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Abstract

When predicting the state of a system, we sometimes know that the

succession of states is cyclic. This is for example true for the prediction

of business cycle phases, where an upswing is always followed by upper

turning points, and the subsequent downswing passes via lower turning

points over to the next upswing and so on. We present several ideas how

to implement this background knowledge in popular static classi�cation

methods. Additionally, we present a full dynamic model. The usefulness

for the prediction of business cycles is investigated, revealing pitfalls and

potential bene�ts of ideas.

1 Introduction

In the literature, business cycles are typically either treated as a univariate phe-

nomenon and tackled by univariate time series methods, or they are modelled as

amultivariate phenomenon and tackled by static multivariate classi�cation meth-

ods [Meyer and Weinberg, 1975; Heilemann and M�unch, 1996]. As a consequence,

either the time-dependency or the interplay of di�erent economic variables is ig-

nored.

�
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In a preliminary comparative study we showed that multivariate classi�cation

methods (ignoring knowledge about time-dependencies) and a dynamic Bayesian

network that generalizes the Naive Bayes classi�er for time-dependencies (ig-

noring dependencies between predictors) obtained about the same, unsatisfying,

average prediction accuracy.

Thus, in that study, some multivariate classi�cation methods generated the

same error rates as the dynamic Bayesian network without using background

knowledge about time dependencies in business cycles. Therefore, there was hope

that in order to improve prediction accuracy for the multivariate classi�cation

methods advantage could be taken of the cyclical structure of business cycle

phases for which the following pattern is true: lower turning points ,! upswing

,! upper turning points ,! downswing ,! lower turning points ,! and so on.

In this paper, we introduce and analyze several ideas on the incorporation of

this background knowledge in di�erent types of classi�cation rules. The general

problem of predicting cycles is formulated in Section 2. In Section 3 ideas on

adapting static classi�cation rules to the above cyclical structure are described.

The data used for learning and testing the prediction models for business cycle

phases and the design of our comparative study are presented in Section 4 and

all the considered classi�cation methods are briey outlined. In Section 5 we

compare the performance of the implemented ideas. And �nally, consequences

are summarized in Section 6.

2 Basic Notations

We consider classi�cation problems that are based on some K-dimensional real-

valued vector ~x 2 M � IR

K

of observations of predictor variables X

1

; :::; X

K

on

some object and we want to decide about the class s 2 S := f1; ::::; Jg the object

belongs to. Any considered object with ~x 2 X has to belong to one and only one

out of these J classes.

In case of prediction of cycle phases, we classify not really various objects,

but rather one object - called system - at di�erent times t = 1; :::; T . And at each

time-point the system is situated in one out of J possible states s 2 J := f1; :::; Jg.

The chronological order of how the system passes through states is �xed: Given

the system is is state s

t�1

at time t � 1, it either stays there or moves on to a

certain other state s

�

so that S

t

2 fs; s

�

g � S, t = 1; :::; T . In the following, we

assume a corresponding numbering of states where s

�

=s+1 for s = 1; 2; :::; J�1

and s

�

=1 for s=J .

Most classi�cation methods base their assignment of objects into classes on

certain transformations of the respective observations for each of the considered

classes:

m(s; Æ) : X! IR; s 2 S:

The size of these transformations gives information on the strength of membership
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of the object in the classes. Without loss of generality, we assume higher values

to indicate stronger membership. That is, these m(s; ~x), s 2 S, ~x 2 X are

interpreted as membership values.

There are many ways and intuitions for the construction of membership values

using examples of observations and classes for some objects in a learning set L :

In discriminant analysis (Linear: LDA, or quadratic: QDA) membership values

are based on some notion of distances to estimated centers of classes, whereas in

Support Vector Machines (SVM) we use distances to learnt class boundaries.

For all Bayes rules, membership values are estimated conditional class prob-

abilities:

m(s; ~x) = p

L

(s j ~x)

=

p

L

(~x j s)p

L

(s)

p

L

(~x)

(1)

for each class s 2 S.

Irrespective of the various derivations of membership values, the manner of

assignment is always the same: The rule assigns to the class with highest mem-

bership value. Therefore, we call this type of rules argmax rules.

For multi-class problems, there are two distinct basic structures to decide on

a certain elementary state s; s 2 S where the cyclical structure can easily be

implemented: multi-class argmax rules or composition of binary argmax rules.

