Busse, Anja M.; Hüsken, Michael; Stagge, Peter

Working Paper

Offline-Analyse eines BTA-Tiefbohrprozesses

Technical Report, No. 2001,16

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475), University of Dortmund

Suggested Citation: Busse, Anja M.; Hüsken, Michael; Stagge, Peter (2001) : Offline-Analyse eines BTA-Tiefbohrprozesses, Technical Report, No. 2001,16, Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
http://hdl.handle.net/10419/77101

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Solfern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Offline-Analyse eines BTA-Tiefbohrprozesses

Anja M. Busse1,2, Michael Hüskens1, Peter Stagge1

1Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Deutschland
2LS für Computergestützte Statistik, Universität Dortmund, 44221 Dortmund, Deutschland

\textbf{Zusammenfassung}

\section{Einleitung}

bis hin zum Werkzeugbruch ist nicht selten eine Folge von Rattern. Zum an deren wird die Ausnutzung der Antriebsleistung der Tiebohrmaschine durch ein ansteigendes Bohrmoment reduziert (Weinert, Webber, Busse, Hüskens, Menhen und Stagge, 2001). Um diesen unerwünschten Zustand vermeiden zu können, sind Kenntnisse über den Bohrprozess und über die Ursachen des Ratterns notwendig.

2 Datenbeschreibung

Die in dieser Arbeit untersuchten Daten sind bei einem BTA-Tiebohrprozess von einem im Bohrkopf integrierten Beschleunigungssensor aufgenommen worden. Kapitel 2.1 beschreibt die Datenerfassung und die in diesem Prozess auftretenden Einstellgrößen. Eine deskriptive Analyse der Zeitreihe wird in Kapitel 2.2 gegeben.

2.1 Datenerfassung und Einstellgrößen

Zu den Einstellgrößen im untersuchten Bohrprozess gehören die Schnittgeschwindigkeit v_c und der Vorschub f. Die Schnittgeschwindigkeit, also die Geschwindigkeit, mit welcher sich der Rand des Bohrkopfs wegen der Rotation relativ zum Werkstück bewegt, beträgt bei einem Bohrkopfradius von $r = 30$ mm bei dem untersuchten Prozess $v_c = 100$ m/min.
Abbildung 1: Beschleunigung des Bohrkopfs. Die senkrechten Linien markieren die Zeitpunkte, zu denen der Vorschub f um 0.02 mm erhöht wurde.

Eine zum intuitiven Verständnis gebrauchte Größe ist die Anzahl an Messpunkten pro Umdrehung, die somit etwa 1700 Messdaten beträgt.

Der Vorschub, d.h. die axiale Bewegung des Bohrers pro Umdrehung, liegt initial bei $f = 0.12$ mm. Ab einer Bohrtiefe von 200 mm wird f alle 30 mm Bohrtiefe um 0.02 mm bis zu einem Vorschub von $f = 0.20$ mm erhöht. Die Zeitpunkte, zu denen f erhöht wird, sind in Abbildung 1 durch senkrechte Striche markiert.

2.2 Deskriptive Analyse

Der Mittelwert der Beschleunigungszeitreihe liegt in den Abschnitten nahe bei 0. Das passt zu der Tatsache, dass mit der Beschleunigung ein differenzieller Wert aufgetragen wird. In der ersten Phase des Bohrprozesses erscheint die Zeitreihe des Beschleunigungssensors als stark verrauscht mit einem sehr geringen periodischen Anteil, wohingegen die beiden
Abbildung 2: Beschleunigung des Bohrkopfs im ratterfreien (links) und ratternden (rechts) Zustand.

Da etwa 1700 Messdaten eine Bohrkopfundrehung entsprechen, setzt Rattern innerhalb von drei Bohrkopfundrehungen ein. Während des Ratterns herrscht eine einzige Frequenz der Beschleunigung eindeutig vor, während im ratterfreien Fall keine dominante Schwingung sichtbar ist.

