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Abstract

In this paper, we consider the problem of determining the optimal block size for a spatial subsam-

pling method for spatial processes observed on regular grids. We derive expansions for the mean

square error of the subsampling variance estimator, which yields an expression for the theoretical

optimal block size. The theoretical optimal block size is shown to depend in an intricate way on

the geometry of the spatial sampling region as well as on the characteristics of the underlying

random �eld. Final expressions for the optimal block size make use of some nontrivial estimates

of lattice point counts in shifts of convex sets. Examples are presented to illustrate the variations

in optimal block size for sampling regions of di�erent shapes.

AMS(2000) Subject Classi�cation: Primary 62G09; Secondary 62M40, 60G60

Key Words: Block bootstrap, block size, lattice point count, mixing, nonparametric variance
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1 Introduction

We examine the problem of choosing subsample sizes to maximize the performance of subsampling

methods for variance estimation. The data at hand are viewed as realizations of a stationary,

weakly dependent, spatial lattice process. We consider the common scenario of sampling from

sites of regular distance (e.g., indexed by the integer lattice Z

d

), lying within some region R

n

embedded in IR

d

. Such lattice data appear often in time series, agricultural �eld trials, and

remote sensing and image analysis (medical and satellite image processing).

For variance estimation via subsampling, the basic idea is to construct several \scaled-down"

copies of the sampling region R

n

(subsamples) that �t inside R

n

, evaluate the analog of

^

�

n

on

each of these subregions, and then compute a properly normalized sample variance from the

resulting values. The R

n

-sampling scheme is essentially recreated at the level of the subregions.

Two subsampling designs are most typical: subregions can be maximally overlapping (OL) or

devised to be non-overlapping (NOL). The accuracy (e.g. variance and bias) of subsample-based

estimators depends crucially on the choice of subsample size.

To place our work into perspective, we briey outline previous research in variance estima-

tion with subsamples and theoretical size considerations. The concept of variance estimation
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through subsampling originated from analysis of weakly dependent time processes. Let

^

�

n

be

an estimator of a parameter of interest � based on fZ(1); : : : ; Z(n)g from a stationary tempo-

ral process fZ(i)g

i�1

. To obtain subsamples from a stationary stretch Z(1); :::; Z(n) in time,

Carlstein (1986) �rst proposed the use of NOL blocks of length m � n:

n

Z(1 + (i� 1)m); :::; Z(im)

o

; for i = 1; : : : ; bn=mc,

while the sequence of subseries:

n

Z(i); :::; Z(i +m� 1)

o

for i = 1; :::; n �m+ 1

provides OL subsamples of length m (cf. K�unsch, 1989; Politis and Romano, 1993b). Here,

bxc denotes the integer part of a real number x. In each respective collection, evaluations of an

analog statistic

^

�

i

are made for each subseries and a normalized sample variance is calculated to

estimate the parameter nVar(

^

�

n

):

S

2

n

=

J

X

i=1

m(

^

�

i

�

~

�)

2

J

;

~

� =

J

X

i=1

^

�

i

J

;

where J = bn=mc (J = n�m+1) for the NOL (OL) subsample-based estimator. Carlstein (1986)

and Fukuchi (1999) established the L

2

consistency of the NOL and OL estimators, respectively, for

the variance of a general (not necessarily linear) statistic. Politis and Romano (1993b) determined

asymptotic orders of the variance O(m=n) and bias O(1=m) of the subsample variance estimators

for linear statistics. For mixing time series, they found that a subsample size m proportional to

n

1=3

is optimal in the sense of minimizing the Mean Square Error (MSE) of variance estimation,

concurring also with optimal block order for the moving block bootstrap variance estimator [Hall

et al. (1995), Lahiri (1996)].

Cressie (1991, p. 492) conjectured the recipe for extending Carlstein's variance estimator

to the general spatial setting, obtaining subsamples by tiling the sample region R

n

with dis-

joint \congruent" subregions. Politis and Romano (1993a, 1994) have shown the consistency of

subsample-based variance estimators for rectangular sampling/subsampling regions in IR

d

when

the sampling sites are observed on Z

d

\

Q

d

i=1

[1; n

i

] and integer translates of

Q

d

i=1

[1;m

i

] yield the

subsamples. Garcia-Soidan and Hall (1997) and Possolo (1991) proposed similar estimators un-

der an identical sampling scenario. For linear statistics, Politis and Romano (1993a) determined

that a subsampling scaling choice

Q

d

i=1

m

i

= Cf

Q

d

i=1

n

i

g

d=(d+2)

, for some unknown C, minimizes

the order of a variance estimator's asymptotic MSE. Sherman and Carlstein (1994) and Sher-

man (1996) proved the MSE-consistency of NOL and OL subsample estimators, respectively, for

the variance of general statistics in IR

2

. Their work allowed for a more exible sampling scheme:

the \inside" of a simple closed curve de�nes a set D � [�1; 1]

2

, Z

2

\nD (using a scaled-up copy of

D) constitutes the set of sampling sites, and translates of mD within nD form subsamples. Sher-

man (1996) minimized a bound on the asymptotic order of the OL estimator's MSE to argue that

the best size choice for OL subsamples involves m = O(n

1=2

) (coinciding with the above �ndings

of Politis and Romano (1993a) for rectangular regions in IR

2

). Politis and Sherman (2001) have

developed consistent subsampling methods for variance estimation with marked point process

data [cf. Politis et al. (1999), Chapter 6].

Few theoretical and numerical recommendations for choosing subsamples have been o�ered
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in the spatial setting, especially with the intent of variance estimation. As suggested in the liter-

ature, an explicit theoretical determination of optimal subsample \scaling" (size) requires calcu-

lation of an order and associated proportionality constant for a given sampling region R

n

. Even

for the few sampling situations where the order of optimal subsample size has been established,

the exact adjustments to theses orders are unknown and, quoting Politis and Romano (1993a),

\important (and diÆcult) in practice." Beyond the time series case with the univariate sample

mean, the inuence of the geometry and dimension of R

n

, as well as the structure of

^

�

n

, on

precise subsample selection has not been explored. We attempt here to advance some ideas on

the best size choice, both theoretically and empirically, for subsamples.

We work under the \smooth function" model of Hall (1992), where the statistic of interest

^

�

n

can be represented as a function of sample means. We formulate a framework for sampling in IR

d

where the sampling region R

n

(say) is obtained by \inating" a prototype set in the unit cube

in IR

d

and the subsampling regions are given by suitable translates of a scaled down copy of the

sampling region R

n

. We consider both a non-overlapping version and a (maximal) overlapping

version of the subsampling method. For each method, we derive expansions for the variance and

the bias of the corresponding subsample estimator of Var(

^

�

n

). The asymptotic variance of the

spatial subsample estimator for the OL version turns out to be smaller than that of the NOL

version by a constant factorK

1

(say) which depends solely on the geometry of the sampling region

R

n

. In the time series case, Meketon and Schmeiser (1984), K�unsch (1989), Hall et al. (1995) and

Lahiri (1996) have shown in di�erent degrees of generality that the asymptotic variance under

the OL subsampling scheme, compared to the NOL one, is K

1

=

2

3

times smaller. Results of

this paper show that for rectangular sampling regions R

n

in d-dimensional space, the factor K

1

is given by (

2

3

)

d

. We list the factor K

1

for sampling regions of some common shapes in Table 1.

Table 1: Examples of K

1

for several shapes of the sampling region R

n

� IR

d

.

Shape of R

n

Rectangle in IR

d

Sphere in IR

3

Circle in IR

2

Right triangle in IR

2

K

1

�

2=3

�

d

17�=315 �=4� 4=(3�) 1=5

In contrast, the bias parts of both the OL and NOL subsample variance estimators are

(usually) asymptotically equivalent and depend on the covariance structure of the random �eld

as well as on the geometry of the sampling region R

n

. Since the bias term is typically of the same

order as the number of lattice points lying near a subsample's boundary, determination of the

leading bias term involves some nontrivial estimates of the lattice point counts over translated

subregions. Counting lattice points in scaled-up sets is a hard problem and has received a lot of

attention in Analytic Number Theory and in Combinatorics. Even for the case of the plane (i.e.,

d = 2), the counting results available in the literature are directly applicable to our problem only

for a very restricted class of subregions (that have the so-called \smoothly winding border" [cf.

van der Corput (1920), Huxley (1993, 1996)]. Here explicit expressions for the bias terms are

derived for a more general class of sampling regions using some new estimates on the discrepancy

between the number of lattice points and the volume of the shifted subregions in the plane and in

three dimensional Euclidean space. In particular, our results are applicable to sampling regions

that do not necessarily have \smoothly winding borders".

Minimizing the combined expansions for the bias and the variance parts, we derive explicit

expressions for the theoretical optimal block size for sampling regions of di�erent shapes. To
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briey describe the result for a few common shapes, suppose the sampling region R

n

is obtained

by inating a given set R

0

2 (�

1

2

;

1

2

]

d

by a scaling constant �

n

as R

n

= �

n

R

0

and that the

subsamples are formed by considering the translates of

s

R

n

=

s

�

n

R

0

. Then, the theoretically

optimal choice of the block size

s

�

n

for the OL version is of the form

s

�

opt

n

=

�

�

d

n

B

2

0

dK

0

�

4

�

1=(d+2)

(1 + o(1)) as n!1

for some constants B

0

and K

0

(coming from the bias and the variance terms, respectively),

where �

2

is a population parameter that does not depend on the shape of the sampling region

R

n

(see Theorem 5.1 for details). The following table lists the constants B

0

and K

0

for some

shapes of R

n

. It follows from Table 2 that, unlike the time series case, in higher dimensions the

Table 2: Examples of B

0

, K

0

for some sampling regions R

n

. Cross and triangle shapes appear

in Figure 1, Section 6; see Section 6 for further details. Autocovariances �(�) and Euclidean, l

1

,

and l

1

norms k � k, k � k

1

, k � k

1

are described in Section 2.3.

R

n

K

0

B

0

Sphere in IR

3

34=105

3=2

X

k2Z

3

kkk�(k)

Cross in IR

2

4=9 � 191=192

4=3

X

k2Z

2

kkk

1

�(k)

Right triangle in IR

2

@

@

2=5

2

X

k=(k

1

;k

2

)

0

2Z

2

signk

1

=signk

2

kkk

1

�(k) + 2

X

k2Z

2

signk

1

6=signk

2

kkk

1

�(k)

optimal block size critically depends on the shape of the spatial sampling region R

n

. It simpli�es

only slightly for the NOL subsampling scheme as the constant K

0

is unnecessary for computing

optimal NOL subsamples, but the bias constant B

0

is often the same for both estimators from

each version of subsampling. These expressions may be readily used to obtain `plug-in' estimates

of the theoretical optimal block lengths for use in practice.

The rest of the paper is organized as follows. In Section 2, we describe the spatial subsampling

method and state the Assumptions used in the paper. In Sections 3 and 4, we respectively derive

expansions for the variance and the bias parts of the subsampling estimators. Theoretical optimal

block lengths are derived in Section 5. The results are illustrated with some common examples

in Section 6. Section 7 addresses data-based subsample size selection. Proofs of variance and

bias results are separated into Sections 8 and 9, respectively.

2 Variance estimators via subsampling

In Section 2.1, we frame the sampling design and the structure of the sampling region. Two

methods of subsampling are presented in Section 2.2 along with corresponding nonparametric

variance estimators. Assumptions and Conditions used in the paper are given in Section 2.3.
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2.1 The sampling structure

To describe the sampling scheme used, we �rst assume all potential sampling sites are located on

a translate of the rectangular integer lattice in IR

d

. For a �xed (chosen) vector t 2 [�1=2; 1=2)

d

,

we identify the t-translated integer lattice as Z

d

� t + Z

d

. Let fZ(s) j s 2 Z

d

g be a stationary

weakly dependent random �eld (hereafter r.f.) taking values in IR

p

. (We use bold font as a

standard to denote vectors in the space of sampling IR

d

and normal font for vectors in IR

p

,

including Z(�).) We suppose that the process Z(�) is observed at sampling sites lying within the

sampling region R

n

� IR

d

. Namely, the collection of available sampling sites is

fZ(s) : s 2 R

n

\ Z

d

g:

To obtain the results in the paper, we assume that the sampling regionR

n

becomes unbounded

as the sample size increases. This will provide a commonly used \increasing domain" framework

for studying asymptotics with spatial lattice data [cf. Cressie (1991)]. We next specify the

structure of the regions R

n

and employ a formulation similar to that of Lahiri (1999a,b).

Let R

0

be a Borel subset of (�1=2; 1=2]

d

containing an open neighborhood of the origin such

that for any sequence of positive real numbers a

n

! 0, the number of cubes of the scaled lattice

a

n

Z

d

which intersect the closures R

0

and R

c

0

is O((a

�1

n

)

d�1

) as n!1. Let �

n

be a sequence of

d� d diagonal matrices, with positive diagonal elements �

(n)

1

; : : : ; �

(n)

d

, such that each �

(n)

i

!1

as n! 1. We assume that the sampling region R

n

is obtained by \inating" the template set

R

0

by the directional scaling factors �

n

; that is,

R

n

= �

n

R

0

:

Because the origin is assumed to lie in R

0

, the sampling region R

n

grows outward in all directions

as n increases. Furthermore, if the scaling factors are all equal (�

(n)

1

= � � � = �

(n)

d

), the shape of

R

n

remains the same for di�erent values of n.

