

t
Jt � tr 	Pb
 � s� � �

Pab �
�
Ir � �

r
Jr
	� �Is � �

s
Js
	� �

t
Jt � tr 	Pab
 � 	r � �
	s� �
 �

Pe � Irs � 	It � �
t
Jt
 � tr 	Pe
 � rs	t� �
 �

	��


The best invariant unbiased estimator of the covariance matrix D	�
 	cf� Hartung and

Voet 	��
�

 has the form

dD	�
 � � � diag
�

M�
�

r � �
�
M�

�

s� �
�

M�
�

	r � �
	s� �
 � �
�

M�



rs	t� �
 � �

�
� 	��


Thus� the Wald test statistic for testing the hypothesis H� � ��a � ��b � with K �

	����� �� �
T and d � �� can be described as

W� �

�
r	M� �M�
� s	M� �M�


��
�r�M�

�

r � �
�

�s�M�
�

s� �
�

�	r � s
�M�
�

	r � �
	s� �
 � �

� 	��


and we reject H� at level � if W� � ��
�	����

In this model we explicitly consider the equations 	��
 which has to be solved by the

maximum likelihood estimator under H�� Here� 	��
 has the form

	M� � 	�
 � ��
	 ��

st	r � �

� �

	M� � 	�
� ��
	 ��

rt	s� �

� �

	M� � 	�
 � ��
�
�
rt � �

st

�
	 ��

	r � �
	s� �

� �

	M
 � 	

 � �

�
s	� � �

r 	� �
�
�
r � �

s

�
	� � �

	��


��



If both main e�ects have the same number of levels� i� e� r � s� we get the following

solution of 	��


 	
 � M
 �  	� � M� � and  	� �  	� � 	M� �M�

� � 	��


So the test statistic 	��
 can be written as

LR� � 	r � �


�
ln

�
M� �M�

�M�

�
� ln

�
M� �M�

�M�

��
� 	��


Under H�� the mean value of LR� is given by

E 	LR�
 � �	r � �

n
E ln

�
��
��r���

	� E ln
�
��
r��

	� ln �
o
� 	��


In Bartlett and Kendall 	����
 it is shown that the mean value of the logarithm of a

���distributed random variable with f degrees of freedom is given by

E ln	��
f 
 � ln � � �	f
�
� 	��


where �	x
 � d ln�	x

dx is the psi function� With an approximation of the psi function

given in Abramowitz and Stegun 	����� p� ���
 we get the following approximation of the

mean value

E ln	��
f
 � ln f � �

f
� �

�f �
� �

�

��f 

� � � � � 	�



and so it holds for the likelihood ratio test statistic from 	��


E 	LR�
 � � �
�

�	r � �

� 	��


Therefore� we reject the hypothesis H� � �
�
a � ��b at the signi�cance level � if

LR�
� �

LR�

� �
�

�	r � �


� ��
�	��� � 	��


If the number of levels of the A� and B�factor are di�erent� i� e� r �� s� we get the following

solution of 	��


 	
 � M
 �  	� � 	s 	� � r 	�

	s� r
 	��


��



and  	� and  	� are solutions of

	M� � 	�
	s	� � r	�

� � 	 �� 	s	� � r	� � 	s� r
M�
r	s� �
 � �

	M� � 	�
	s	� � r	�

� � 	 �� 	r	� � s	� � 	r � s
M�
s	r � �
 � �

	��


Instead of using a numerical algorithm for computing a solution of 	��
 we use the following

approximation� It holds

D	�
���K �

��������
��
ast
	r � �


� ��
brt
	s� �


�

�

�������� �O	r� s
 � 	��


where O	r� s
 � IR
 and limO	r� s
 � � for r	
 and s	
 �

Thus� instead of solving 	��
 we consider the following system of equations� where we