3 Datenanalyse

3.1 Fourieranalyse in den charakteristischen Bereichen

Abbildung 3: Fourier-Spektrum über den Beschleunigungssensor über 16384 Daten aus dem ratterfreien Bereich (Datenpunkte 100001-116384).

Abbildung 3 stellt das Leistungsdichtespektrum in der ratterfreien Phase dar. Schwach erkennbar ergibt sich eine charakteristische Frequenz, die bei etwa 1.2 kHz liegt. Aus Voruntersuchungen (Webber, 1999) ist bekannt, dass diese Frequenz eine der ersten sieben Torsionseigenfrequenzen der Bohrstange ist. Eine niederfrequentere Grundschwingung ist im ratterfreien Bereich nicht zu entdecken.

Die Grundfrequenz der rechten Abbildung ist niedriger. Es handelt sich hier um eine weitere Eigenfrequenz der Bohrstange, die bei etwa 0.24 kHz liegt. Zusätzlich sind weitere Oberschwingungen erkennbar. Diese klingen jedoch auffällig wenig ab. Die Torsionseigenfrequenz der Bohrstange bei 1.26 kHz ist im Gegensatz zum ratterfreien Bereich und vom ersten Rattern in dem Spektrum des zweiten Ratterns weniger deutlich erkennbar. Vermutlich wird diese durch die Oberschwingungen „gedämpft“.

Aus der Frequenzanalyse des Bohrprozesses lässt sich der Schluss ziehen, dass die hier aufgetretenen charakteristischen Frequenzen die unterschiedlichen Phasen, d.h. Nichtrattern, hochfrequentes Rattern und niederfrequentes Rattern, kennzeichnen. Diese charakteristischen Frequenzen entsprechen den Eigenfrequenzen der Bohrstange.
Abbildung 4: Frequenzspektrum der Beschleunigung beim hochfrequenten Ratte (links, Datenpunkte 700001-716384) und beim niederfrequenten Ratte (rechts, Datenpunkte 2500001-2516384).

3.2 Untersuchungen im Übergangsbereich

Da anhand der Fourieranalyse eine Unterscheidung der charakteristischen Phasen des Bohrprozesses möglich ist, schließt sich die Frage an, wie der Übergangsbereich vom Nichtratten zum Ratten (vgl. Abbildung 2) frühzeitig erkannt werden kann. Hier benutzen wir eine Fourieranalyse in gleitenden Fenstern (Kapitel 3.2.1). Dem anschließend wird sich eine ebenfalls in gleitenden Fenstern betrachtete Analyse mit der \textit{Autokorrelationsfunktion}, die die Korrelation zu zwei Zeitpunkten zugehörigen Zufallsvariablen eines stochastischen Prozesses wiedergibt (Kapitel 3.2.2). Die Dichteschätzungen in den gleitenden Zeiiten aus dem Übergangsbereich werden die Analyse zur Beschreibung des Wechsels vom Nichtratten zum Ratten abrunden (Kapitel 3.2.3).

3.2.1 Fouriertransformationen in Fenstern

Um die zeitliche Veränderungen der Fundamentalfrequenzen im Übergangsbereich vom Nichtratten zum Ratten bestimmen zu können, werden Spektren zu gegebenen Zeitfenstern im Übergangsbereich gebildet. Mit diesem Vorgehen werden zusätzliche Informationen geliefert, wie z.B. die Analyse der Frequenz, die hauptsächlich für das Erregen der Zeitreihe zum Ratten verantwortlich ist.

Es werden Spektren über jeweils 1024 Messpunkte ausgehend von Messpunkt 550096 berechnet (siehe Abbildung 5). Deutlich sind die Veränderungen der Spektren im Übergang zum Ratten zu erkennen. In der noch ratterfreien Phase ist kaum eine charakteristische Frequenz zu erkennen, ähnlich zu Abbildung 3. Nach einiger Zeit wird das Aufschwingen einer Frequenz deutlicher, die sich zum Ende, also im ratternden Zustand, wesentlich heraushebt. Offenbar stellt sich Resonanz zwischen Bohrer und Anregung ein. In den letzten Bildern zeigt sich das Erscheinungsbild des ersten Ratterns, das auch schon in Kapitel 3.1 zu sehen war. Diese Fundamentalfrequenz ist die typische Torsionseigenfrequenz, die bei
Abbildung 5: Spektren über je 1024 Datenpunkten im Bereich des Übergangs zum Rattern.
etwa 1.2 kHz liegt. Es ist somit möglich, die Spektren zur Charakterisierung des Übergangs zum Rattern heran zu ziehen.