The formulation given above allows the sampling region R

n

to have a large variety of fairly

irregular shapes with the boundary condition on R

0

imposed to avoid pathological cases. Some

common examples of such regions are convex subsets of IR

d

, such as spheres, ellipsoids, poly-

hedrons, as well as certain non-convex subsets with irregular boundaries, such as star-shaped

regions. Sherman and Carlstein (1994) and Sherman (1996) consider a similar class of such re-

gions in the plane (i.e. d = 2) where the boundaries of the sets R

0

are delineated by simple

recti�able curves with �nite lengths. The border requirements on R

0

ensure that the number of

observations near the boundary of R

n

is negligible compared to the totality of data values. This

assumption is crucial to the derivation of results to follow. In addition, Perera (1997) demon-

strates that the border geometry of R

0

can signi�cantly inuence the asymptotic distribution of

sample means taken with observations from \expanding" sets, like R

n

.

2.2 Subsampling designs and variance estimators

We suppose that the relevant statistic, whose variance we wish to estimate, can be represented

as a function of sample means. Let

^

�

n

= H(

�

Z

N

n

) be an estimator of the population parameter

of interest � = H(�), where H : IR

p

! IR is a smooth function, EZ(t) = � 2 IR

p

is the mean of

the stationary r.f. Z(�), and

�

Z

N

n

is the sample mean of the N

n

observations within R

n

. We can

write

�

Z

N

n

= N

�1

n

X

s2Z

d

\R

n

Z(s): (2.1)
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This parameter and estimator formulation is what Hall (1992) calls the \smooth function" model

and it has been used in other scenarios, such as with the moving block bootstrap (MBB) and

empirical likelihood, for studying approximately linear functions of a sample mean [Lahiri (1996),

DiCiccio et al. (1991)]. By considering suitable functions of the Z(s)'s, one can represent a wide

range of estimators under the present framework. In particular, these include means, products

and ratios of means, autocorrelation estimators, sample lag cross-correlation estimators [Politis

and Romano (1993b)], and Yule-Walker estimates for autoregressive processes [cf. Guyon (1995)].

The quantity which we seek to estimate nonparametrically is the variance of the normalized

statistic

p

N

n

^

�

n

, say, �

2

n

= N

n

E(

^

�

n

�E

^

�

n

)

2

. In our problem, this goal is equivalent to consistently

estimating the limiting variance �

2

= lim

n!1

�

2

n

.

2.2.1 Overlapping subsamples

Variance estimation with OL subsampling regions has been presented previously in the literature,

though in more narrow sampling situations. Sherman (1996) considered an OL subsample-based

estimator for sampling regions in IR

2

; Politis and Romano (1994) extended a similar estimator

for rectangular regions in IR

d

with faces parallel to the coordinate axes (i.e. R

0

= (�1=2; 1=2]

d

);

and a host of authors, in a variety of contexts, have examined OL subsample estimators applied

to time series data [cf. Song and Schmeiser (1988), Politis and Romano (1993a), Fukuchi (1999)].

We �rst consider creating a smaller version of R

n

, which will serve as a template for the OL

subsampling regions. To this end, let

s

�

n

be a d � d diagonal matrix with positive diagonal

elements, f

s

�

(n)

1

; : : : ;

s

�

(n)

d

g, such that

s

�

(n)

i

=�

(n)

i

! 0 and

s

�

(n)

i

! 1, as n ! 1, for each i =

1; : : : ; d. (The matrix �

n

represents the determining scaling factors for R

n

and

s

�

n

shall be

factors used to de�ne the subsamples.) We make the \prototype" subsampling region,

s

R

n

=

s

�

n

R

0

; (2.2)

and identify a subset of Z

d

, say J

OL

, corresponding to all integer translates of

s

R

n

lying within

R

n

. That is,

J

OL

=

n

i 2 Z

d

: i+

s

R

n

� R

n

o

:

The desired OL subsampling regions are precisely the translates of

s

R

n

given by: R

i;n

� i+

s

R

n

,

i 2 J

OL

. Note that the origin belongs to J

OL

and, clearly, some of these subregions overlap.

Let

s

N

n

= jZ

d

\

s

R

n

j be the number of sampling sites in

s

R

n

and let jJ

OL

j denote the number

of available subsampling regions. (The number of sampling sites within each OL subsampling

region is the same, namely for any i 2 J

OL

,

s

N

n

= jZ

d

\ R

i;n

j.) For each i 2 J

OL

, compute

^

�

i

= H(Z

i;n

), where

Z

i;n

=

s

N

n

�1

X

s2Z

d

\R

i;n

Z(s)

denotes the sample mean of observations within the subregion. We then have the OL subsample

variance estimator of �

2

n

as

�̂

2

n;OL

= jJ

OL

j

�1

X

i2J

OL

s

N

n

�

^

�

i;n

�

~

�

n

�

2

;

~

�

n

= jJ

OL

j

�1

X

i2J

OL

^

�

i;n

:

6



2.2.2 Non-overlapping subsamples

Carlstein (1986) �rst proposed a variance estimator involving NOL subsamples for time processes.

Politis and Romano (1993a) and Sherman and Carlstein (1994) demonstrated the consistency

of variance estimation, via NOL subsampling, for certain rectangular regions in IR

d

and some

sampling regions in IR

2

, respectively. Here we adopt a formulation similar to those of Sherman

and Carlstein (1994) and Lahiri (1999a).

The sampling region R

n

is �rst divided into disjoint \cubes". Let

s

�

n

be the previously

described d � d diagonal matrix from (2.2), which will determine the \window width" of the

partitioning cubes. Let

J

NOL

=

n

i 2 Z

d

:

s

�

n

�

i+ (�1=2; 1=2]

d

�

� R

n

o

represent the set of all \inated" subcubes that lie inside R

n

. Denote its cardinality as jJ

NOL

j.

For each i 2 J

NOL

, de�ne the subsampling region

~

R

i;n

=

s

�

n

(i+R

0

) by inscribing the translate

of

s

�

n

R

0

such that the origin is mapped onto the midpoint of the cube

s

�

n

(i + (�1=2; 1=2]

d

).

This provides a collection of NOL subsampling regions, which are smaller versions of the original

sampling region R

n

, that lie inside R

n

.

For each i 2 J

NOL

, the function H(�) is evaluated at the sample mean, say

~

Z

i;n

for a corre-

sponding subsampling region

~

R

i;n

to obtain

^

�

i;n

= H(

~

Z

i;n

). The NOL subsample estimator of �

2

n

is again an appropriately scaled sample variance:

�̂

2

n;NOL

= jJ

NOL

j

�1

X

i2J

NOL

s

N

i;n

�

^

�

i;n

�

~

�

n

�

2

;

~

�

n

= jJ

NOL

j

�1

X

i2J

NOL

^

�

i;n

where

s

N

i;n

= jZ

d

\

~

R

i;n

j denotes the number of sampling sites within a given NOL subsample.

We note that

s

N

i;n

may di�er between NOL subsamples, but all such subsamples will have

exactly

s

N

i;n

=

s

N

n

sites available if the diagonal elements of

s

�

n

are integers.

2.3 Assumptions

For stating the assumptions, we need to introduce some notation. For a vector x = (x

1

; :::; x

d

)

0

2

IR

d

, let kxk and kxk

1

=

P

d

i=1

jx

i

j denote the usual Euclidean and l

1

norms of x, respectively.

Denote the l

1

norm as kxk

1

= max

1�k�d

jx

k

j. De�ne dis(E

1

; E

2

) = inffkx�yk

1

: x 2 E

1

; y 2

E

2

g for two sets E

1

; E

2

� IR

d

. We shall use the notation j � j also in two other cases: for a

countable set B, jBj would denote the cardinality of the set B; for an uncountable set A � IR

d

,

jAj would refer to the volume (i.e., the IR

d

Lebesgue measure) of A.

Let F

Z

(T ) = �hZ(s) : s 2 T i be the �-�eld generated by the variables fZ(s) : s 2 Tg,

T � Z

d

. For T

1

; T

2

� Z

d

, write

~�(T

1

; T

2

) = supfjP (A \B)� P (A)P (B)j : A 2 F

Z

(T

1

); B 2 F

Z

(T

2

)g:

Then, the strong mixing coeÆcient for the r.f. Z(�) is de�ned as

�(k; l) = supf~�(T

1

; T

2

) : T

i

� Z

d

; jT

i

j � l; i = 1; 2; dis(T

1

; T

2

) � kg (2.3)

Note that the supremum in the de�nition of �(k; l) is taken over sets T

1

; T

2

which are bounded.

For d > 1, this is important. A r.f. on the (rectangular) lattice Z

d

with d � 2 that satis�es a

strong mixing condition of the form

lim

k!1

supf~�(T

1

; T

2

) : T

1

; T

2

� Z

d

; dis(T

1

; T

2

) � kg = 0 (2.4)
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with supremum taken over possibly unbounded sets necessarily belongs to the more restricted

class of �-mixing r.f.'s [cf. Bradley (1989)]. Politis and Romano (1993a) used moment inequalities

based on the mixing condition in (2.4) to determine the orders of the bias and variance of �̂

2

n;OL

,

�̂

2

n;NOL

for rectangular sampling regions.

For proving the subsequent theorems, the assumptions below are needed along with two

conditions stated as functions of a positive argument r 2 Z

+

= f0; 1; 2; : : :g. In the fol-

lowing, det(�) represents the determinant of a square matrix �. For � = (�

1

; :::; �

p

)

0

2

(Z

+

)

p

, let D

�

denote the �th order partial di�erential operator @

�

1

+:::+�

p

=@x

�

1

1

:::@x

�

p

p

and

r = (@H(�)=@x

1

; : : : ; @H(�)=@x

p

)

0

be the vector of �rst order partial derivatives of H at �.

Limits in order symbols are taken letting n tend to in�nity.

Assumptions:

(A.1) There exists a d� d diagonal matrix �

0

, det(�

0

) > 0, such that

1

s

�

(n)

1

s

�

n

! �

0

:

(A.2) For the scaling factors of the sampling and subsampling regions:

d

X

i=1

1

s

�

(n)

i

+

d

X

i=1

s

�

(n)

i

�

(n)

i

+

[det(

s

�

n

)]

(d+1)=d

det(�

n

)

= o(1); max

1�i�d

�

(n)

i

= O

�

min

1�i�d

�

(n)

i

�

:

(A.3) There exist nonnegative functions �

1

(�) and g(�) such that lim

k!1

�

1

(k) = 0,

lim

l!1

g(l) =1 and the strong-mixing coeÆcient �(k; l) from (2.3) satis�es the inequality

�(k; l) � �

1

(k)g(l) k > 0; l > 0:

(A.4) supf ~�(T

1

; T

2

) : T

1

; T

2

� Z

d

; jT

1

j = 1; dis(T

1

; T

2

) � kg = o(k

�d

).

(A.5) �

2

> 0, where �

2

=

P

k2Z

d

�(k); �(k) = Cov

�

r

0

Z(t);r

0

Z(t+ k)

�

:

Conditions:

D

r

: H : IR

p

! IR is r-times continuously di�erentiable and, for some a 2 Z

+

and real C > 0,

maxfjD

�

H(x)j : k�k

1

= rg � C(1 + kxk

a

); x 2 IR

p

:

M

r

: For some 0 < Æ � 1, 0 < � < (2r � 1� 1=d)(2r + Æ)=Æ, and C > 0,

EkZ(t)k

2r+Æ

<1;

1

X

x=1

x

(2r�1)d�1

�

1

(x)

Æ=(2r+Æ)

<1; g(x) � Cx

�

:

Some comments about the assumptions and the conditions are in order.

Assumption A.5 implies a positive, �nite asymptotic variance �

2

for the standardized estima-

tor,

p

N

n

^

�

n

. We would like �

2

2 (0; 1) for a purposeful variance estimation procedure.

In Assumption A.3, we formulate a conventional bound on the mixing coeÆcient �(k; l) from

(2.3) that is applicable to many r.f.s and resembles the mixing assumption of Lahiri (1999a,b).
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For r.f.s satisfying Assumption A.3, the \distance" component of the bound, �

1

(�), often decreases

at an exponential rate while the function of \set size," g(�), increases at a polynomial rate [cf.

Guyon (1995)]. Examples of r.f.s that meet the requirements of A.3 and M

r

include Gaussian

�elds with analytic spectral densities, certain linear �elds with a moving average or autore-

gressive (AR) representation (like m-dependent �elds), separable AR(1)xAR(1) lattice processes

suggested by Martin (1990) for modeling in IR

2

, many Gibbs and Markov �elds, and important

time series models [cf. Doukhan (1994)]. Condition M

r

combined with A.3 also provides useful

moment bounds for normed sums of observations (see Lemma 8.2).

Assumption A.4 permits the CLT in Bolthausen (1982) to be applied to sums of Z(�) on sets

of increasing domain, in conjunction with the boundary condition on R

0

, Assumption A.3, and

Condition M

r

. This version of the CLT (Stein's method) is derived from �-mixing conditions

which ensure asymptotic independence between a single point and observations in arbitrary sets

of increasing distance [cf. Perera (1997)].

Assumptions A.1 and A.2 set additional guidelines for how sampling and subsampling de-

sign parameters, �

n

and

s

�

n

, may be chosen. The assumptions provide a exible framework

for handling \increasing domains" of many shapes. For d = 1, A.1-A.2 are equivalent to the

requirements of Lahiri (1999c) who provides variance and bias expansions for the MBB variance

estimator with weakly dependent time processes.

