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Abstract

In order to replace the univariate indicators standard in the literature (cp. [Opp96]) by a

multivariate representation of business cycles, the relevant 'stylized facts' are to be identi�ed

which optimally characterize the development of business cycle phases. Based on statistical

classi�cation methods we found that, somewhat surprisingly, only two variables, 'wage and

salary earners' and 'unit labor costs', are able to characterize the German business cycle not

only the most stable over all sub-cycles but also with a quite reasonable error rate.

Keywords: business cycle, prediction, multivariate characterization, classi�cation, leave-

one-cycle-out, cross validation

1 Introduction

In order to replace the univariate indicators standard in the literature (cp. [Opp96]) by

a multivariate representation of business cycles, statistical classi�cation methods were ap-

plied to quarterly after-war data of the German economy classi�ed into four business classes

called upswing, upper turning points, downswing, and lower turning points. The aim was

to �nd multivariate models of 'stylized facts' with maximum predictive power, i.e. with

maximum ability predicting the correct business cycle phase from the state of the economy.

In order to maximize predictive power, the cross-validation methods standard in statistical

analysis[WK91] were adapted to business cycle analysis by replacing techniques like leave-

one(-observation)-out- or 10-fold-cross-validation by the so-called double-leave-one-cycle-out

analysis. This way, we looked for those 'stylized facts' being best able to characterize the
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business cycle over the whole time period available. This cross-validation particularly pro-

duces classi�cation rules for each individual business cycle, thus allowing for the assessment

of the stability of the multivariate characterization in the six business cycles available in the

data. The results give a somewhat unexpected insight into the German economy: the two

variables 'wage and salary earners' and 'unit labor costs' play a stable dominant role in the

characterization of business cycles.

The organization of the paper is as follows. In Section 2 the data is introduced on

which the analysis is based upon. In Section 3 a mathematical problem formulation is given.

Section 4 brie
y introduces the classi�cation methods used in the paper and the kinds of

classi�cation rules resulting from them. In Section 5 the double-leave-one-cycle-out cross-

validation method is developed. Section 6 gives the results of the classi�cation methods, and

Section 7 discusses the results from an economic standpoint. Section 8 concludes the paper.

2 Data

The data set consists of 13 so-called 'stylized facts' cp. [Luc87] for the (West-) German

business cycle and 157 quarterly observations from 1955/4 to 1994/4 (price index base

is 1991). The stylized facts (and their abbreviations) are real-gross-national-product-gr

(Y), real-private-consumption-gr (C), government-de�cit (GD), wage-and-salary-earners-gr

(L), net-exports (X), money-supply-M1-gr (M1), real-investment-in-equipment-gr (IE), real-

investment-in-construction-gr (IC), unit-labor-cost-gr (LC), GNP-price-de
ator-gr (PY), con-

sumer-price-index-gr (PC), nominal short term interest rate (RS), and real long term interest

rate (RL). The abbreviation 'gr' stands for growth rates relative to last year's corresponding

quarter.

We base our analyses on the data preparation in [HM96] where the selection of the above

'stylized facts' out of more than 100 available variables of the German economy is described,

as well as the assignment of one of four business cycle phases to each quarter from 1955/4

to 1994/4. The phases of the used 4-phase business cycle scheme are called 'upswing' (up),

'upper turning points' (utp), 'downswing' (down), and 'lower turning points' (ltp). This

classi�cation was supposed to be the 'correct' classi�cation for the purpose of our study.

3 Classi�cation of Business Cycle Phases

The multivariate characterization of business cycles can mathematically be described as a

multivariate classi�cation rule.

Classi�cation deals with the allocation of objects to, say, G predetermined groups (or

classes). In our application the objects will be time periods (quarters), the groups the

business cycle phases. For each object, variables X

k;t

, k = 1; :::;K, t = 0; :::; T considered to

be important for discriminating between the groups are assumed to be observable at all time

periods. Such variables can be continuous (GNP, consumption etc.) or discrete (number of

�rms, number of inhabitants etc.). In the following, moreover, we assume that the vector of

these variables

~

X

t

has at each time period t 2 N values in a portion B of the K-dimensional

real space B 2 R

K

. Based on some pre-classi�ed objects (training sample) a classi�cation

rule is learned incorporating the information inherent in the training.
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We then classify a member of a sequence of future objects at time periods t = t

o

+h; h =

1; :::; H based on all observations ~x

t

o

,~x

t

o

+1

,...,~x

t

up to and at that time period, and the last

known state s

t

0

.