3.2.2 Autokorrelationsfunktionen über ein Fenster

Um weitere Einsichten über die Modellierung des zugrunde liegenden Prozesses zu gewinnen, werden die empirischen Autokorrelationsfunktionen, kurz ACF, im Zeitfenster herangezogen. Hierbei beschreibt die ACF die Korrelation zwischen je zwei Zeitpunkten eines stochastischen Prozesses, jeweils in Abhängigkeit von unterschiedlichen zeitlichen Abständen (Kendall und Ord, 1990; Brockwell und Davis, 1996).

Um den Übergangs bereich möglicherweise mit Hilfe der ACF beschreiben zu können, werden die verschiedenen ACFs wie bei der Fourieranalyse im Zeitfenster wieder über jeweils 1024 Messpunkte ausgehend von Messpunkt 550096 berechnet (siehe Abbildung 6). So wohl im ratterfreien als auch im ratternden Zustand klingen die ACF nicht ab. Eine Veränderung in der Abfolge der verschiedenen Autokorrelationsfunktionen ist schon sehr schnell zu erkennen. Klare Schwingungen werden deutlich sichtbar. Im Gegensatz zu den vorher untersuchten Spektren (vgl. Kapitel 3.2.1) ist das Rattern anhand der ACF früher erkennbar.

3.2.3 Dichtefunktionen über ein Fenster

Abbildung 6: Autokorrelationsfunktionen über je 1024 Datenpunkten im Bereich des Übergang zum Rattern.
Abbildung 7: Geschätzte Dichtefunktionen über je 1024 Datenpunkten im Bereich des Übergangs zum Rattem.
Auch mit Hilfe von Dichten in einem Zeitfenster ist der Übergang also charakterisierbar. Es bleibt festzuhalten, dass die Dichtefunktion im Gegensatz zur Spektrenbetrachtung und zur Betrachtung der ACF erst später zur Identifikation von Rattern neigt.

3.2.4 Identifizierung des Übergangs

4 Modellierung und Prädiktion

4.1 Vorgehensweise

4.1.1 Datenvorverarbeitung

Als Modellierungsgrundlage dienen hier wiederum die Daten des Beschleunigungssensors beim Versuch mit der Schnittgeschwindigkeit $v_c = 100 \text{ m/min}$ und dem Vorschub pro Umdrehung von $f = 0.12 \text{ mm}$. Die verwendeten Datensätze bestehen jeweils aus 3000 aufeinander folgenden Datenpunkten. Diese Sequenzen entstammen dem ratterfreien Teil des Prozesses, beginnend ab dem 110000. Datenpunkt, was einem Zeitpunkt von etwa 7.3 s nach Beginn der Bohrung und einer Bohrtiefe von 7.8 mm entspricht. Für die Versuche werden insgesamt 3 Datensätze von jeweils 3000 Zeitpunkten verwendet, der Trainings-, der Validierungs- und der Testdatensatz, welche in dieser Reihenfolge der Gesamtsequenz entnommen wurden. Für die Aufwärmphase der ARMA-Modelle und der neuronalen Netze werden jeweils die 100 Datenpunkte verwendet, welche unmittelbar vor der entsprechenden Sequenz im Prozess gemessen wurden.

Wenige Messwerte überschreiten sehr deutlich eine Schwelle von etwa 20 m/s^2; zur Erhöhung der Modellierbarkeit des Gesamtprozesses werden diese Werte durch den letzten Wert der Zeitreihe, welcher im Intervall $[-20 \text{ m/s}^2; 20 \text{ m/s}^2]$ lag, ersetzt. Anschließend werden die Daten derart linear transformiert, dass deren Maximal- und Minimalwert genau 0.7 und −0.7 beträgt.