3 Variance expansions

We now give expansions for the asymptotic variance of the OL/NOL subsample variance estima-

tors �̂

2

n;OL

and �̂

2

n;NOL

of �

2

n

= N

n

Var(

^

�

n

).

Theorem 3.1 Suppose that Assumptions A.1 - A.5 and Conditions D

2

and M

5+2a

hold, then

(a) Var(�̂

2

n;OL

) = K

0

�

det(

s

�

n

)

det(�

n

)

�

2�

4

�

(1 + o(1));

(b) Var(�̂

2

n;NOL

) =

1

jR

0

j

�

det(

s

�

n

)

det(�

n

)

�

2�

4

�

(1 + o(1));

where K

0

=

1

jR

0

j

�

Z

IR

d

j(x+R

0

) \R

0

j

2

jR

0

j

2

dx is an integral with respect to the IR

d

Lebesgue mea-

sure.

The constant K

0

appearing in the variance expansion of the estimator �̂

2

n;OL

is a property of

the shape of the sampling template R

0

but not of its exact embedding in space IR

d

or even the

scale of the set. Namely, K

0

is invariant to invertible aÆne transformations applied to R

0

and

hence can be computed from either R

0

or R

n

= �

n

R

0

. Values of K

0

for some template shapes

are given in Table 3 and Section 6.

A stationary time sequence Z

1

; : : : ; Z

n

can be obtained within our sampling formulation by

choosing R

0

= (�1=2; 1=2] and �

(n)

1

= n on the untranslated integer lattice Z = Z. In this special

sampling case, an application of Theorem 3.1 yields

Var(�̂

2

n;OL

) = 2=3 � Var(�̂

2

n;NOL

); Var(�̂

2

n;NOL

) =

s

�

(n)

1

=�

(n)

1

� [2�

4

](1 + o(1));

a result which is well-known for \nearly" linear functions

^

�

n

of a time series sample mean [cf.

K�unsch (1989)]. Theorem 3.1 implies that, under the \smooth" function model, the asymptotic
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Table 3: Examples of K

0

from Theorem 3.1 for several shapes of R

0

� IR

d

.

�

The trapezoid has

a 90

Æ

interior \ and parallel sides b

2

� b

1

; c = (b

2

=b

1

+ 1)

�2

[1 + 2(b

2

=b

1

� 1)=(b

2

=b

1

+ 1)].

R

0

Shape IR

d

Rectangle IR

3

Ellipsoid IR

3

Cylinder IR

2

Ellipse IR

2

Trapezoid

�

K

0

(2=3)

d

34=105 2=3

�

1� 16=(3�

2

)

�

1� 16=(3�

2

) 2=5 (1 + 4c=9)

variance of the OL subsample-based variance estimator is always strictly less than the NOL

version because

K

1

= lim

n!1

Var(�̂

2

n;OL

)

Var(�̂

2

n;NOL

)

= K

0

jR

0

j < 1: (3.1)

If both estimators have the same bias (which is often the case), (3.1) implies that variance

estimation with OL subsamples is more eÆcient than the NOL subsample alternative owing to

a smaller asymptotic MSE.

Unlike K

0

, K

1

does depend on the volume jR

0

j, which in turn is constrained by the R

0

-

template's geometry. That is, K

1

is ultimately bounded, through jR

0

j in (3.1), by the amount

of space that an object of R

0

's shape can possibly occupy within (�1=2; 1; 2]

d

; or by how much

volume can be �lled by a given geometrical body (e.g. circle) compared to a cube. The constants

K

1

in Table 1 are computed with templates of prescribed shape and largest possible volume in

(�1=2; 1=2]

d

. These values most accurately reect the inuence of R

0

's (or R

n

's) geometry on

the relative performance (ie. variance, eÆciency) of the estimators �̂

2

n;OL

and �̂

2

n;NOL

.

To conclude this section, we remark that both subsample-based variance estimators can be

shown to be (MSE) consistent under Theorem 3.1 conditions, allowing for more general spatial

sampling regions, in both shape and dimension, than previously considered. Inference on the

parameter � can be made through the limiting standard normal distribution of

p

N

n

(

^

�

n

� �)=�̂

n

for �̂

n

= �̂

n;OL

or �̂

n;NOL

.

4 Bias expansions

We now try to capture and precisely describe the leading order terms in the asymptotic bias

of each subsample-based variance estimator, similar to the variance determinations from the

previous section. We �rst establish and note the order of the dominant component in the bias

expansions of �̂

2

n;OL

and �̂

2

n;NOL

, which is the subject of the following lemma.

Lemma 4.1 With Assumptions A.1 - A.5, suppose that Conditions D

2

and M

2+a

hold for d �

2; and D

3

and M

3+a

for d = 1. Then, the subsample estimators of �

2

n

= N

n

Var(

^

�

n

) have

expectations:

E(�̂

2

n;OL

) = �

2

n

+O(1=

s

�

(n)

1

) and E(�̂

2

n;NOL

) = �

2

n

+O(1=

s

�

(n)

1

):

The lemma shows that, under the smooth function model, the asymptotic bias of each es-

timator is O(1=

s

�

(n)

1

) for all dimensions of sampling. Politis and Romano (1993a, p.323) and

Sherman (1996) showed this same size for the bias of �̂

2

n;OL

with sampling regions based on rect-

angles R

0

= (�1=2; 1=2]

d

or simple closed curves in IR

2

, respectively. Lemma 4.1 extends these

results to a broader class of sampling regions. However, we would like to precisely identify the

10



O(1=

s

�

(n)

1

) bias component for �̂

2

n;OL

or �̂

2

n;NOL

to later obtain theoretically correct proportionality

constants associated with optimal subsample scaling.

To achieve some measure of success in determining the exact bias of the subsampling esti-

mators, we reformulate the subsampling design slightly so that

s

�

n

�

s

�

(n)

1

= � � � =

s

�

(n)

d

. That

is, a common scaling factor in all directions is now used to de�ne the subsampling regions (as in

Sherman and Carlstein (1994); Sherman (1996)). This constraint will allow us to deal with the

counting issues at the heart of the bias expansion.

Adopting a common scaling factor

s

�

n

for the subsamples also is sensible for a few other

reasons at this stage:

� \Unconstrained" optimum values of

s

�

n

cannot always be found by minimizing the asymp-

totic MSE of �̂

2

n;OL

or �̂

2

n;NOL

, even for variance estimation of some desirable statistics on

geometrically \simple" sampling and subsampling regions. Consider estimating the vari-

ance of a real-valued sample mean over a rectangular sampling region in IR

d

based on

R

0

= (�1=2; 1=2]

d

, with observations on Z

d

= Z

d

. If Assumptions A.1-A.5 and Condition

M

1

hold, the leading term in the bias expansion can be shown to be:

Bias of �̂

2

n;OL

=

 

�

d

X

i=1

L

i

s

�

(n)

i

!

(1 + o(1)); L

i

=

X

k2Z

d

k=(k

1

;:::;k

d

)

0

jk

i

jCov

�

Z(0); Z(k)

�

:

In using the parenthetical sum above to expand the MSE of �̂

2

n;OL

, one �nds that the

resulting MSE cannot be minimized over the permissible, positive range of

s

�

n

if the signs of

the L

i

values are unequal. That is, for d > 1, the subsample estimator MSE cannot always

be globally minimized to obtain optimal subsample factors

s

�

n

by considering just the

leading order bias terms. An e�ort to determine and incorporate (into the asymptotic MSE)

second or third order bias components quickly becomes intractable, even with rectangular

regions.

� The diagonal components of

s

�

n

are asymptotically scalar multiples of each other by

Assumption A.1. If so desired, a template choice for R

0

could be used to scale the expansion

of the subsampling regions in each direction.

In the continued discussion, we assume

s

R

n

=

s

�

n

R

0

: (4.1)

We frame the components necessary for determining the biases of the spatial subsample variance

estimators in the next theorem. Let C

n

(k) � jZ

d

\

s

R

n

\ (k+

s

R

n

)j denote the number of pairs

of observations in the subsampling region

s

R

n

separated by a translate k 2 Z

d

.

Theorem 4.1 Suppose that d � 2,

s

R

n

=

s

�

n

R

0

and Assumptions A.1 - A.5, Conditions D

3

and M

3+a

hold. If, in addition,

s

�

n

2 Z

+

for NOL subsamples and

lim

n!1

s

N

n

� C

n

(k)

(

s

�

n

)

d�1

= C(k) (4.2)

exists for all k 2 Z

d

, then

E(�̂

2

n

)� �

2

n

=

�1

s

�

n

jR

0

j

0

@

X

k2Z

d

C(k)�(k)

1

A

(1 + o(1))
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where �(k) = Cov

�

r

0

Z(t);r

0

Z(t+ k)

�

and where �̂

2

n

is either �̂

2

n;OL

or �̂

2

n;NOL

.

Note that the numerator on the left side of (4.2) is the number of integer grid points that

lie in the subregion

s

R

n

, but not in the translate k +

s

R

n

. Hence, computing the bias above

actually requires counting the number of lattice points inside intersections like

s

R

n

\ k +

s

R

n

,

which is diÆcult in general. To handle the problem, one may attempt to estimate the count

C

n

(k) with the corresponding Lebesgue volume, j

s

R

n

\k+

s

R

n

j, and then quantify the resulting

approximation error. The determination of volumes or areas may not be easy either but hopefully

more manageable. For example, if R

0

is a circle, the area of

s

�

n

R

0

can be readily computed, but

the number of Z

2

integers inside

s

�

n

R

0

is not so simple and was in fact a famous consideration

of Gauss [cf. Kr�atzel (1988, p. 141)].

We �rst note that the boundary condition on R

0

provides a general (trivial) bound on the

discrepancy between the count C

n

(k) and the volume j

s

R

n

\ k +

s

R

n

j: O(

s

�

d�1

n

). However,

the size of the numerator in (4.2) is also O(

s

�

d�1

n

), corresponding to the order of Z

d

lattice

points \near" the boundary of

s

R

n

. Consequently, a standard O(

s

�

d�1

n

) bound on the volume-

count approximation error is too large to immediately justify the exchange of volumes j

s

R

n

j,

j

s

R

n

\ k+

s

R

n

j for counts

s

N

n

, C

n

(k) in (4.2).

Bounds on the di�erence between lattice point counts and volumes have received much at-

tention in analytic number theory, which we briey mention. Research has classically focused on

sets outlined by \smooth" simple closed curves in the plane IR

2

and on one question in particular

[Huxley (1996)]: When a curve with interior area A is `blown up' by a factor b, how large is

the di�erence between the number of Z

2

integer points inside the new curve and the area b

2

A?

For convex sets with a smoothly winding border, van der Corput's (1920) answer to the posed

question above is O(b

46=69+�

), while the best answer is O(b

46=73+�

) for curves with suÆciently

di�erentiable radius of curvature [Huxley (1993, 1996)]. These types of bounds, however, are

invalid for many convex polygonal templates R

0

in IR

2

such as triangles, trapezoids, etc., where

often the di�erence between number of Z

2

integer points in

s

R

n

=

s

�

n

R

0

and its area is of exact

order O(

s

�

n

) (set also by the boundary condition on R

0

or the perimeter length of

s

R

n

). The

problem above, as considered by number theorists, does not directly address counts for intersec-

tions between an expanding region and its vector translates, e.g.

s

R

n

\ k+

s

R

n

.

To eventually compute \closed-form" bias expansions for �̂

2

n;OL

, we use approximation tech-

niques for subtracted lattice point counts. For each k 2 Z

d

, we

1. replace the numerator of (4.2) with the di�erence of corresponding Lebesgue volumes.

2. show the following error term is of suÆciently small order o(

s

�

d�1

n

):

�

s

N

n

�C

n

(k)

�

�

�

s

�

d

n

jR

0

j�j

s

R

n

\k+

s

R

n

j

�

=

�

s

N

n

�

s

�

d

n

jR

0

j

�

�

�

C

n

(k)�j

s

R

n

\k+

s

R

n

j

�

:

We do approximate the number of lattice points in

s

R

n

and

s

R

n

\ k +

s

R

n

by set volumes,

though the Lebesgue volume may not adequately capture the lattice point count in either set.

However, the di�erence between approximation errors

s

N

n

�

s

�

d

n

jR

0

j and C

n

(k)�j

s

R

n

\k+

s

R

n

j

can be shown to be asymptotically small enough, for some templates R

0

, to justify replacing

counts with volumes in (4.2) (see Lemma 9.4). That is, these two volume-count estimation errors

can cancel to a suÆcient extent when subtracted. The above approach becomes slightly more

complicated for NOL subsamples,

~

R

i;n

=

s

�

n

(i + R

0

), which may vary in number of sampling

sites

s

N

i;n

. In this case, errors incurred by approximating counts jZ

d

\

~

R

i;n

\ k +

~

R

i;n

j with

volumes j

~

R

i;n

\ k+

~

R

i;n

j are shown to be asymptotically negligible, uniformly in i 2 J

NOL

.
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In the following theorem, we use this technique to give bias expansions for a large class of

sampling regions in IR

d

, d � 3, which are \nearly" convex. That is, the sampling region R

n

di�ers from a convex set possibly only at its boundary, but sampling sites on the border may be

arbitrarily included or excluded from R

n

.