In order to construct the classi�cation rule, the information given in the training sample

is typically "encoded" in terms

(1) of the unknown parameters of an assumed conditional distribution of the X

k;t

, k =

1; :::;K, for objects belonging to one of the groups at time period t given all information

from the past, and

(2) in terms of some parameters for the probability to be in any of the groups at time

period t given all information from the past.

The product of the evidence from the current observation in (1) and the a-priori probabilities

for the current class in (2) result in a probability estimate for the current class.

Since the classes are known a-priori, all observations related to one class can be used for

the estimation of the parameters. New objects with observed variables vector

~

X

t

= ~x

t

are

classi�ed to group g 2 f1; :::; Gg if the estimated probability of this group is highest given

all available information from the past. The goodness of classi�cation depends on the class

of distributions we use. Often one uses distributions with a small number of parameters

in order to facilitate estimation. Therefore, typically strong independence assumptions are

made about time-dependencies. Additionally, one uses popular densities like the normal one:

only the mean vector and a measure of interrelation - the covariance matrix - have to be

speci�ed.

If there is a choice between di�erent classi�cation rules, the goal is to choose that classi-

�cation rule which minimizes the misclassi�cation error (error rate) of new objects.

4 Classi�cation methods and classi�cation rules

The compared classi�cation methods include classical standard procedures like Linear Dis-

criminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA). A recently devel-

oped method [WRT99] based on a projection pursuit algorithm selects optimal linear com-

binations of the original variables by a leave-one-observation out cross validation procedure.

This method is combined with both, LDA and QDA. All these methods learn parameters of

the conditional distribution of variables given phases, as if all observations in the training

sample belonging to a certain phase were an i.i.d. sample from this distribution.

Another more modern method is a Continuous Dynamic Bayesian Network with a certain

'rake'-structure, tailored for classi�cation in dynamic domains, named "CRAKE" in [SW99].

CRAKE represents a certain markov regime switching model, c.p. [Kro97].

Only CRAKE models directly time-dependencies in the conditional distribution of vari-

ables given business phases. To be able to take advantage of the knowledge about the cyclical

structure of the succession of phases, for the other methods we added the structure of a hid-

den Markov model. That means, we model a �rst order Markov chain for the succession of

phases, and the distribution of variables is independent of the past given the current phase.

This idea was introduced by [K

�

O98]. Details are given in [SW01].
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All these methods are applied either to all the variables mentioned in Section 2, or to

certain subsets discussed later.

The classi�cation rules corresponding to the di�erent classi�cation methods all lead to

di�erent partitions of the corresponding space of predictor variables in regions of assumed

highest evidence from the predictor variables for each of the phases. LDA, as well as LDA-

MEC1 both derive partitions of the space of involved variables with linear borders where each

subregion is related to one and only one business cycle phase. QDA, as well as QDA-MEC1

both derive partitions with nonlinear borders. CRAKE partitions the space of the involved

variables and the lagged variables. The projections of the inter-variable partitions in the

space of the non-lagged variables have non-linear borders, and resemble very much those of

QDA. The intra-variable borders in the space of predictor variables and their predecessors

are also non-linear.

For a more detailed discussion of borders corresponding to classi�cation rules of various

classi�cation methods cp., e.g., [WBS93].

5 Double leave-one-cycle-out cross validation

The development of an optimal classi�cation rule should be related to the optimization of

predictive power since a rule, once developed, should optimally 'predict' the groups (classes,

business cycle phases) of future objects (time periods). For the maximization of predictive

power cross-validation methods are standard in statistics [WK91]. Typical variants are leave-

one(-observation)-out cross-validation, and 10-fold cross-validation. In the former variant one

observation is left out in order to be predicted by a classi�cation rule derived from the other

observations. In the latter case the observations are partitioned into 10 equally sized parts,

predicting one part by a rule derived from the observations in the other 9 parts.