4.1.2 Modellanpassung

Als Maß für die Modellgüte wird im Folgenden die Prädiktion der Beschleunigung zu einem späteren Zeitpunkt verwendet. Ausgehend von einem aktuellen Wert $x(t)$ stellen die Modelle eine Schätzung $\hat{x}(t + \Delta t)$ bereit. Ziel der Modellanpassung ist die Optimierung der Güte der Schätzung, d.h. die Minimierung der Abweichung zwischen $\hat{x}(t + \Delta t)$ und dem tatsächlichen Wert $x(t + \Delta t)$, gemessen durch den mittleren quadratischen Fehler

$$
e = \frac{1}{N} \sum_{t=0}^{N-1} (\hat{x}(t + \Delta t) - x(t + \Delta t))^2.
$$

Dieser Fehler wird über die $N = 3000$ Prädiktionsschritte gemittelt, die in einem Datensatz zusammengefasst sind.

\(^1\)Im Zusammenhang mit neuronalen Netzen wird diese Optimierung häufig als Training oder Lernen bezeichnet.
\[\hat{x}(t+l) = \sum_{j=1}^{p} a_j E_t[x(t+l-j)|x(t-j), j \geq 0] + \sum_{j=0}^{q} b_j E_t[\epsilon(t+l-j)] ; \]

\(E_t[\cdot] \) bezeichnet den Erwartungswert zum Zeitpunkt \(t \). Für \(q = 0 \) ergibt sich ein reines AR(\(p \))-Modell, für \(p = 0 \) ein reines MA(\(q \))-Modell.

Da die Abweichung zwischen Schätzung und tatsächlichem Wert in die Berechnung mit eingeht, ist eine Warmlaufphase nötig, um den Einschwingvorgang des Modells abzuwarten. Nach dieser Einschwingphase kann die Abweichung zwischen Prädiktion und dem Messwert als Maß der Anpassung gewertet werden. Die Anpassung kann mit etablierten Methoden der Statistik oder aber wie hier mit anderen Parameteradaptationsverfahren durchgeführt werden. Der Algorithmus iRprop\(^+ \) wird 300 Iterationen lang angewendet, was sich als ausreichend für die Anpassung herausgestellt hat; durch längeres Iterieren wird nur noch eine geringfügige Verbesserung auf dem Trainings- und keine Verbesserung auf dem Testdatensatz erzielt.

Zunächst wurde der Einfluss der Parameter \(p \) und \(q \), also der Modellgröße, untersucht. Tabelle 1 gibt einen Überblick über die Abhängigkeit der Güte der 1-Schritt-Prädiktion.
Abbildung 8: 1-Schritt-Prädiktion und Zielgröße bei einem ARMA(4,4)-Modell auf einem Ausschnitt des Trainings- (links) und Testdatensatzes (rechts).

von der Modellgröße. Die in dieser Tabelle dargestellten Ergebnisse haben sich durch Mit-
tellung über 100 Läufe mit unterschiedlicher initialer Parameterverteilung ergeben, wobei
die Standardabweichungen der Ergebnisse dieser 100 Läufe gering sind.

Verglichen mit der Varianz der Zeitreihe \((\sigma^2)^{\text{(train)}} = 0.06252 \) und \((\sigma^2)^{\text{(test)}} = 0.06942 \),
welche dem Fehler eines Schätzers entspräche, der konstant den Mittelwert der Zeitreihe
ausgibt, sind die erzielten Fehler nur unwesentlich geringer. Dies liegt im Wesentlichen
an der ungenügenden Modellierung der deutlichen Spitzen in der Zeitreihe (vgl. Abbildung 8).