Some notation is additionally required. For � = (�

1

; :::; �

p

)

0

2 (Z

+

)

p

, x 2 IR

p

, write x

�

=

Q

p

i=1

x

�

i

i

, �! =

Q

p

i=1

(�

i

!), and c

�

= D

�

H(�)=�!. Let Z

1

denote a random vector with a

normal N (0;�

1

) distribution on IR

p

, where �

1

is the limiting covariance matrix of the scaled

sample mean

p

N

n

(

�

Z

N

n

� �) from (2.1). Let B

Æ

, B denote the interior and closure of B 2 IR

d

,

respectively.

Theorem 4.2 Suppose

s

R

n

=

s

�

n

R

0

and there exists a convex set B such that B

Æ

� R

0

� B.

With Assumptions A.2 - A.5, assume Conditions D

5�d

and M

5�d+a

hold for d 2 f1; 2; 3g. Then,

C(k) = V (k) � lim

n!1

j

s

R

n

j � j

s

R

n

\ (k+

s

R

n

)j

(

s

�

n

)

d�1

; k 2 Z

d

whenever V (k) exists and the biases E(�̂

2

n;OL

)� �

2

n

, E(�̂

2

n;NOL

)� �

2

n

are equal to:

for d = 1,

�1

s

�

n

jR

0

j

 

X

k2Z

jkj�(k) + C

1

!

(1 + o(1));

for d = 2 or 3,

0

@

�

X

k2Z

d

j

s

R

n

j � j

s

R

n

\ (k+

s

R

n

)j

j

s

R

n

j

�(k)

1

A

(1 + o(1))

or

�1

s

�

n

jR

0

j

0

@

X

k2Z

d

V (k)�(k)

1

A

(1 + o(1)); provided each V (k) exists;

where �(k) = Cov

�

r

0

Z(t);r

0

Z(t+k)

�

and C

1

= Var

0

@

X

k�k

1

=2

c

�

�!

Z

�

1

1

A

+ 2

X

k�k

1

=1;

k�k

1

=3

c

�

c

�

�!

E

�

Z

�

1

Z

�

1

�

+2

X

k

1

;k

2

2Z

X

k�k

1

=1;

k�k

1

=1;kk

1

=1

c

�

c

(�+)

(� + )!

E

�

�

Z(t)� �

�

�

�

Z(t+ k

1

)� �

�

�

�

Z(t+ k

2

)� �

�



�

:

Remark 1: If Condition D

x

holds with C = 0 for x 2 f2; 3; 4g, then ConditionM

x�1

is suÆcient

in Theorem 4.2.

Remark 2: For each k 2 Z

d

, the numerator in V (k) is of order O(

s

�

d�1

n

) by the R

0

-boundary

condition which holds for convex templates. We may then expand the bias of the estimators

through the limiting, scaled volume di�erences V (k). For d = 1, with samples and subsamples

based on intervals, it can be easily seen that V (k) = jkj which appears in Theorem 4.2.

The function H(�) needs to be increasingly \smoother" to determine the bias component

of �̂

2

n;OL

or �̂

2

n;NOL

in lower dimensional spaces d = 1 or 2. For a real-valued time series sample

13



mean

^

�

n

=

�

Z

n

, the well-known bias of the subsample variance estimators follows from Theorem

4.2 under our sampling framework R

0

= (�1=2; 1=2], Z = Z:

�1

s

�

n

�

X

k2Z

jkjCov

�

r

0

Z(0);r

0

Z(k)

�

�

(4.3)

with r = 1. In general though, terms in the Taylor expansion of

^

�

i;n

(around �) up to fourth

order can contribute to the bias of �̂

2

n;OL

and �̂

2

n;NOL

when d = 1. In contrast, the asymptotic

bias of the time series MBB variance estimator with \smooth" model statistics is very di�erent

from its subsample-based counterpart. The MBB variance estimator's bias is given by (4.3),

determined only by the linear component from the Taylor's expansion of

^

�

i;n

[cf. Lahiri (1996)].

5 Asymptotically optimal subsample sizes

In the following, we consider \size" selection for the subsampling regions to maximize the large-

sample accuracy of the subsample variance estimators. For reasons discussed in Section 4, we

examine a theoretically optimal scaling choice

s

�

n

for subregions in (4.1).

5.1 Theoretical optimal subsample sizes

Generally speaking, there is a trade o� in the e�ect of subsample size on the bias and variance

of �̂

2

n;OL

or �̂

2

n;NOL

. For example, increasing

s

�

n

reduces the bias but increases the variance of the

estimators. The best value of

s

�

n

optimizes the over-all performance of a subsample variance

estimator by balancing the contributions from both the estimator's variance and bias. An opti-

mal

s

�

n

choice can be found by minimizing the asymptotic order of a variance estimator's MSE

under a given OL or NOL sampling scheme.

Theorem 4.1 implies that the bias of the estimators �̂

2

n;OL

and �̂

2

n;NOL

is of exact order

O(1=

s

�

n

). For a broad class of sampling regions R

n

, the leading order bias component can be

determined explicitly with Theorem 4.2. We bring these variance and bias expansions together

to obtain an optimal subsample scaling factor

s

�

n

.

Theorem 5.1 Let

s

R

n

=

s

�

n

R

0

. With Assumptions A.2 - A.5, assume Conditions D

2

and

M

5+2a

hold if d � 2; and Conditions D

3

and D

7+2a

if d = 1. If B

0

� jR

0

j

�1

P

k2Z

d

C(k)�(k) 6= 0,

then

s

�

opt

n;OL

=

�

det(�

n

)(B

0

)

2

dK

0

�

4

�

1=(d+2)

(1 + o(1)) and

s

�

opt

n;NOL

=

�

det(�

n

)jR

0

j(B

0

)

2

d�

4

�

1=(d+2)

(1 + o(1)):

Remark 3: If Condition D

x

holds with C = 0 for x 2 f2; 3g, then Condition M

2x�1

is suÆcient.

Remark 4: Theorem 5.1 suggests that optimally scaled OL subsamples should be larger than

the NOL ones by a scalar: (K

1

)

�1=(d+2)

> 1 where K

1

= K

0

jR

0

j the limiting ratio of variances

from (3.1).

It is well-known in the time series case that the OL subsampling scheme produces an asymp-

totically more eÆcient variance estimator than its NOL counterpart. We can now quantify the

relative eÆciency of the two subsampling procedures in d-dimensional sampling space. With each

14



variance estimator respectively optimized using (4.1), �̂

2

n;OL

is more eÆcient than �̂

2

n;NOL

and the

asymptotic relative eÆciency of �̂

2

n;NOL

to �̂

2

n;OL

depends solely of the geometry of R

0

:

ARE

d

= lim

n!1

E(�̂

2

n;OL

� �

2

n

)

2

E(�̂

2

n;NOL

� �

2

n

)

2

= (K

1

)

2=(d+2)

< 1:

Possolo (1991), Politis and Romano (1993a, 1994), Hall and Jing (1996), and Garcia-Soidan

and Hall (1997) have examined subsampling with rectangular regions based essentially on R

0

=

(�1=2; 1=2]

d

. Using the geometrical characteristic K

1

= (

2

3

)

d

for rectangles, we can now examine

the e�ect of the sampling dimension on the ARE

d

of �̂

2

n;NOL

to �̂

2

n;OL

for these sampling regions.

Although the ARE

d

decreases as the dimension d increases, we �nd the relative improvement

of �̂

2

n;OL

over �̂

2

n;NOL

is ultimately limited and the ARE

d

has a lower bound of 4/9 for all IR

d

-

rectangular regions.

6 Examples

We now provide some examples of the important quantities K

0

, K

1

, B

0

associated with optimal

scaling

s

�

opt

n

with some common sampling region templates, determined from Theorems 3.1 and

4.2. For subsamples from (4.1), the theoretically best

s

�

opt

n

can also be formulated in terms of

jR

n

j = det(�

n

)jR

0

j (sampling region volume), K

1

, and B

0

.

6.1 Examples in IR

2

example 1. Rectangular regions in IR

2

(potentially rotated):

If R

0

=

n

�

(l

1

cos �; l

2

sin �)x; (�l

1

sin �; l

2

cos �)x

�

0

: x 2 (�1=2; 1=2]

2

o

for � 2 [0; �]; 0 < l

1

; l

2

,

then

K

0

=

4

9

; B

0

=

X

k2Z

2

k=(k

1

;k

2

)

0

�

jk

1

cos � � k

2

sin �j

l

1

+

jk

1

sin � + k

2

cos �j

l

2

�

�(k):

The characteristics K

1

, B

0

for determining optimal subsamples based on two rectangular tem-

plates are further described in Table 4.

example 2. If R

0

is a circle of radius r � 1=2 centered at the origin, then K

0

appears in Table 3

and B

0

= 2=(r�)

P

k2Z

2

kkk�(k).

example 3. For any triangle, K

0

= 2=5. Two examples are provided in Tables 2 and 4.

example 4. For any parallelogram in IR

2

with interior angle  and adjacent sides of ratio b � 1,

K

0

= 4=9 + 2=15 � b

�2

j cos j(1 � j cos j). In particular, if a parallelogram R

0

is formed by two

vectors (0; l

1

)

0

; (l

2

cos ; l

2

sin)

0

extended from a point x 2 (�1=2; 1=2]

2

; then

B

0

=

1

j sin �j

X

k2Z

2

�

�

�

k

1

� j cos �j � k

2

� j sin �j

�

�

maxfl

1

; l

2

g

+

jk

2

j

minfl

1

; l

2

g

�

�(k);  2 (0; �); l

1

; l

2

> 0:

For further bias term B

0

calculation tools with more general (non-convex) sampling re-

gions and templates R

0

(represented as the union of two approximately convex sets), see Nord-

man (2002).
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Table 4: Examples of several shapes of R

0

� IR

2

and associated K

1

, B

0

for

s

�

opt

n

R

0

K

1

B

0

(�1=2; 1=2]

2

4=9

P

k2Z

2

kkk

1

�(k)

Circle of radius 1/2 at origin �=4 � 4=(3�) 4=�

P

k2Z

2

kkk�(k)

\Diamond" in Figure 1(i) 2=9 2

P

k2Z

2

kkk

1

�(k)

Right triangle in Figure 1(ii) 1=5 Table 2

Triangle in Figure 1(iii) 1=5

P

k2Z

2

;

jk

1

j�jk

2

j=2

2jk

2

j�(k) +

P

k2Z

2

;

jk

1

j>jk

2

j=2

�

jk

2

j+ 2jk

1

j

�

�(k)

Parallelogram in Figure 1(iv) 2=9 + (

p

5� 1)=375 4=

p

5

P

k2Z

2

�

jk

1

� 2k

2

j=5 + jk

2

j

�

�(k)

-0.5

0.5

0

-0.5 0 0.5

�

�

�

@

@

@

@

@

@

�

�

�

@

@

@

@

@

@ �

�

�

�

�

�

A

A

A

A

A

A

�

�

�

�

�

�

�

�

�

�

�

�

i ii iii iv v

Figure 1. Examples of templates R

0

� (�1=2; 1=2]

2

are outlined by solid lines. Cross-shaped

sampling regions R

n

described in Table 2 are based on R

0

in (v).

6.2 Examples in IR

d

, d � 3

example 5. For any sphere, K

0

is given in Table 3. The properties B

0

, K

1

of the sphere

described in Table 1 and 2 correspond to the template sphere R

0

of radius 1=2 (and maximal

volume in (�1=2; 1=2]

3

).

example 6. The K

0

value for any IR

3

cylinder appears in Table 3. If R

0

is a cylinder with

circular base (parallel to x-y plane) of radius r and height h, then

B

0

=

X

k2Z

3

k=(k

1

;k

2

;k

3

)

0

 

jk

3

j

h

+

2

p

k

2

1

+ k

2

2

�r

!

�(k):

The results of Theorem 4.2 for determining the biasB

0

also seem plausible for convex sampling

regions in IR

d

, d � 4, but require further study of lattice point counting techniques in higher

dimensions. However, bias expansions of the OL and NOL subsample variance estimators are

relatively straightforward for an important class of rectangular sampling regions based on the

prototype R

0

= (�1=2; 1=2]

d

, which can then be used in optimal subsample scaling. These

hypercubes have \faces" parallel to the coordinate axes which simpli�es the task of counting

sampling sites, or lattice points, within such regions. We give precise bias expansions in the

following theorem, while allowing for potentially missing sampling sites at the borders, or faces,

of the sampling region R

n

.
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Theorem 6.1 Let (�1=2; 1=2)

d

� �

�1

`

R

0

� [�1=2; 1=2]

d

, d � 3 for a d � d diagonal matrix

�

`

with entries 0 < `

i

� 1, i = 1; :::; d. Suppose

s

R

n

=

s

�

n

R

0

and Assumptions A.2 - A.5,

Conditions D

2

and M

2+a

hold. Then, the biases E(�̂

2

n;OL

) � �

2

n

, E(�̂

2

n;NOL

) � �

2

n

are equal to

�

s

�

�1

n

B

0

(1 + o(1)) where

B

0

=

X

k2Z

d

�

d

X

i=1

jk

i

j

`

i

�

�(k); �(k) = Cov

�

r

0

Z(t);r

0

Z(t+ k)

�

:

example 7. For rectangular sampling regions R

n

= �

n

(�1=2; 1=2]

d

, optimal subsamples may

be chosen with

s

�

opt

n;NOL

=

 

jR

n

j

d�

4

�

X

k2Z

d

kkk

1

�(k)

�

2

!