omit the term O	r� s
�

	M� � 	�
 � ���
ast
	r � �
 � �

	M� � 	�
� ���
brt
	s� �
 � �

	M� � 	�
 � �

	M
 � 	

 � �

�

s
	� � �

r
	� �

�
�

r
� �

s

�
	� � �

	��


The estimators for 	� and 	
 are now given by

 	� � M� and  	
 � M
 � 	��


With

�� �
s� �

rt

M� � 	�
�

b

	��


the �rst equation in 	��
 can be written as

	M� � 	�
 �
st	s� �


rt	r � �


�
a
�
b

	M� � 	�
 � � � 	��


which under H� � �
�
a � ��

b reduces to

	M� � 	�
 �
s	s� �


r	r � �

	M� � 	�
 � � � 	�



��



Finally� we yield for 	� and 	� the estimators

 	� �
�

	r � �
 � 	s� �


�
	r � �
M� � 	s� �


�s
r
M� � 	�� s

r

M�

��
 	� �

�

	r � �
 � 	s� �


�
	s� �
M� � 	r � �


�r
s
M� � 	�� r

s

M�

�� 	��


We note that the approximate solution of 	��
 coincides with the exact solution of 	��
�

if the numbers of levels of the A� and B�factor are identical�

Now� we consider the expected value of the �approximate� likelihood ratio test statistic

using the estimators from 	��
 and 	��
 and observe that the last term in both equations

on the right hand side of 	��
 is O	r� s
 so that estimators from 	��
 can be written as

 	� �  	� � �

		r � �
 � 	s� �

		r � �
M� � 	s� �
M�
 � 	��


Using 	��
 the likelihood ratio test statistic LR can be approximated as

LRy � 	r � �
 ln

�
	r � �
M� � 	s� �
M�

		r � �
 � 	s� �

M�

�
� 	s� �
 ln

�
	r � �
M� � 	s� �
M�

		r � �
 � 	s� �

M�

�
�

	��


which under H� is approximately

LRy � 		r � �
 � 	s� �

 ln��
�r�����s��� � 	r � �
 ln��

r�� � 	s� �
 ln��
s��

�		r � �
 � 	s� �

 ln		r � �
 � 	s� �

 � 	r � �
 ln	r � �
 � 	s� �
 ln	s� �
 � 	��


With the approximation formula 	�

 we yield for the expected value of the likelihood

ratio test statistic

E 	LRy
 � � �
�

�	r � �

�

�

�	s� �

� �

�		r � �
 � 	s� �


� 	��


Using the inequality

�

	r � �
 � 	s� �

� �

�

�
�

r � �
�

�

s� �

�
	��


the expected value of 	��
 can also be approximated by

E 	LRy
 � � �
�

�	r � �

�

�

�	s� �

� 	��


��



Therefore� we reject the hypothesis H� � �
�
a � ��b � if

LRz � LRy
c � ��
�	��� with c chosen from 	��
� 	��


We note that 	��
 and 	��
 are identical if r � s�

In a simulation study� which has been carried out in similar way like the one in example

���� we study the sizes of the proposed tests� We consider the likelihood ratio test using

the Newton�Raphson ridge optimization algorithm to maximize the likelihood function

under H�� the �approximate� likelihood ratio test from 	��
� and the Wald test from 	��
�

The results are based in each case on ������ replications and the variance components

��ab and ��
e have been set equal to one� For the variance components ��

a and ��b we used

the same process of generation as in the previous example� The results of this simulation

study concerning the sizes of the tests are presented in table �� where only the results

with increasing r and three pairs of 	s� t
 are reported� because the results with increasing

s and di�erent pairs 	r� t
 are quite similar�

The estimated sizes of the likelihood ratio statistic 	LR
 exceed for all sample sizes the

nominal signi�cance level� but in an acceptable manner� Moreover� the estimated sizes do

not depend on the sample sizes on the whole� they are rather homogeneous� Regarding the

�approximate� likelihood statistic 	LRz
 we see that the consideration of a factor� which

corrects for the expected value of the likelihood ratio test statistic in small sample sizes�

has an important impact on the estimated sizes� In all considered cases� the variation

of the estimated signi�cance levels about the nominal signi�cance level is rather small�

The Wald test mainly produces very conservative results� In our simulation study for