Des Weiteren ist erkennbar, dass die Modellierung mittels AR(p)- und MA(q)-Modellen
to vergleichbaren Ergebnissen führt. Eine Verbesserung der Ergebnisgüte wird durch eine
Modellierung mit ARMA-Prozessen erzielt. Bis zu einer Modellgröße von etwa \(p = q = 4 \)
steigt die Prädiktionsgüte mit der Größe an, danach ist keine weitere Verbesserung mehr
festzustellen. Die 1-Schritt-Prädiktion mit dem bestangepassten ARMA(4,4)-Modell aus
100 Trainingsläufen ist in Abbildung 8 dargestellt.

Die Prädiktion offenbart einige grundlegende Eigenschaften des Prozesses und der
Modellklasse: Der Prozess weist prägnante Spitzen auf, die zwar teilweise schon durch die
Vorverarbeitung unterdrückt wurden, trotzdem aber noch schwer zu prädizieren sind. Des
Weiteren zeigt die Prädiktion einen starken oszillatorischen Anteil des Signals. In dem
Originalsignal ist dieser Anteil durch Versätze, unregelmäßige Amplitudenmodulationen
und Rauschen stark gestört. Das Modell kann diesen Amplitudenschwankungen und Pha-
senverschiebungen relativ gut nachkommen, das restliche Rauschen bleibt dennoch hoch.
Die Amplitudenspitzen lassen sich am schwierigsten modellieren.
4.3 Nichtlineare Modelle: Neuronaler Netze

4.3.1 Vorwärtsgekoppelte Neuronale Netze

Wir beschränken uns hier auf *vorwärtsgekoppelte neuronale Netze* (VNNNe) mit nur einer Schicht von versteckten Neuronen; somit realisieren die hier verwendeten VNNNe die Abbildung

\[
\hat{x}(t + \Delta t) = \Theta + \sum_{h=1}^{H} v_h f(x(t)w_h + \Theta_h)
\]

Die Variable \(H\) steht hierbei für die Anzahl der versteckten Neuronen und die Funktion \(f(x) = \tanh(x)\) ist die nichtlineare Aktivierungsfunktion der versteckten Neuronen. Die Parameter \(v_h, w_h, \Theta_h\) und \(\Theta\) sind die anzupassenden Modellparameter. Trotz dieser Einschräbnungen besitzen die VNNNe für ausreichend große Werte von \(N\) universelle Approximationseigenschaften (Hornik, Stinchcombe und White, 1989). Für eine genauere Einführung in VNNNe sei auf die Bücher von Reed und Marks (1999) und Bishop (1995) verwiesen.

Da in (3) die Information lediglich vorwärts durch das Netz propagiert wird, muss die Information über zurückliegende Werte der Zeitreihe explizit durch die *Einbettung*

\[
x(t) = (x(t), x(t - \tau), x(t - 2\tau), \ldots, x(t - (d_E - 1)\tau))
\]

bereitgestellt werden (Takens, 1981). Hierbei sind die *Einbettungsdimension* \(d_E\) sowie die *Zeitverzögerung* \(\tau\) zu wählen. Die geeignete Verzögerung \(\tau = 4\) wurde mittels der Transinformation bestimmt. Da das Verfahren *false nearest neighbours* zur Bestimmung der Einbettungsdimension fehlgeschlug, wurde in Vorversuchen die Einbettungsdimension variiert und der Wert \(d_E = 8\) als geeignet bestimmt.

Des Weiteren haben wir unsere Versuche mit \(H = 5\) versteckten Neuronen ausgeführt. Eine größere Topologie führte zu keinem geringeren Fehler, wohl aber zu einer stärkeren Überanpassung. Vor dem Training von 200 Iterationen Länge wurden die Gewichte aller Verbindungen zufällig mit Werten aus dem Intervall \([-0.1, 0.1]\) initialisiert.