Obviously, both methods do not relate cross-validation to the structure of our data, i.e. to

business cycles. Indeed, what would be most adequate here is to use a 6-fold cross-validation

but not with equal sized parts. Instead, the parts should be equal to the business cycles

observed in the data. If one then leaves out one business cycle, one could test whether

this cycle is predictable by means of information from the other cycles. Note, however,

that as an objection to this method one might argue that time structure is partly ignored

because information from later cycles is used to predict the left out cycle. This drawback

was accepted, though, because of the lack of enough data for deriving a reliable classi�cation

rule for early cycles if only past cycles would be allowed for training.

We use leave-one-cycle-out (l1co) cross-validation for the determination of error rates for

a classi�cation method. We �rst leave out each whole business cycle once. This is the outer

l1co loop. The data from the other 5 cycles is then used to derive a 'best' classi�cation rule

for these cycles. All methods have intrinsic de�nitions of what is 'best': 'best' according to

theoretical predictive power according to certain distributional assumptions is basic to LDA,

QDA, and CRAKE, where MEC1 additionally �nds a 'best' rule with respect to a leave-

one-observation out error. Additionally, we analyzed variants of these methods including

model selection steps: Variable selection for LDA, QDA, and CRAKE, dimension selection

for MEC1. In order to judge the predictive power of potential rules, we re-apply (double!)

leave-one-cycle-out to the 5 cycles, the inner l1co loop. We derive a classi�cation rule for each
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group of 4 cycles, and test this rule on the left-out 5th cycle. The mean of the corresponding 5

error rates, called the mean l1co training error, gives the predictive power of the classi�cation

method on this group of 5 business cycles. The classi�cation rule derived from the data of

the 5 cycles is then applied to the left-out 6th cycle giving the so-called prediction error.

The di�erence of the mean l1co training error and the prediction error is used as a rough

measure for the similarity of the test set and the training sets, a negative sign indicating

problems with extrapolation from training sets to test set. The prediction error itself is

a measure for the quality of the derived classi�cation rule for the test set. In comparing

di�erent classi�cation methods the minimum prediction error indicates the most adequate

rule. The mean of the prediction errors characterize the overall predictive power of the

classi�cation method.

Note that with this method we particularly derive so-called 'local', cycle speci�c, measures

of predictive power which re
ect 'local' properties of cycles. Thus, we are able to assess the

stability of rules over the di�erent cycles: We say a rule is stable in it's structure, if the best

variables or the best dimension does not change too much on the six training sets. And we

say a rule is stable in its quality, if prediction errors and mean l1co errors are stable.

6 Classi�cation results and resulting models

6.1 Linear discriminant analysis

Classical linear discriminant analysis was performed in two variants: using all 13 variables to

classify the current phase (LDA-all) and with variable selection of the best two variables from

these 13 (LDA-best2), based on a leave-one-cycle-out procedure on the training set. Addi-

tionally, two variants of the introduced projection pursuit algorithms are LDA-procedures:

LDA-MEC1-2D minimizes the leave-one-observation-out error of a two-dimensional linear

combination of all 13 variables that is then used as new input variables in LDA. LDA-MEC1-

bestD selects additionally the best dimension (among 1-8) of such a linear combination in a

leave-one-cycle-out procedure.

The prediction error rates for LDA based on all variables were unacceptable, at least for

the �rst four cycles (Table 2). Looking for the two most important variables was motivated

by results of [R�oh98] and [WRT99]. Astonishing enough, the two best predicting variables

for each individual business cycle were always the same with LDA: LC and L, i.e. 'unit

labor costs' and 'wage and salary earners'. Unfortunately, also for these two variables the

prediction errors were unacceptably high for cycles 2 and 4, namely 50% and 67% (Table 2).

On the other hand, for cycles 1 and 3 the improvement by avoiding over�tting by reducing

the number of involved variables was high. For cycle 2 there appears to exist better variables

(combinations) since the error rate of LDA-best2 was even worse than of LDA-all. And

indeed, LDA-MEC1-2D found a better set of two directions in the 13 dimensional space with

the same prediction error rate as LDA-all. The weights of the original variables on these

directions were found as indicated in Table 1.
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Dir1 Dir2 Dir1 Dir2

standardized

IE 62 -10 7 -1

C -148 26 -53 9

Y 53 104 18 35

PC -181 143 -96 76

PY 624 -618 357 -353

IC 10 7 1 1

LC -131 5 -38 1

L 131 603 74 341

M1 -77 -28 -16 -6

RL 560 -421 371 -278

RS -414 165 -162 65

GD -115 -131 -41 -47

X 105 32 50 15

Table 1: LDA-MEC1-2D`s directions (�10

3

) of best linear combinations on cycle 2

Note that one has to standardize these weights by the variables' standard deviations