1=(d+2)

(1 + o(1)) or

s

�

opt

n;OL

=

s

�

opt

n;NOL

�

3

2

�

1=(d+2)

(common directional scaling) using the template R

0

= (�1=2; 1=2]

d

.

7 Empirical subsample size determination

In this section we consider data-based estimation of the theoretical optimal subsample sizes. In

particular, we propose methods for estimating the scaling factor

s

�

opt

n

for subsamples in (4.1),

which are applicable to both OL and NOL subsampling schemes. Inference on \best" subsample

scaling closely resembles the problem of empirically gauging the theoretically optimal block size

with the MBB variance estimator, which has been much considered for time series. We �rst

frame the techniques used in this special setting, which can be modi�ed for data-based subsam-

ple selection.

Two distinct techniques have emerged for estimating the (time series) MBB block size.

One approach involves \plug-in" type estimators of optimal block length [cf. B�uhlman and

K�unsch (1999)]. For subsample inference on nVar(

�

Z

n

), Carlstein (1986) (with AR(1) models)

and Politis et al. (1999) have described \plug-in" estimators for subsample length. The second

MBB block selection method, suggested by Hall et al. (1995) and Hall and Jing (1996), uses

subsampling to create a data-based version of the MSE of the MBB estimator (as a function of

block size) which then is minimized to obtain an estimate of optimal block length. With spa-

tial data, Garcia-Soidan and Hall (1997) extended this empirical MSE selection procedure with

subsample-based distribution estimators. For variance estimation of a univariate time series sam-

ple mean, L�eger et al. (1992) proposed a subsample length estimate based on asymptotic MSE

considerations; namely, selecting a size by simultaneously solving (

s

�

opt

n

)

3

= (3=2)(

^

B=�̂

2

n;OL

)

2

n for

s

�

opt

n

and the associated estimator �̂

2

n;OL

, where

^

B estimates the parenthetical quantity in (4.3).

A \plug-in" procedure for inference on the theoretical, optimal subsample size involves con-

structing, and subsequently substituting, (consistent) estimates of unknown population param-

eters in

s

�

opt

n

from Theorem 5.1. The limiting variance �

2

appears in the formulation of

s

�

opt

n

and could be approximated with a subsample variance estimate based on some preliminary size

choice. The value K

0

can be determined from the available sampling region R

n

, but selection

of a template R

0

is also required in the \plug-in" approach. The best solution may be to pick

a sampling template R

0

to be the largest set of the form �

�1

l

R

n

for a positive diagonal matrix

� that �ts within (�1=2; 1=2]

d

; this choice appears to reduce the magnitude of the bias of �̂

2

n;OL

,

�̂

2

n;NOL

, which contributes heavily to the MSE of an estimator.
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In a spirit similar to the \plug-in" approach, one could empirically select

s

�

opt

n

as in L�eger et

al. (1992) and Politis and Romano (1993b). After evaluatingK

0

and an estimate

^

B

0

of the leading

bias component B

0

, compute �̂

2

n;OL

(or analogously �̂

2

n;NOL

) for a series of

s

�

n

values and simul-

taneously solve the asymptotical MSE-based formulation

s

�

d+2

n

= det(�

n

)(

^

B

0

)

2

=fdK

0

(�̂

2

n;OL

)

2

g

for

s

�

n

and an associated �̂

2

n;OL

.

8 Proofs for variance expansions

For the proofs, we use C to denote generic positive constants that do not depend on n or any Z

d

integers (or

Z

d

lattice points). The real number r, appearing in some proofs, always assumes the value stated under

Condition M

r

with respect to the lemma or theorem under consideration. Unless otherwise speci�ed,

limits in order symbols are taken letting n tend to in�nity.

In the following, we denote the indicator function as I

f�g

(ie. I

f�g

2 f0; 1g and I

fAg

= 1 if and only if an

event A holds). For two sequences fr

n

g and ft

n

g of positive real numbers, we write r

n

� t

n

if r

n

=t

n

! 1

as n ! 1. We write �

max

n

and

s

�

max

n

for the largest diagonal entries of �

n

and

s

�

n

, respectively, while

s

�

(n)

min

� 1 will denote the smallest diagonal entry of

s

�

n

.

We require a few lemmas for the proofs.

Lemma 8.1 Suppose T

1

; T

2

� Z

d

� t+Z

d

are bounded. Let p; q > 0 where 1=p+1=q < 1. If X

1

, X

2

are

random variables, with X

i

measurable with respect to F

Z

(T

i

); i = 1; 2, then,

jCov(X

1

; X

2

)j � 8(EjX

1

j

p

)

1=p

(EjX

2

j

q

)

1=q

�

�

dis(T

1

; T

2

); max

i=1;2

jT

i

j

�

1�1=p�1=q

;

provided expectations are �nite and dis(T

1

; T

2

) > 0.

Proof. Follows from Theorem 3, Doukhan (1994, p. 9). �

Lemma 8.2 Let r 2 Z

+

. Under Assumption A.3 and Condition M

r

, for 1 � m � 2r and any T � Z

d

�

t+Z

d

,

E









X

s2T

�

Z(s)� �

�









m

� C(�)jT j

m=2

;

C(�) is a constant that depends only on the coeÆcients �(k; l); l � 2r; and EkZ(t)k

2r+Æ

.

Proof: This follows from Theorem 1, Doukhan (1994, p. 26-31) and Jensen's inequality. �

We next determine the asymptotic sizes of important sets relevant to the sampling or subsampling

designs.

Lemma 8.3 Under Assumptions A.1-A.2, the number of sampling sites within

(a) the sampling region R

n

: N

n

= jR

n

\ Z

d

j � jR

0

j � det(�

n

);

(b) an OL subsample, R

i;n

, i 2 J

OL

:

s

N

n

� jR

0

j � det(

s

�

n

);

(c) a NOL subsample,

~

R

i;n

, i 2 J

NOL

:

s

N

i;n

� jR

0

j � det(

s

�

n

).

The number of

(d) OL subsamples within R

n

: jJ

OL

j � jR

0

j � det(�

n

);

(e) NOL subsamples within R

n

: jJ

NOL

j � jR

0

j � det(�

n

) � det(

s

�

n

)

�1

.

(f) sampling sites near the border of a subsample, R

i;n

or

~

R

i;n

, is less than

sup

i2Z

d

jfj 2 Z

d

: T

j

\ R

i;n

6= ?; T

j

\R

c

i;n

6= ? for T

j

= j+ [�2; 2]

d

gj � C(

s

�

max

n

)

d�1

:

Proof: Results follow from the boundary condition on R

0

; see Nordman (2002) for more details.
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We require the next lemma for counting the number of subsampling regions which are separated by

an appropriately \small" integer translate; we shall apply this lemma in the proof of Theorem 3.1. For

k = (k

1

; : : : ; k

d

)

0

2 Z

d

, de�ne the following sets,

J

n

(k) = jfi 2 J

OL

: i+ k+

s

�

n

R

0

� R

n

gj; E

n

= fk 2 Z

d

: jk

j

j �

s

�

(n)

j

; j = 1; : : : ; dg:

Lemma 8.4 Under Assumption A.2,

max

k2E

n

�

�

�

�

1�

J

n

(k)

jJ

OL

j

�

�

�

�

= o(1):

Proof: For k 2 E

n

, write the set J

�

n

(k) and bound its cardinality:

J

�

n

(k) = jfi 2 J

OL

: (i+ k+

s

�

n

R

0

) \�

n

R

c

0

6= ?gj

� jfi 2 Z

d

: T

i

\�

n

R

c

0

6= ?; T

i

\�

n

R

0

6= ?; T

i

= i+

s

�

max

n

[�2; 2]

d

gj � C

s

�

max

n

(�

max

n

)

d�1

;

by the boundary condition on R

0

. We have then that for all k 2 E

n

,

jJ

OL

j � J

n

(k) = jJ

OL

j � J

�

n

(k) � jJ

OL

j � C

s

�

max

n

(�

max

n

)

d�1

:

By Assumption A.2 and the growth rate of jJ

OL

j from Lemma 8.3, the proof is complete. �

We now provide a theorem which captures the main contribution to the asymptotic variance expansion

of the OL subsample variance estimator �̂

2

n;OL

from Theorem 3.1.

Theorem 8.1 For i 2 Z

d

, let Y

i;n

= r

0

(Z

i;n

��). Under the Assumptions and Conditions of Theorem 3.1,

s

N

n

X

k2E

n

Cov(Y

2

0;n

; Y

2

k;n

) = K

0

� [2�

4

](1 + o(1));

where the constant K

0

is de�ned in Theorem 3.1.

Proof: We give only a sketch of the important features; for more details, see Nordman (2002). For a set

T � IR

d

, de�ne the function �(�) as

�(T ) =

X

s2Z

d

\T

r

0

�

Z(s)� �

�

:

With the set intersection R

(I)

k;n

=

s

R

n

\ (k+

s

R

n

), k 2 Z

d

, write functions:

H

1n

(k) = �(R

k;n

nR

(I)

k;n

); H

2n

(k) = �(R

0;n

nR

(I)

k;n

); H

3n

(k) = �(R

(I)

k;n

):

These represent, respectively, sums over sites in: R

k;n

but not R

0;n

=

s

R

n

; R

0;n

but not R

k;n

; and both

R

0;n

and R

k;n

. Then de�ne h

n

(�) : Z

d

! IR as

h

n

(k) = E[H

2

1n

(k)]E[H

2

2n

(k)]+E[H

2

1n

(k)]E[H

2

3n

(k)]+E[H

2

2n

(k)]E[H

2

3n

(k)]+E[H

4

3n

(k)]�(

s

N

n

)

4

[E(Y

2

0;n

)]

2

:

We will make use of the following proposition.

Proposition 8.1 Under the Assumptions and Conditions of Theorem 3.1,

max

k2E

n

�

�

(

s

N

n

)

2

Cov(Y

2

0;n

; Y

2

k;n

)� (

s

N

n

)

�2

h

n

(k)

�

�

= o(1):
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The proof of Proposition 8.1 can be found in Nordman (2002) and involves cutting out Z

d

lattice points

near the borders of R

0;n

and R

k;n

, (say) B

0

n

and B

k

n

with

`

n

= b(

s

�

(n)

min

)

e

c; B

j;n

=

�

i 2 Z

d

: i 2 R

j;n

; (i+ `

n

(�1; 1]

d

) \ R

c

j;n

6= ?

	

; j 2 Z

d

;

where e = (�Æ=f(2r+Æ)(2r�1�1=d)g+1)=2< 1 from ConditionM

r

. Here `

n

!1, `

n

= o(

s

�

(n)

min

) is chosen

so that the remaining observations in R

0;n

; R

k;n

; R

(I)

k;n

are nearly independent upon removing B

0;n

; B

k;n

points and, using the R

0

-boundary condition, the set cardinalities jB

0;n

j; jB

k;n

j � C`

n

(

s

�

max

n

)

d�1

are of

smaller order than

s

N

n

(namely, these sets are asymptotically negligible in size).

By Proposition 8.1 and jE

n

j = O(

s

N

n

), we have

�

�

�

s

N

n

X

k2E

n

Cov(Y

2

0;n

; Y

2

k;n

)� (

s

N

n

)

�3

X

k2E

n

h

n

(k)

�

�

�

= o(1): (8.1)

Consequently, we need only focus on (

s

N

n

)

�3

P

k2E

n

h

n

(k) to complete the proof of Theorem 8.1.

For measurability reasons, we create a set de�ned in terms of the IR

d

Lebesgue measure:

E

+

� (0; 1) \

�

� <

det(�

0

)jR

0

j

2

:

�

�

�

n

x 2 IR

d

: j(x+�

0

R

0

) \�

0

R

0

j = � or det(�

0

)jR

0

j � �

o

�

�

�

= 0

�

:

Note the set f0 < � < minf1; (det(�

0

)jR

0

j)=2g : � =2 E

+

g is at most countable [cf. Billingsley (1986),

Theorem 10.4]. For � 2 E

+

, de�ne a new set as a function of � and n:

~

R

�;n

= fk 2 Z

d

: jR

(I)

k;n

j > �(

s

�

(n)

1

)

d

; j

s

R

n

nR

(I)

k;n

j > �(

s

�

(n)

1

)

d

g:

Here

~

R

�;n

� E

n

because k 62 E

n

implies R

(I)

k;n

= ?.

We now further simplify (

s

N

n

)

�3

P

k2E

n

h

n

(k) using the following proposition involving

~

R

�;n

.

Proposition 8.2 There exist N 2 Z

+

and a function b(�) : E

+

! (0;1) such that b(�) # 0 as � # 0 and

(

s

N

n

)

�3

�

�

�

X

k2E

n

h

n

(k) �

X

k2

~

R

�;n

h

n

(k)

�

�

�

� C

�

�+ (

s

�

(n)

1

)

�1

+ [b(�)]

d

�

; (8.2)

where C > 0 does not depend on � 2 E

+

or n � N.

The proof of Proposition 8.2 is tedious and given in Nordman (2002). The argument involves bounding

the sum of h

n

(�) over two separate sets in E

n

: those integers in E

n

that are either \too large" or \too

small" in magnitude to be included in

~

R

�;n

.