4.3.2 Rückgekoppelte Neuronale Netze

Im Gegensatz zu VNNNe wird bei *rückgekoppelten neuronalen Netzen* (RNNNe) die Information nicht nur vorwärts vom Ein- zum Ausgang durch das Netzwerk propagiert, sondern
Abbildung 9: Vergleich der Prädiktionsfehler unterschiedlicher Modelle bei unterschiedlichem Prädiktionshorizont. Die Ergebnisse sind über 100 Läufe gemittelt, wobei die Standardabweichungen innerhalb der Läufe geringer als die typischen Unterschiede der verschiedenen Modelle sind.

Als Basisstruktur verwenden wir erweiterte Elman-Netze (Stagge und Sendhoff, 1997) mit 10 versteckten Neuronen und einer Gedächtnisschicht. Bei Vorversuchen hat sich diese Größe als geeignet für das vorliegende Problem herausgestellt. Wie bei den VNNe wurden die Gewichte vor dem Training zufällig mit Werten aus dem Intervall $[-0.1, 0.1]$ initialisiert und ein Training vom maximal 200 Iterationen Länge durchgeführt.

4.4 Vergleich zwischen linearer und nichtlinearer Modellierung

In Abbildung 9 ist der Trainings-, bzw. Testfehler der unterschiedlichen Modelle in Abhängigkeit vom Prädiktionshorizont dargestellt. Das Verhalten aller Modelle ist prinzipiell ähnlich auf dem Trainings- und Testdatensatz, lediglich der absolute Fehler unterscheidet sich etwa in dem Maße, in welchem sich auch die Varianz der einzelnen Datensätze unterscheidet ($\sigma^2_{(\text{train})} = 0.06252$ und $\sigma^2_{(\text{test})} = 0.06942$). Des Weiteren sind die Fehler auch für große Prädiktionshorizonte geringer als die Varianz.

Die RNN erzielen bei allen Aufgaben die besten Ergebnisse; für kleine Prädiktionshorizonte dicht gefolgt von den VNNe, für große Horizonte sind die ARMA-Modelle
Abbildung 11: Fourierspektren der Modelle für die 5-Schritt-Prädiktion im ratterfreien Bereich.

nur geringfügig schlechter. Dieses Ergebnis deutet darauf hin, dass bei der 1-Schritt-Prädiktion die nichtlinearen Elemente der neuronalen Netze effizient eingesetzt werden können. Aber schon ab einer 2-Schritt-Prädiktion scheint die lineare Modellierung nun unwesentlich schlechter zu sein. Vielmehr stellt sich hier sogar die Modellierung mittels VNNs als am ungünstigsten heraus, was allerdings vielfältige Gründe haben kann: Zum einen deuten die Ergebnisse auf eine leichte Überanpassung der VNNs hin, zum anderen könnten die schlechten Ergebnisse auch Konsequenz einer nicht optimalen expliziten Einbettung sein.

Dieses stark periodische Verhalten wird bei kurzen Prädiktionshorizonten durch die Auflösung einzelner Details ergänzt, besonders stark ist diese Detailauflösung bei den VNNs zu erkennen.

5 Diskussion

Von besonderem Interesse war bei der Analyse der Übergang vom ratterfreien in den ratterbehafteten Zustand. Dieser Übergang fällt mit einer beträchtlich deutlichen Beschleunigungszunahme zusammen. Vor dem Übergang erscheint der Prozess als stark verrauscht mit einem geringen periodischen Anteil, wohingegen die Phase nach dem Übergang durch stark regelmäßiges und periodisches Verhalten geprägt ist.

Danksagung

Wir danken der DFG, die dieses Forschungsprojekt im Rahmen des SFB 475 „Komplexitätssenkung in multivariaten Datenstrukturen“ fördert. Für die hilfreichen Diskussionen während der Erstellung der Ergebnisse bedanken wir uns herzlich bei Prof. W. von See- len. Des Weiteren danken wir den Mitarbeitern des Instituts für spanende Fertigung an der Universität Dortmund für die Bereitstellung der Daten sowie für die kooperative Zu-
samenarbeit. Unseren Korrekturlesern C. Ronnewinkel und Prof. C. Weihs sei an dieser Stelle ebenfalls großer Dank für die kritischen Anmerkungen ausgesprochen.

Literatur