(cp. Table 1), at least, in order to interpret them! Moreover, note that the best number of

dimensions found by LDA-MEC1-bestD was 3 for cycle 2 giving the same error rate of 44%

as LDA-all and LDA-MEC1-2D. Also note that the relatively high dimensions 5 and 6 found

to be best for cycles 1 and 3 gave much worse predictions than, e.g., LDA-best2. This is a

strong argument against such high dimensions. Also, in the mean LDA-best2 gave the best

prediction results.

Looking at the similarity of test sets and training sets measured by the di�erence of mean

training error and prediction error (cp. Table 4) in the mean similarity is high. However,

the individual error rates are most of the times lower for prediction than in training.

Though LDA-best2 shows a high structural stability, it has no high stability in its absolute

performance: prediction errors range from 18% to 67%. This is also re
ected in Table 2 that

shows that the similarity of cycles is pretty low from the perspective of LDA-best2.

6.2 Quadratic discriminant analysis

Like LDA, we performed classical quadratic discriminant analysis without and with variable

selection (QDA-all and QDA-best2), and with two projection pursuit variants (QDA-MEC1-

2D and QDA-MEC1-bestD). Inspired by the results of LDA-best2, we looked additionally

at quadratic discriminant analysis based on 'unit labor costs' and 'wage and salary earners',

only (QDA-LC,L).

The results were qualitatively similar (cp. Table 6) to those of the linear analysis. QDA-

all delivered unacceptable prediction errors, QDA-LC,L was best in the mean, QDA-MEC1-

2D was able to improve QDA-LC,L only in two cycles, namely cycles 3 and 5, and QDA-

MEC1-bestD never improved QDA-MEC1-2D. One has to mention, though, that the best

6



all best2 MEC1-2D MEC1-bestD

Error on test cycles

0.78 0.33 (LC,L) 0.56 0.72 (D=5)

0.44 0.50 (LC,L) 0.44 0.44 (D=3)

0.41 0.18 (LC,L) 0.35 0.41 (D=6)

0.67 0.67 (LC,L) 0.67 0.67 (D=1)

0.28 0.25 (LC,L) 0.41 0.41 (D=2)

0.27 0.21 (LC,L) 0.31 0.48 (D=1)

Mean error

0.47 0.36 0.46 0.52

Table 2: LDA's prediction errors

all best2 MEC1-2D MEC1-bestD

Mean l1co-error on training set

0.39 0.35 0.41 0.33

0.54 0.32 0.52 0.47

0.49 0.41 0.55 0.51

0.44 0.29 0.48 0.45

0.54 0.34 0.50 0.50

0.51 0.42 0.51 0.45

Mean of mean l1co-errors

0.49 0.35 0.50 0.45

Table 3: LDA's mean training errors

number of dimensions found by QDA-MEC1-bestD was always smaller than 4, i.e. never as

high as 5 and 6 as found by LDA-MEC1-bestD, and is thus structurally more stable. QDA-

best2, though is less stable than LDA-best2, as LC and L were chosen only for cycles 3,4,

and 5, whereas for cycles 1 and 2 the variables L and RS were chosen, and for cycle 6 none of

the variables L or LC was chosen, but Y and RS. The most important result, though, is that

QDA-LC,L was only in cycle 2 better than LDA-LC,L. Overall, only on cycles 2 and 5 any

QDA-procedure could outperform LDA-LC,L. The QDA-MEC1-2D and QDA-MEC1-bestD

results on cycle 5 show the existence of a two-dimensional combination of all variables that

has about the same mean l1co training error as LDA-LC,L (42% compared with 41%) and

a much better performance in predicting cycle 5 (19% compared with 50%).