To �nish the proof, our approach (for an arbitrary � 2 E

+

) will be to write (

s

N

n

)

�3

P

k2

~

R

�;n

h

n

(k)

as an integral of a step function with respect to the Lebesgue measure of a step function, say f

�;n

(x),

then show lim

n!1

f

�;n

(x) exists almost everywhere (a.e.) on IR

d

, and apply the Lebesgue Dominated

Convergence Theorem (LDCT). By letting � # 0, we will obtain the limit of

s

N

n

P

k2E

n

Cov(Y

2

0;n

; Y

2

k;n

).

Fix � 2 E

+

. With counting arguments based on the boundary condition of R

0

and the de�nition of

~

R

�;n

, it holds that for some N

�

2 Z

+

and all k 2

~

R

�;n

: jR

(I)

k;n

\ Z

d

j � 1 and

s

N

n

� jR

(I)

k;n

\ Z

d

j � 1 when

n � N

�

. We can rewrite (

s

N

n

)

�2

h

n

(k), k 2

~

R

�;n

, in the well-de�ned form (for n � N

�

):

h

n

(k)

(

s

N

n

)

2

= E

"

H

2

1n

(k)

s

N

n

� jR

(I)

k;n

\ Z

d

j

#

E

"

H

2

2n

(k)

s

N

n

� jR

(I)

k;n

\ Z

d

j

# 

1�

jR

(I)

k;n

\ Z

d

j

s

N

n

!

2

+

2

X

j=1

E

"

H

2

jn

(k)

s

N

n

� jR

(I)

k;n

\ Z

d

j

#

E

"

H

2

3n

(k)

jR

(I)

k;n

\ Z

d

j

# 

1�

jR

(I)

k;n

\ Z

d

j

s

N

n

! 

jR

(I)

k;n

\ Z

d

j

s

N

n

!

+ E

"

H

4

3n

(k)

jR

(I)

k;n

\ Z

d

j

2

# 

jR

(I)

k;n

\ Z

d

j

s

N

n

!

2

� [

s

N

n

E(Y

2

0;n

)]

2

:
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For x = (x

1

; :::; x

d

)

0

2 IR

d

, write bxc = (bx

1

c; : : : ; bx

d

c)

0

2 Z

d

. Let f

�;n

(x) : IR

d

! IR be the step

function de�ned as

f

�;n

(x) = (

s

N

n

)

�2

I

fb

s

�

(n)

1

xc2

~

R

�;n

g

h

n

(b

s

�

(n)

1

xc):

We have then that (with the same �xed � 2 E

+

):

1

s

N

n

X

k2

~

R

�;n

(

s

N

n

)

�2

h

n

(k) =

(

s

�

(n)

1

)

d

s

N

n

Z

IR

d

f

�;n

(x)dx: (8.3)

We focus on showing:

lim

n!1

f

�;n

(x) = f

�

(x) � I

fx2

~

R

�

g

�

2�

4

�

�

j(x+�

0

R

0

) \�

0

R

0

j

det(�

0

)jR

0

j

�

2

a:e: x 2 IR

d

; (8.4)

with

~

R

�

= fx 2 IR

d

: j(x+�

0

R

0

) \�

0

R

0

j > �; j�

0

R

0

n (x+�

0

R

0

)j > �g, a Borel measurable set.

Write x

n

= b

s

�

(n)

1

xc, x 2 IR

d

, to ease the notation. To establish (8.4), we begin by showing convergence

of indicator functions:

I

fx

n

2

~

R

�;n

g

! I

fx2

~

R

�

g

a:e: x 2 IR

d

: (8.5)

De�ne the sets A

n

(x) = (

s

�

(n)

1

)

�1

f(x

n

+

s

R

n

) \

s

R

n

g,

~

A

n

(x) = f(

s

�

(n)

1

)

�1

s

R

n

g n A

n

(x) as a function of

x 2 IR

d

. The LDCT can be applied to show: for each x 2 IR

d

, jA

n

(x)j ! j(x + �

0

R

0

) \ �

0

R

0

j and

j

~

A

n

(x)j ! j�

0

R

0

n (x+�

0

R

0

)j: Thus, if x 2

~

R

�

, then

jA

n

(x)j ! j(x+�

0

R

0

) \�

0

R

0

j > �; j

~

A

n

(x)j ! j�

0

R

0

n (x+�

0

R

0

)j > �; (8.6)

implying further that 1 = I

fx

n

2

~

R

�;n

g

! I

fx2

~

R

�

g

= 1: Now consider

~

R

c

�

. If x 62

~

R

�

such that j(x+�

0

R

0

)\

�

0

R

0

j < � (or j�

0

R

0

n (x + �

0

R

0

)j < �), then jA

n

(x)j < � (or j

~

A

n

(x)j < �) eventually for large n and

0 = I

fx

n

2

~

R

�;n

g

! I

fx2

~

R

�

g

= 0 in this case. Finally, � 2 E

+

implies that a last possible subset of

~

R

c

�

has

Lebesgue measure zero; namely,

�

�

�

x 2

~

R

c

�

: j(x +�

0

R

0

) \�

0

R

0

j = � or j�

0

R

0

n (x+�

0

R

0

)j = �

	

�

�

= 0.

We have now proven (8.5).

We next establish a limit for (

s

N

n

)

�2

h

n

(x

n

), x 2

~

R

�

. We wish to show:

jR

(I)

x

n

;n

\ Z

d

j

s

N

n

!

j(x+�

0

R

0

) \�

0

R

0

j

det(�

0

)jR

0

j

; x 2

~

R

�

: (8.7)

Using the bound j jR

(I)

x

n

;n

j � jR

(I)

x

n

;n

\ Z

d

j j � C(

s

�

max

n

)

d�1

from the R

0

-boundary condition and noting

the limit in (8.6), we �nd: (

s

�

(n)

1

)

�d

jR

(I)

x

n

;n

\ Z

d

j ! j(x + �

0

R

0

) \ �

0

R

0

j, x 2

~

R

�

. By this and

(

s

�

(n)

1

)

d

=

s

N

n

! (det(�

0

)jR

0

j)

�1

, (8.7) follows.

We can also establish: for each x 2

~

R

�

, j = 1 or 2,

E

"

H

2j

3n

(x

n

)

jR

(I)

x

n

;n

\ Z

d

j

j

#

! E([r

0

Z

1

]

2j

); E

"

H

2

jn

(x

n

)

s

N

n

� jR

(I)

x

n

;n

\ Z

d

j

#

;

s

N

n

E(Y

2

0;n

)! E([r

0

Z

1

]

2

) (8.8)

where r

0

Z

1

is a normal N (0; �

2

) random variable and so it follows E([r

0

Z

1

]

2j

) = (2j � 1)�

2j

, j = 1; 2.

The limits in (8.8) follow essentially from the Central Limit Theorem (CLT) of Bolthausen (1982), after

verifying that the CLT can be applied; see Nordman (2002) for more details.

Putting (8.5), (8.7), and (8.8) together, we have shown the (a:e:) convergence of the univariate func-

tions f

�;n

(x) as in (8.4). For k 2 E

n

and n � N

�

, Lemma 8.2 ensures: (

s

N

n

)

�2

jh

n

(k)j � C; implying

that for x 2 IR

d

: jf

�;n

(x)j � CI

fx2[�c;c]

d

g

for some c > 0 by Assumption A.1. With this uniform bound

on f

�;n

(�) and the limits in (8.4), we can apply the LDCT to get

lim

n!1

Z

IR

d

f

�;n

(x)dx =

Z

IR

d

f

�

(x)dx; � 2 E

+

: (8.9)
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Let f�

m

g

1

m=1

� E

+

where �

m

# 0. Then,

~

R

�

m

� �

0

[�1; 1]

d

and lim

m!1

I

fx2

~

R

�

m

g

! I

fx2

~

R

0

g

for

x 6= 0 2 IR

d

, with

~

R

0

=

�

x 2 IR

d

: 0 < j(x+�

0

R

0

) \�

0

R

0

j < det(�

0

)jR

0

j

	

: Hence, by the LDCT,

lim

m!1

Z

IR

d

f

�

m

(x)dx =

Z

IR

d

f

0

(x)dx; f

0

(x) � I

fx2

~

R

0

g

[2�

4

]

�

j(x+�

0

R

0

) \�

0

R

0

j

det(�

0

)jR

0

j

�

2

: (8.10)

From (8.1)-(8.3), (8.9)-(8.10) and (

s

�

(n)

1

)

d

=

s

N

n

! (det(�

0

)jR

0

j)

�1

, we have that:

lim

n!1

�

�

�

�

�

s

N

n

X

k2E

n

Cov(Y

2

0;n

; Y

2

k;n

)�

1

det(�

0

)jR

0

j

Z

IR

d

f

0

(x)dx

�

�

�

�

�

� lim

�

�

�

�

�

s

N

n

X

k2E

n

Cov(Y

2

0;n

; Y

2

k;n

)�

(

s

�

(n)

1

)

d

s

N

n

Z

IR

d

f

�

m

;n

(x)dx

�

�

�

�

�

+

1

det(�

0

)jR

0

j

�

�

�

�

Z

IR

d

f

�

m

(x)� f

0

(x)dx

�

�

�

�

+ lim

�

�

�

�

(

s

�

(n)

1

)

d

s

N

n

Z

IR

d

f

�

m

;n

(x)dx �

1

det(�

0

)jR

0

j

Z

IR

d

f

�

m

(x)dx

�

�

�

�

� C

�

�

m

+ [b(�

m

)]

d

�

+

1

det(�

0

)jR

0

j

�

�

�

�

Z

IR

d

f

�

m

(x)� f

0

(x)dx

�

�

�

�

! 0 as �

m

# 0:

Finally,

1

det(�

0

)jR

0

j

Z

IR

d

f

0

(x)dx =

2�

4

jR

0

j

Z

IR

d

j(y +R

0

) \ R

0

j

2

jR

0

j

2

dy;

using a change of variables y = �

�1

0

x. This completes the proof of Theorem 8.1. �

For clarity of exposition, we will prove Theorem 3.1, parts (a) and (b), separately for the OL and NOL

subsample variance estimators.

8.1 Proof of Theorem 3.1(a)

For i 2 J

OL

, we use a Taylor's expansion of H(�) (around �) to rewrite the statistic

^

�

i;n

= H(Z

i;n

):

^

�

i;n

= H(�) +

X

k�k

1

=1

c

�

(Z

i;n

� �)

�

+ 2

X

k�k

1

=2

(Z

i;n

� �)

�

�!

Z

1

0

(1� !)D

�

H(�+ !(Z

i;n

� �))d!

� H(�) + Y

i;n

+ Q

i;n

: (8.11)

We also have:

~

�

n

= H(�) + jJ

OL

j

�1

P

i2J

OL

Y

i;n

+ jJ

OL

j

�1

P

i2J

OL

Q

i;n

� H(�) +

�

Y

n

+

�

Q

n

. Then,

�̂

2

n;OL

=

s

N

n

�

1

jJ

OL

j

X

i2J

OL

Y

2

i;n

+

1

jJ

OL

j

X

i2J

OL

Q

2

i;n

+

2

jJ

OL

j

X

i2J

OL

Y

i;n

Q

i;n

�

�

Y

2

n

�

�

Q

2

n

� 2(

�

Y

n

)(

�

Q

n

)

�

:

We establish Theorem 3.1(a) in two parts by showing

(a) Var

�

s

N

n

jJ

OL

j

X

i2J

OL

Y

2

i;n

�

= K

0

�

det(

s

�

n

)

det(�

n

)

� [2�

4

](1 + o(1));

(b)

�

�

�

�

Var(�̂

2

n;OL

)�Var

�

s

N

n

jJ

OL

j

X

i2J

OL

Y

2

i;n

�

�

�

�

�

= o

�

det(

s

�

n

)

det(�

n

)

�

:

(8.12)

We will begin with proving (8.12)(a) above. For k 2 Z

d

, let �

n

(k) = Cov(Y

2

0;n

; Y

2

k;n

). We write

(

s

N

n

)

2

jJ

OL

j

2

Var

�

X

i2J

OL

Y

2

i;n

�

=

(

s

N

n

)

2

jJ

OL

j

2

�

X

k2E

n

J

n

(k)�

n

(k) +

X

k2Z

d

nE

n

J

n

(k)�

n

(k)

�

� W

1n

+ W

2n

:
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By stationarity and Lemma 8.2, we bound: j�

n

(k)j � E(Y

4

0;n

) � C(

s

N

n

)

�2

, k 2 Z

d

. Using this

covariance bound, Lemmas 8.3-8.4, and jE

n

j � 3

d

det(

s

�

n

):

�

�

�

�

(

s

N

n

)

2

jJ

OL

j

X

k2E

n

�

n

(k) � W

1n

�

�

�

�

� C �

jE

n

j

jJ

OL

j
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k2E

n

�

�

�

�

1�

J

n

(k)
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OL

j

�

�

�

�

= o

�

det(

s

�

n

)

det(�

n

)

�

: (8.13)

Then applying Theorem 8.1 and Lemma 8.3,

(

s

N

n

)

2

jJ

OL

j

X

k2E

n

�

n

(k) = K

0

�

det(

s

�

n

)

det(�

n

)

� [2�

4

](1 + o(1)): (8.14)

By (8.13)-(8.14), we need only show that W

2n

= o (det(

s

�

n

)= det(�

n

)) to �nish the proof of (8.12)(a).