� � ���� the Wald test never rejects the hypothesis� except for r � ��� For � � ����

the estimated sizes are also very small� but sometimes we observe estimated sizes� which

seriously exceed ����� e� g� the case r � �� s � ��� t � ��� Thus� the test statistics LR

and LRz� respectively� are more appropriate for testing the hypothesis H� � �
�
a � ��b than

the Wald test�

Finally� in table � the estimated power function of the �approximate� likelihood statistic

LRz and the Wald test are put together for �xed s � �� and t � �� with increasing r�

Again� as critical values we used the corresponding simulated empirical �� !�quantiles of

��



the distributions of the test statistics under H�� For r � �� the estimated power function

of the Wald test always lies above the estimated power function of the �approximate�

likelihood ratio test� The estimated power function are identical for r � s � �� and for

r � �� the �approximate� likelihood test LRz has greater power than the Wald test� So�

even if both tests have equal size the more powerful test depends on the sample sizes�

But� for the �approximate� likelihood ratio test we �nd out that with increasing r the

estimated power functions monotonously grows for each � with �xed s and t�

� Conclusions

Our simulation studies show that the approach using the likelihood ratio test statistic

yields better results concerning the nominal signi�cance level in small sample sizes than

the Wald test� on the whole� Especially� if one can deduce a factor� which corrects for

the expected value of the likelihood ratio test statistic in �nite samples� the modi�ed

likelihood ratio test nearly attains the prescribed size of the test� The Wald test is in

general easier to compute in the considered class of variance components models� but the

distribution of the Wald test statistic is badly approximated by a ���distribution in small

sample sizes� This fact is already known in tests on a single variance component to be

equal to zero 	cf� Kle�e and Seifert 	��



� But� if the sizes of both tests are similar

our simulation study indicates that the power of the Wald test is often larger in these

situations�
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Table �� Estimated size 	in !
 of the likelihood ratio 	LR
 and the Wald test for di�erent

sample sizes r� s� t 	� � ���� and � � ����
 in model 	��
 for testing H� � �
�
a � ��

b

� � ���	 � � ���
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Table �� Estimated power 	in !
 of the likelihood ratio 	LR
 and the Wald test for

di�erent values � � ��
b � ��a� di�erent sample sizes r� and� s � �� t � � in model 	��


for testing H� � ��
a � ��b and critical values determined as empirical ���quantiles of the

������ generated test statistics under H�
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r Test � ��
 	 � 
 	� �� 
� 	��

� LR 
 
 � 
 � 	� 	� 	
 	


Wald 
 � 
 � 	� 	
 �� �� ��

� LR 
 
 � 
 	� 	� 	
 �� ��

Wald 
 � � 	� 	� �	 �� �
 ��


 LR 
 � 
 � 	� 	� �� �� ��

Wald 
 
 � 	� 	� �� �
 �
 



� LR 
 � 
 � 	� �	 �� �� 
�

Wald 
 
 	� 	� �	 �	 �� 
� ��


 LR 
 � � 	� 	� �� �
 
� 
�

Wald 
 � 		 	
 �
 �� �� �� 
�

� LR 
 
 � 		 	� �� �	 
� ��

Wald 
 � 		 	� �
 �� 
� 
� ��

� LR 
 
 � 	� �	 �� �� �
 
�

Wald 
 � 	� 	� �� �� �	 �� �


	� LR 
 
 � 	� �� �� 
� 
� ��

Wald 
 � 	� 	� �	 �� �� �	 ��

�� LR 
 � 	� �	 �� �	 �� �� ��

Wald 
 	� 	
 �
 �� 
� �� �� 	��

��



Table �� Estimated size 	in !
 of the likelihood ratio 	LR
� the approximate likelihood

ratio 	LRz
� and the Wald test for di�erent sample sizes r� s� t 	� � ���� and � � ����


in model 	��
 for testing H� � �
�
a � ��b
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Table �� Estimated power 	in !
 of the approximate likelihood ratio 	LRz
 and the Wald

test for di�erent values � � ��b ���
a� di�erent sample sizes r� and� s � ��� t � �� in model

	��
 for testing H� � ��
a � ��

b and critical values determined as empirical ���quantiles of

the ������ generated test statistics under H�
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