The corresponding directions can be characterized by the weights of the standardized

variables as in Table 5.
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all best2 MEC1-2D MEC1-bestD

Di�erence of prediction and training errors

0.38 -0.01 0.15 0.40

-0.10 0.18 -0.08 -0.03

-0.08 -0.23 -0.20 -0.09

0.22 0.38 0.19 0.22

-0.26 -0.09 -0.09 -0.09

-0.24 -0.21 -0.20 0.03

Mean of di�erence

-0.01 0.00 -0.04 0.07

Range of di�erence

0.65!! 0.61 0.39 0.49

Table 4: LDA's di�erences of errors

Dir1 Dir2 Dir1 Dir2

standardized

IE -61 63 -7 7

C 242 60 87 21

Y -75 304 -26 103

PC 398 172 249 108

PY -425 -750 -253 -447

IC -3 7 -0 1

LC 170 127 51 38

L -160 340 -94 202

M1 125 -60 29 -14

RL -576 -174 -394 -119

RS 389 41 170 18

GD 183 -323 71 -125

X -81 190 -38 90

Table 5: QDA-MEC1-2D`s directions (�10

3

) of best linear combinations on cycle 5

Moreover, note that QDA prediction errors are nearly as often lower than the correspond-

ing training errors as vice versa (cp. Table 8).

6.3 Continuous RAKE-Method

The CRAKE model is a Markov switching vector autoregressive model of �rst order, ab-

breviated as MS-VAR(1) according to [Kro97], with a certain covariance structure. More

precisely, for given phase s

t

2 f1; :::; Sg the vector ~x

t

2 IR

K

is generated by a �rst-order vec-
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all LC,L best2 MEC1-2D MEC1-bestD

Error on test cycles

0.50 0.50 0.61 (L,RS) 0.56 0.56 (2D)

0.75 0.38 0.69 (L,RS) 0.50 0.50 (2D)

0.47 0.29 0.29 (LC,L) 0.24 0.59 (3D)

0.75 0.67 0.67 (LC,L) 0.67 1.00 (1D)

0.72 0.41 0.41 (LC,L) 0.19 0.19 (2D)

0.31 0.23 0.46 (Y,RS) 0.33 0.33 (2D)

Mean error

0.58 0.41 0.52 0.42 0.53

Table 6: QDA's prediction errors

all LC,L best2 MEC1-2D MEC1-bestD

Mean l1co-errors on training sets

NaN 0.53 0.48 0.45 0.45

0.50 0.45 0.44 0.38 0.38

0.67 0.42 0.42 0.53 0.51

0.60 0.40 0.40 0.46 0.43

0.64 0.48 0.48 0.42 0.42

NaN 0.48 0.39 0.52 0.52

Mean of mean l1co-errors

0.60 0.46 0.44 0.46 0.45

Table 7: QDA's mean training errors. The inner leave-one-cycle-out error of QDA-all can not

be calculated for cycles 1 and 6, because for that purpose - among others - one would have to

learn parameters on a training set without these two cycles. On this set, though, there are only

13 observations on the UTP-group, which is not enough for the learning.

tor autoregressive model with diagonal covariance matrices, such that for each k; k = 1; :::;K,

we get a model equation

x

k;t

(s

t

) = �

k

(s

t

)� �

k

(s

t

)x

k;t�1

+ u

k;t

with u

k;t

, k = 1; :::;K, t = 1; :::; T , being independently normally distributed, u

k;t

N(0; �

k

)

given s

t

; t = 1; :::; T . For the generating process of states we assume - just like in the hidden

Markov model - a �rst order Markov chain.

The CRAKE method we tested in variants with

(1) all variables, (CRAKE-all)

(2) with a model selection for the best two variables (CRAKE-best2), and

(3) with variables LC and L only (CRAKE-LC,L).
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all LC,L best2 MEC1-2D MEC1-bestD

Di�erence of training and prediction error on cycles

NaN -0.03 0.13 0.10 0.10

0.25 -0.08 0.24 0.12 0.12

-0.20 -0.12 -0.12 -0.30 0.08

0.14 0.27 0.27 0.21 0.57

0.08 -0.08 -0.08 -0.23 -0.23

NaN -0.26 0.07 -0.19 -0.19

Mean of di�erence

0.07 -0.05 0.09 -0.05 0.07

Range of di�erence

0.45

�

0.52 0.39 0.51 0.81!!

Table 8: QDA's di�erences of errors

This surprisingly leads to a clear improvement of the result for cycle 4 from 67% error for

LDA-LC,L to 42% for CRAKE-LC,L (cp. Tables 2 and 9).