For i 2 Z

d

, denote a set of lattice points within a translated rectangular region:

F

i;n

=

�

i+

Q

d

j=1

�

� d

s

�

(n)

j

e=2; d

s

�

(n)

j

e=2

�

�

\ Z

d

;

where d�e represents the \ceiling" function. Note that for k = (k

1

; : : : ; k

d

)

0

2 Z

d

n E

n

, there exists

j 2 f1; : : : ; dg such that jk

j

j >

s

�

(n)

j

, implying dis(R

0;n

\ Z

d

; R

k;n

\ Z

d

) � dis(F

0;n

; F

k;n

) � 1: Hence,

sequentially using Lemmas 8.1-8.2, we may bound the covariances �

n

(k), k 2 Z

d

n E

n

; with the mixing

coeÆcient �(�; �):

j�

n

(k)j � 8

h

E(Y

2(2r+Æ)=r

0;n

)

i

2r=(2r+Æ)

�(dis(R

0;n

\ Z

d

; R
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\ Z

d

);

s

N

n

)
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� C(

s

N

n

)
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�(dis(F
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; F
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s

N

n

)
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:

From the above bound and J

n

(k)=jJ

OL

j � 1, k 2 Z

d

, we have

jW

2n

j � CjJ

OL

j

�1

1

X
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�

d

X

j=1

C

(x;j;n)

�

�(x;

s

N

n
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; (8.15)

C

(x;j;n)

=

�

�

�

n

i 2 Z

d
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0;n

; F

i;n

) = x = inffjv

j

� w

j

j : v 2 F

0;n

;w 2 F

i;n

g

o

�

�

�

:

The function C

(x;j;n)

counts the number of translated rectangles F

i;n

that lie a distance of x 2 Z

+

from

the rectangle F

0;n

, where this distance is realized in the jth coordinate direction for j = 1; : : : ; d. For

i 2 Z

d

, x � 1 and j 2 f1; : : : ; dg, if dis(F

0;n

; F

i;n

) = x = inffjv

j

� w

j

j : v 2 F

0;n

;w 2 F

i;n

g; then

ji

j

j = d

s

�

(n)

j

e+ x � 1 with the remaining components of i, namely i

m

for m 2 f1 : : : dg n fjg, constrained

by ji

m

j �

s

�

(n)

m

+ x. We use this observation to further bound the right hand side of (8.15) by:

CjJ
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j
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1

X
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�

d

X
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d

Y

m=1;j 6=m
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s

�

(n)

m
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�
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s

N
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� C �
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�
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)
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j

d

X
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(

s

�
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)
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h

`

n

X
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x
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+

1

X
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n
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x
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1

(x)g(

s

N

n
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Æ=(2r+Æ)

i
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s

�

n

)

jJ
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j

�

d`

n

s

�

(n)

min

+

�

`
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n
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`

2rd�d

n

1

X
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n

+1

x

2rd�d�1

�

1

(x)

Æ=(2r+Æ)

�

= o

�

det(

s

�

n

)

det(�

n

)

�

;

using Assumptions A.1, A.3, Condition M

r

, and `

n

= o(

s

�

(n)

min

). This completes the proof of (8.12)(a).

To establish (8.12)(b), �rst note that

�

�

�

�

Var(�̂

2

n;OL
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�

s
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n
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j
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�

�

�

�

�
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s
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where A

1n

= Var(

s

N

n

�

Y

2

n

), A

2n

= Var(jJ

OL

j

�1

s

N

n

P

i2J

OL

Q

2

i;n
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3n

= Var(

s

N

n

�

Q

2

n
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=

Var(jJ

OL

j
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s

N

n

P

i2J
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Y

i;n

Q

i;n
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5n

= Var(

s

N

n

�

Y

n

�

Q

n

).

By (8.12)(a), it suÆces to show that A

jn

= o(det(

s

�

n

)= det(�

n

)) for each j = 1; : : : ; 5. We handle

only two terms for illustration: A

1n

, A

4n

.

Consider A

1n

. For s 2 R

n

\ Z

d

, let !(s) = [2

d

det(

s

�

n

)]

�1

jfi 2 J

OL

: s 2 i +

s

�

n

R

0

gj so that

0 � !(s) � 1. By Condition M

r

and Theorem 3, Doukhan (1994, p.31) (similar to Lemma 8.2),

A
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� E(

�

Y

4

n
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(2

d
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s

�

n
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4
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4
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s
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2
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�

h
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0

�

Z(s)� �
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�

� C �
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2
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N
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2

: (8.16)

Then A

1n

= o(det(

s

�

n

)= det(�

n

)) follows from Lemma 8.3.

To handle A

4n

, write �

1n

(k) = Cov(Y

0;n

Q

0;n

; Y

k;n

Q

k;n

); k 2 Z

d

. Then,

A
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=

(

s

N

n

)

2
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j

2
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d

J

n
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(

s
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2
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j

�

X
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n
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(k)j+

X
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d
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n
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(k)j

�

= A

4n
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n

) +A

4n

(E

c

n
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For k 2 E

n

, note j�

1n

(k)j � C(

s

N

n

)

�3

using jY

0;n

Q

0;n

j � CkZ

0;n

� �k

3

(1 + kZ

0;n

� �k

a

) (from

Condition D) with Lemmas 8.1-8.2. From this bound, Lemma 8.3, and jE

n

j � 3

d

det(

s

�

n

), we �nd

A

4n

(E

n

) = o(det(

s

�

n

)= det(�

n

)). We next bound the covariances �

1n

(k), k 2 Z

d
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n

,

j�
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h

E(jY
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Q

0;n

j
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)

i
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0;n
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d
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N
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by the stationarity of the random �eld Z(�) and Lemmas 8.1-8.2. Using this inequality and repeating

the same steps used to majorize `W

2n

' from the proof of (8.12)(a) (see (8.15)), we have A

4n

(E

c

n

) =

o(det(

s

�

n

)= det(�

n

)). The proof of Theorem 3.1(a) is �nished. �

8.2 Proof of Theorem 3.1(b)

To simplify the counting arguments, we assume here that

s

�

n

2 Z

+

, implying

s

N

i;n

=

s

N

n

, i 2 Z

d

. The

more general case, in which the NOL subregions may di�er in the number of sampling sites, is treated in

Nordman (2002).

For each NOL subregion

~

R

i;n

, we denote the corresponding sample mean

~

Z

i;n

= (

s

N

i;n

)

�1

P

s2

~

R

i;n

\Z

d

Z(s).

The subsample evaluations of the statistic of interest,

^

�

i;n

, i 2 J

NOL

, can be expressed through a Taylor's

expansion of H(�) around �, substituting

~

Z

i;n

for Z

i;n

in (8.11):

^
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= H(

~
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~

Y
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+

~

Q
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.

We will complete the proof of Theorem 3.1(b) in two parts by showing
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(8.17)

We will begin with showing (8.17)(a). For k 2 Z

d

, let

~

J

n

(k) = fi 2 J

NOL

: i + k 2 J

NOL

g and ~�

n

(k) =
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~

Y
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;

~

Y
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). Then we may express the variance:
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We �rst prove U

2n

= o(jJ

NOL

j

�1

), noting that det(

s

�

n

)= det(�

n

) = O(jJ

NOL

j
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) from Lemma 8.3.
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When k = (k

1

; : : : ; k

d

)
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by Assumptions A.1, A.3 and Condition M

r
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We now show that U

1n
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~

Y

2

k;n

)� (

s

N

n

)

�1

E(

~

S

2

k;n

)j � 4(

s

N

n

)

�1

max

nh

E(

~

S

2

k;n

)E(

~

S

�2

k;n

)

i

1=2

; E(

~

S

�2

k;n

)

o

= o(1).

(4) jCov(

~

Y

2

0;n

;

~

S

2

k;n

)j � C�(`

n

;

s

N

n

)

Æ=(2r+Æ)

= o(1) by applying Lemmas 8.1-8.2, Assumption A.3, and

Condition M

r

with dis(

~

R

k;n

\ Z

d

n T

k;n

;

s

R

n

\ Z

d

) � `

n

.

Since ~�

n

(0) = Var(Y

2

0;n

), the remaining quantity in (8.18) can be expressed as

(

s

N

n

)

2

jJ

NOL

j

~�

n

(0) =

1

jJ

NOL

j

Var

�

[r

0

Z

1

]

2

�

(1 + o(1)) =

det(�

n

)

det(�

n

)jR

0

j

[2�

4

](1 + o(1))

by applying the CLT (as in (8.8)) and Lemma 8.3. We have now established (8.17)(a).

We omit the proof of (8.17)(b), which resembles the one establishing (8.12)(b) and incorporates argu-

ments used to bound U

1n

; U

2n

; Nordman (2002) provides more details. �

9 Proofs for bias expansions

We will use the following lemma concerning �

2

n

= N

n

Var(

^

�

n

) to prove the theorems pertaining to bias

expansions of �̂

2

n;OL

and �̂

2

n;NOL

.
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Lemma 9.1 Under the Assumptions and Conditions of Theorem 3.1,

�

2

n

= �

2

+ O

�

[det(�

n

)]

�1=2

�

:

Proof: By a Taylor's expansion around �:

^

�

n

= H(

�

Z

N

n

) = H(�) +

�

Y

N

n

+

�

Q

N

n

(replacing

�

Z

N

n

for Z

i;n

in

(8.11)) and so N

n

Var(

^

�

n

) = N

n

Var(

�

Y

N

n

+

�

Q

N

n

). For k 2 Z

d

, let N

n

(k) = jfi 2 R

n

\ Z

d

: i+ k 2 R

n

gj.

It holds that N

n

(k) � N

n

and

N

n

� N

n

(k) + jfi 2 Z

d

: T

i

\ R

n

6= ?; T

i

\ R

c

n

6= ?; T

i

= i+ kkk

1

[�1; 1]

d

gj

� N

n

(k) + Ckkk

d

1

(�

max

n

)

d�1

; (9.1)

by the boundary condition on R

0

. Also, by Lemma 8.1 and stationarity, for each k 6= 0 2 Z

d

:

j�(k)j � C�

1

(kkk

1

)

Æ=(2r+Æ)

; k 2 Z

d

: (9.2)

Using jfk 2 Z

d

: kkk

1

= xgj � Cx

d�1

, x � 1, the covariances are absolutely summable over Z

d

:

X

k2Z

d

j�(k)j � j�(0)j+ C

1

X

x=1

x

d�1

�

1

(x)

Æ=(2r+Æ)

< 1: (9.3)

From (9.1)-(9.3), we �nd

N

n

Var(

�

Y

N

n

) =

1

N

n

X

k2Z

d

N

n

(k)�(k) = �

2

+ I

n

; (9.4)

jI

n

j �

1

N

n

X

k2Z

d

jN

n

�N

n

(k)j � j�(k)j

� C �

(�

max

n

)

d�1

N

n

1

X

x=1

x

2d�1

�

1

(x)

Æ=(2r+Æ)

= O

�

[det(�

n

)]

�1=d

�

: (9.5)

By Condition D and Lemma 8.2, it follows that N

n

Var(

�

Q

N

n

) = O([det(�

n

)]

�1

).

Finally, with bounds on the variance of

�

Y

N

n

and

�

Q

N

n

, we apply the Cauchy-Schwartz inequality to the

covariance: N

n

jCov(

�

Y

N

n

;

�

Q

N

n

)j = O([det(�

n

)]

�1=2

), setting the order on the di�erence jN

n

Var(

^

�

n

)� �

2

j.

�

We give a few lemmas which help compute the bias of the estimators �̂

2

n;OL

and �̂

2

n;NOL

.

Lemma 9.2 Let

~

Y

i;n

= (

s

N

i;n

)

�1

P

s2Z

d

\

~

R

i;n

r

0

(Z(s) � �), i 2 Z

d

. Suppose Assumptions A.1 - A.5 and

Conditions D

2

and M

2+a

hold with d � 2. Then,

E(�̂

2

n;OL

)�

s

N

0;n

E(

~

Y

2

0;n

)

E(�̂

2

n;NOL

)� jJ

NOL

j

�1

P

i2J

NOL

s

N

i;n

E(

~

Y

2

i;n

)

=: O

�

[det(

s

�

n

)]

�1=2

�

+ o

�

[det(

s

�

n

)]

�1=d

�

:

Proof: We consider here only E(�̂

2

n;OL

). For integer

s

�

n

, the arguments for E(�̂

2

n;NOL

) are essentially the

same; more details are provided in Nordman (2002).

By stationarity and an algebraic expansion:

E(�̂

2

n;OL

) =

s

N

n

h

E(Y

2

0;n

) + E(Q

2

0;n

) + 2E(Y

0;n

Q

0;n

)� E(

�

Y

2

n

)� E(

�

Q

2

n

)� 2E(

�

Y

n

�

Q

n

)

i

:

With the moment arguments based on Lemma 8.2 and Condition D

r

, we have

s

N

n

E(Y

2

0;n

) � C;

s

N

n

E(

�

Y

2

n

) � C

s

N

n

(N

n

)

�1

;

s

N

n

E(Q

2

0;n

);

s

N

n

E(

�

Q

2

n

) � C(

s

N

n

)

�1

; (9.6)
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where bound on

s

N

n

E(

�

Y

2

n

) follows from (8.16). By Holder's inequality and Assumption A.2:

E(�̂

2

n;OL

) =

s

N

n

E(Y

2

0;n

) +O

�

(

s

N

n

)

�1=2

�

+O

�

s

N

n

(N

n

)

�1

�

:

Note that E(Y

2

0;n

) = E(

~

Y

2

0;n

),

s

N

n

=

s

N

0;n

. Hence, applying Lemma 8.3 and Assumption A.2, we establish

Lemma 9.2 for �̂

2

n;OL

. �

The next lemma provides a small re�nement to Lemma 9.2 made possible when the function H(�) is

smoother. We shall make use of this lemma in bias expansions of �̂

2

n;OL

and �̂

2

n;NOL

in lower sampling

dimensions, namely d = 1 or 2.