The corresponding CRAKE model looks as follows:

1stphase : LC

t

= 0:81 + 0:63LC

t�1

; L

t

= 0:44 + 0:82L

t�1

2ndphase : LC

t

= 2:86 + 0:21LC

t�1

; L

t

= 0:99 + 0:59L

t�1

3rdphase : LC

t

= 1:21 + 0:80LC

t�1

; L

t

= �0:27 + 0:93L

t�1

4thphase : LC

t

= �1:14 + 0:96LC

t�1

; L

t

= �0:48 + 0:78L

t�1

Concerning the mean prediction error, the CRAKE method based on all variables was

best (Table 9). This method was also the overall best for cycle 2, but sharing the performance

of exactly 0.375% prediction errors with QDA-LC,L. Like with LDA and QDA the selection

of LC,L is quite stable though the CRAKE model is substantially di�erent from QDA and

LDA: From the 78 possible combinations of two out of 13 variables, the pair LC,L was

selected 4 of 6 times by CRAKE-best2. And any time another pair was selected (cycles 3

and 6) the performance on the left-out cycle decreased.

Concerning similarity, only cycle 6 is problematic for CRAKE-LC,L (cp. Table 11).

Additionally, the absolute prediction error of CRAKE-LC,L on the 4th cycle, on which all

other methods have high diÆculty, is lowest among all models (cp. Tables 2, 6, 9). This

con�rms the impression that in LC and L one �nds a stable cross-cycle information about

the interplay of stylized facts and phases.

6.4 Comparison of classi�cation rules

Finally, the overall best prediction error rates are compared to the error rates obtained by

our "standard method", i.e. LDA-LC,L (cp. Table 12). Obviously, LDA-LC,L is only clearly

suboptimal for cycles 2 and 4. Even better, best models for these cycles cycle 4 are also

based on variables LC and L only. Moreover, cycles 1,2, and 4 can be predicted clearly less

exact than cycles 3,5, and 6.

Overall, from the modeling standpoint variables LC and L are clearly the most important
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all LC,L best2

Error on test cycles

0.56 0.44 0.44 (LC,L)

0.38 0.44 0.44 (LC,L)

0.47 0.47 0.94 (C,PY)

0.58 0.42 0.42 (LC,L)

0.25 0.47 0.47 (LC,L)

0.30 0.40 0.52 (RS,GD)

Mean error

0.42 0.44 0.54

Table 9: CRAKE's prediction errors

all LC,L best2

Mean l1co-errors on training sets

0.44 0.38 0.38

0.44 0.40 0.40

0.41 0.51 0.48

0.37 0.34 0.34

0.48 0.36 0.46

0.44 0.61 0.45

Mean of mean l1co-errors

0.43 0.43 0.40

Table 10: CRAKE's mean training errors

for the characterization of the German business cycle. In this respect, the outcome of our

analysis is astonishing stable over time and models.

7 Economic implications

Surely, there might be other models delivered by other classi�cation methods leading to even

better predictions than in our study. From our analysis, however, extreme 'multivariate'

dimension reduction to only two characteristics of the German business cycle, namely L

('wage and salary earners') and LC ('unit labor costs'), appears to be well reasonable. This

is true even 'locally', i.e. for each individual business cycle of the German Federal Republic.

Thus, from an economic standpoint one might have to stress that business cycle development

in Germany was mainly dependent on (the growth rates of) the number of employees and

on labor costs.
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all LC,L best2

Di�erence of training and prediction error

0.12 0.07 0.07

-0.06 0.03 0.03

0.07 -0.04 0.46

0.21 0.08 0.08

-0.22 0.11 0.11

-0.14 -0.22 0.07

Mean of di�erence

-0.00 0.01 0.14

Range of di�erence

0.44 0.33 0.42

Table 11: CRAKE's di�erences of errors

LDA-LC,L overall best Model

0.33 0.33 LDA-LC,L

0.50 0.38 CRAKE-all, QDA-LC,L

0.18 0.18 LDA-LC,L

0.67 0.42 CRAKE-LC,L

0.25 0.19 QDA-mec1-two

0.21 0.21 LDA-LC,L

Table 12: Comparing LDA-LC,L with best models according to prediction error

8 Conclusion

In order to even better support our �ndings, there is need for a method selecting BEST

PREDICTING classi�cation rules for the di�erent cycles out of the data, taking into account

the other cycles because of the obvious interrelation of di�erent cycles, and because of lack

of observations.
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