Lemma 9.3 Assume d = 1 or 2. In addition to Assumptions A.1 - A.5, suppose that Conditions D

3

and

M

3+a

hold. Then,

E(�̂

2

n;OL

)�

s

N

0;n

E(

~

Y

2

0;n

)

E(�̂

2

n;NOL

)� jJ

NOL

j

�1

P

i2J

NOL

s

N

i;n

E(

~

Y

2

i;n

)

=:

8

>

<

>

:

O

�

[det(

s

�

n

)]

�1

�

if d = 1;

o

�

[det(

s

�

n

)]

�1=2

�

if d = 2:

Proof: We again consider only �̂

2

n;OL

. For i 2 J

OL

, we use a third-order Taylor's expansion of each

subsample statistic around �:

^

�

i;n

= H(�) + Y

i;n

+ Q

i;n

+ C

i;n

; where Y

i;n

= r

0

(Z

i;n

� �);

Q

i;n

=

X

k�k

1

=2

c

�

�!

(Z

i;n

� �)

�

; C

i;n

= 3

X

k�k

1

=3

c

�

�!

(Z

i;n

� �)

�

Z

1

0

(1� !)

2

D

�

H(�+ !(Z

i;n

� �))d!:

Here C

i;n

denotes the remainder term in the Taylor's expansion and Q

i;n

is de�ned a little di�erently.

Write the sample means for the Taylor terms:

�

Y

n

,

�

Q

n

as before,

�

C

n

= jJ

OL

j

�1

P

i2J

OL

C

i;n

: The mo-

ment inequalities in (9.6) are still valid and, by Lemma 8.2 and Condition D, we can produce bounds:

s

N

n

E(C

2

0;n

);

s

N

n

E(

�

C

2

n

) � C(

s

N

n

)

�2

. By Holder's inequality and the scaling conditions from Assumptions

A.1-A.2, we then have

E(�̂

2

n;OL

) =

s

N

n

h

E(Y

2

0;n

) + 2E(Y

0;n

Q

0;n

)

i

+

(

O

�

[det(

s

�

n

)]

�1

�

if d = 1;

o

�

[det(

s

�

n

)]

�1=2

�

if d = 2:

Since

s

N

n

E(Y

2

0;n

) =

s

N

0;n

E(

~

Y

2

0;n

), Lemma 9.3 for �̂

2

n;OL

will follow by showing

s

N

n

E(Y

0;n

Q

0;n

) =

s

N

n

p

X

i;j;k=1

c

i

a

j;k

E

h

(Z

i;0;n

� �)(Z

j;0;n

� �)(Z

k;0;n

� �)

i

= O

�

[det(

s

�

n

)]

�1

�

; (9.7)

where Z

0;n

= (Z

1;0;n

; : : : ; Z

p;0;n

)

0

2 IR

p

is a vector of coordinate sample means; c

i

= @H(�)=@x

i

; a

j;k

=

1=2 � @

2

H(�)=@x

j

@x

k

.

Denote the observation Z(s) = (Z

1

(s); : : : ; Z

p

(s))

0

2 IR

d

, s 2 Z

d

. Fix i; j; k 2 f1; : : : ; pg and WLOG

assume � = 0. Then,

s

N

n

�

�

E(Z

i;0;n

Z

j;0;n

Z

k;0;n

)

�

�

=

�

�

(

s

N

n

)

�1

E(Z

i

(t)Z

j

(t)Z

k

(t)) + L

ijk

1n

+ L

ijk

2n

�

�

where

L

ijk

1n

= (

s

N

n

)

�2

X

u;v;w2Z

d

\

s

R

n

;

u6=v 6=w

E

h

Z

i

(u)Z

j

(v)Z

k

(w)

i

;

L

ijk

2n

= (

s

N

n

)

�2

X

u;v2Z

d

\

s

R

n

;

u6=v

E

h

Z

i

(u)Z

j

(u)Z

k

(v) + Z

i

(u)Z

j

(v)Z

k

(u) + Z

i

(v)Z

j

(u)Z

k

(u)

i

:

By Lemma 8.1, Assumption A.3, and Condition M

r

,

jL

ijk

2n

j �

C

s

N

n

1

X

x=1

x

d�1

�(x; 1)

Æ=(2r+Æ)

= O

�

[det(

s

�

n

)]

�1

�

;
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similar to (9.3). For y

1

;y

2

;y

3

2 IR

d

, de�ne dis

3

(fy

1

;y

2

;y

3

g) = max

1�i�3

dis(fy

i

g; fy

1

;y

2

;y

3

gnfy

i

g). If

x � 1 2 Z

+

, then jf(y

1

;y

2

) 2 (Z

d

)

2

: dis

3

(fy

1

;y

2

;0g) = xgj � Cx

2d�1

from Theorem 4.1, Lahiri (1999a).

Thus,

jL

ijk

1n

j �

C

s

N

n

1

X

x=1

x

2d�1

�(x; 2)

Æ=(2r+Æ)

= O

�

[det(

s

�

n

)]

�1

�

:

This establishes (9.7), completing the proof of Lemma 9.3 for �̂

2

n;OL

. �

We use the next lemma in the proof of Theorem 4.2. It allows us to approximate lattice point counts

with Lebesgue volumes, in IR

2

or IR

3

, to a suÆcient degree of accuracy.

Lemma 9.4 Let d = 2; 3 and R

0

� (�1=2; 1=2]

d

such that B

Æ

� R

0

� B for a convex set B. Let fb

n

g

1

n=1

be a sequence of positive real numbers such that b

n

!1. If k 2 Z

d

, then there exists N

k

2 Z

+

and C

d

> 0

such that for n � N

k

, i 2 Z

d

,

�

�

�

�

jb

n

R

0

j � jZ

d

\ b

n

(i+R

0

)j

�

�

�

jb

n

R

0

\ k+ b

n

R

0

j � jZ

d

\ b

n

(i+R

0

) \ k+ b

n

(i+R

0

)j

�

�

�

�

�

8

<

:

C

2

kkk

2

1

if d = 2

C

3

kkk

4

1

�

b

5=3

n

+ �

k;n

b

2

n

�

if d = 3,

where f�

k;n

g

1

n=1

� IR is a nonnegative sequence (possibly dependent on k) such that �

k;n

! 0.

Proof: Provided in Nordman and Lahiri (2002). �

To establish Lemma 4.1, we require some additional notation. For i;k 2 Z

d

, let

s

N

i;n

(k) = jZ

d

\

~

R

i;n

\k+

~

R

i;n

j denote the number of sampling sites (lattice points) in the intersection of a NOL subregion

with its k-translate. Note

s

N

i;n

(k) is a subsample version of N

n

(k) from (9.1).

Proof of Lemma 4.1: We start with bounds:

sup

i2Z

d

j

s

N

n

�

s

N

i;n

j � C(

s

�

max

n

)

d�1

; (9.8)

j

s

N

i;n

�

s

N

i;n

(k)j � jfj 2 Z

d

: T

j

\

s

R

n

6= ?; T

j

\

s

R

c

n

6= ?; T

j

= j+ kkk

1

[�2; 2]

d

gj

� Ckkk

d

1

(

s

�

max

n

)

d�1

; (9.9)

by the boundary condition on R

0

(cf. Lemma 8.3) and inf

j2Z

d k

s

�

n

i� jk

1

� 1=2.

Modify (9.4) by replacing N

n

; N

n

(k);

�

Y

N

n

with

s

N

i;n

;

s

N

i;n

(k);

~

Y

i;n

= r

0

(

~

Z

i;n

� �) (i.e., use a NOL

subsample version in place of the sample one); and replace N

n

;�

n

; �

max

n

with the subsample analogs

s

N

i;n

;

s

�

n

;

s

�

max

n

in (9.5). We then �nd using (9.3): for each i 2 Z

d

,

s

N

i;n

E(

~

Y

2

i;n

)� �

2

=

1

s

N

i;n

X

k2Z

d

(

s

N

i;n

(k) �

s

N

i;n

)�(k) �

s

I

i;n

; (9.10)

sup

i2Z

d

j

s

I

i;n

j � sup

i2Z

d

�

1

s

N

i;n

X

k2Z

d

j

s

N

i;n

(k)�

s

N

i;n

j � j�(k)j

�

� C �

(

s

�

max

n

)

d�1

s

N

n

� C(

s

�

max

n

)

d�1

1

X

x=1

x

2d�1

�

1

(x)

Æ=(2r+Æ)

= O

�

[det(

s

�

n

)]

�1=d

�

; (9.11)

from (9.8)-(9.9) and Assumption A.1. Now applying Lemma 9.1 and Assumption A.2 with Lemma 9.2 for

d � 2 or Lemma 9.3 for d = 1, Lemma 4.1 follows. �
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Proof of Theorem 4.1: Here

s

N

i;n

=

s

N

n

,

s

N

i;n

(k) = C

n

(k), E(

~

Y

i;n

) = E(

~

Y

0;n

) for each i;k 2 Z

d

(since

s

�

n

2 Z

+

) and det(

s

�

n

) =

s

�

d

n

. Applying Lemma 9.2 for d � 3 and Lemma 9.3 for d = 2, Lemma 9.1,

Assumption A.2, and (9.11):

E(�̂

2

n

)� �

2

n

=

�1

s

�

n

jR

0

j

X

k2Z

d

g

n

(k) + o(

s

�

�1

n

); g

n

(k) �

s

N

n

� C

n

(k)

s

�

d�1

n

�

s

�

d

n

jR

0

j

s

N

n

� �(k):

From (9.11) and Lemma 8.3, it follows that

P

k2Z

d

jg

n

(k)j � C, n 2 Z

+

and that g

n

(k) ! C(k)�(k) for

k 2 Z

d

. By the LDCT, the proof of Theorem 4.1 is complete. �

To establish Theorem 4.2, we require some additional notation. For i;k 2 Z

d

, denote the di�erence

between two Lebesgue volume-for-lattice-point-count approximations as:

D

i;n

(k) =

�

j

~

R

i;n

j�

s

N

i;n

�

�

�

j

~

R

i;n

\k+

~

R

i;n

j�

s

N

i;n

(k)j

�

=

�

j

s

R

n

j�

s

N

i;n

�

�

�

j

s

R

n

\k+

s

R

n

j�

s

N

i;n

(k)j

�

:

Proof of Theorem 4.2: We handle here the cases d = 2 or 3. Details on the proof for d = 1 are given in

Nordman (2002). We note �rst that if V (k) exists for each k 2 Z

d

, then Lemma 9.4 implies C(k) = V (k):

Consider �̂

2

n;NOL

. Applying Lemma 9.2 for d = 3, and Lemma 9.3 for d = 2, with (9.8), (9.10), and

(9.11) gives

E(�̂

2

n;NOL

)� �

2

n

= jJ

NOL

j
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Then, using (9.3), we can arrange terms to write
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R
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R
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0

is convex, the boundary condition is
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d
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(9.12)

from Lemma 8.3 and (9.9). Then (9.3), Lemma 9.4, and (9.12) give:
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jG
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(k)j � C, n 2 Z

+

;

G
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d
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s
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n

= O(1). By the LDCT, we establish
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n

(1 + o(1));

representing the formulation of Theorem 4.2 in terms of 	

n

. If V (k) exists for each k 2 Z

d

, then (9.3)

and (9.12) imply that we can use the LDCT again to produce
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�

n
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0

j

�

X
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�

(1 + o(1)): (9.13)

The proof of Theorem 4.2 for �̂

2

n;NOL

is now �nished.

Consider �̂

2

n;OL

. We can repeat the same steps as above to �nd
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n

:

The same arguments for G

n

apply to G

�

n

and (9.13) remains valid when each V (k) exists, k 2 Z

d

, es-

tablishing Theorem 4.2 for �̂

2

n;OL

. Note as well that if V (k) exists for each k 2 Z

d

, then Lemma 9.4 and
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Lemma 4.1 also imply the second formulation of the bias in Theorem 4.2. �

Proof of Theorem 5.1: Follows from Theorems 3.1 and 4.1 and simple arguments from Calculus in-

volving minimization of a smooth function of a real variable. �.

Proof of Theorem 6.1: We develop some tools to facilitate the counting arguments required for expand-

ing the biases of �̂

2

n;OL

and �̂

2

n;NOL

. We �rst de�ne a count for the number of Z

d

lattice points lying in a
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See Nordman (2002) for more details.

Fix k 6= 0 2 Z

d
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We show now that, for k 6= 0, there exists C > 0, N
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, such that: n � N
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By (9.14), for large n � N

k

, we have that 0 � (P

3;i;n

� P
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that:
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which holds uniformly in i 2 Z

d

. With these bounds, we have (9.15).

Applying (9.15) in place of Lemma 9.4, the same proof for Theorem 4.2 establishes Theorem 6.1. �
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