3 Adaption of static classi�cation rules for pre-

diction of cycle phases

3.1 Adapting multi-class argmax rules

Multi-class argmax rules use membership values for each elementary statem(s; Æ) :

X! IR; s 2 S:

ŝ = pred(~x) = arg max

s=1;:::;s

m(s; ~x):

For these rules, we can take advantage of the cyclical structure by restricting the

comparison of membership values to admissible transitions. That is, we start in

the last known state of the system s

0

and predict the next state by

pred(~x

1

j s

0

) = arg max

s=s

0

;s

�

0

m(s; ~x

1

):

For the consequent times t = 2; :::; T the predicted state ŝ

t�1

from the pre-

ceding time is used as if it was the true one:
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pred(~x

t

j s

0

; ŝ

1

; :::; ŝ

t�1

) = pred(~x

t

j ŝ

t�1

)

= arg max

s=̂s

t�1

;ŝ

�

t�1

m(s; ~x

t

):

This adaption was proposed by Weihs et al [1999] for the prediction of business

cycle phases and is called classi�cation with exact transitions. When classifying

with exact transitions in a �rst step the information of ŝ

t�1

is used to decide on

admissible states ŝ

t

2

n

ŝ

t�1

; ŝ

�

t�1

o

� f1; 2; ::::; Jg. In a second step we choose

between those two, using the information in ~x

t

. In the following, we will drop the

time-index t and denote variables from time-slice t� 1 with a minus: v

�

:= v

t�1

,

t = 1; :::; T , if statements are valid for all t = 1; :::; T , and where indexing is not

needed for understanding.

We may gain further improvement of the rules, if we can exploit the informa-

tion in ŝ

t�1

also for the second decision. For membership values on a ratio scale,

we can do this by weighting membership values with transition weights that tell

us something about the willingness of the system to pass over to state s given

state ŝ

�

:

m(s; ~x j ŝ

�

) = w(ŝ

�

; s)m(s; ~x):

In cyclic systems, w(s

�

; s)=0 is true for all inadmissible transitions s

�

,! s,

s

�

; s 2 S.

How weighting works, and why membership values have to be on a ratio scale,

can be understood best by looking at the following representation of the weighted

rule:

pred(~x j ŝ

�

) = arg max

s=̂s

�

;ŝ

�

�

w(ŝ

�

; s)m(s; ~x)

$ pred(~x j ŝ

�

) =

(

ŝ

�

ŝ

�

�

)

if

m(ŝ

�

; ~x)

m(ŝ

�

�

; ~x)

w(ŝ

�

; ŝ

�

)

w(ŝ

�

; ŝ

�

�

)

(

� 1

< 1

)

:

We are coding the evidence of ~x for S being either ŝ

�

or ŝ

�

�

with the ratio

of the corresponding membership values, as well as the (assumed) evidence of

S

�

= ŝ

�

with the ratio of the transition weights. And we combine these evidences

by multiplying and thus giving both evidences same importance.

An intuitive choice of weights are estimated transition probabilities from the

training set, e.g. the observed frequencies:

w

L

(ŝ

�

; s) := p

L

(s j ŝ

�

)

:=

N

L

(ŝ

�

,! s)

N

L

(ŝ

�

)

:
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In case of membership values that use estimates of a-priori class probabilities,

like bayes-rules with unequal class probabilities p

L

(s) we use the ratio

p

L

(s j ŝ

�

)

p

L

(s)

is chosen as weights. We simply replace p

L

(s) by p

L

(sjŝ

�

) in the calculation of

membership values for bayesrules in equation (1):

m(s; ~x j ŝ

�

) = m(s; ~x)

p

L

(s j ŝ

�

)

p

L

(s)

=

p

L

(~x j s)p

L

(sjŝ

�

)

p

L

(~x)

: (2)

The resulting membership values can be interpreted as estimated conditional

class probability given ~x and ŝ

�

under the additional assumption of conditional

independence of

~

X and S

�

given S = s. This is the well-known assumption

in Hidden Markov Models (HMMs) of order one: all relevant past information

s

0

; ~x

0

; :::; s

t�1

; ~x

t�1

is summarized in the last state s

t�1

and is propagated solely

through the transition probabilities p(s

t

js

t�1

) � p(sjs

�

), s

t

= 1; :::; J , t = 1; :::; T .

3.2 Composition of binary elementary argmax rules

Other multi-class rules use membership values not for elementary states but for

various sets out of the product set over f1; :::; Jg, m : X! IR

2

J

�1

. This is true,

for example, if the �nal decision consists of a path of binary argmax decisions.

In the so-called one-against-rest strategy each class is trained against the

other J � 1 classes [Sch�olkopf et al (1995)]. The class with the highest value in

the decision function is selected. So J argmax rules have to be trained.

An example is the max win strategy of [Friedmann (1996)]. Each class is

trained against every other class with a binary SVM. Thus we get a collection of

J(J-1)/2 membership functions

m(s; s

0

;

_

) : X! IR; s

0

= 1; :::; s� 1; s = 2; :::; J:

The class that obtains the most votes is selected. If this is not unique (i.e. two or

more classes get the most votes) between these classes the one with the highest

value in the membership function gets assigned.

Another strategy uses decision directed acyclic graphs (DDAG) [Platt et al.(2000)].

Classes are listed and the �rst decision is made between the �rst and the last el-

ement on the list. The one which is not voted for is eliminated from the list.

This is repeated until only one class is left and the observation gets assigned to

it. The same argmax rules as in the max win strategy have to be learnt, but to
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make a decision only J � 1 decision nodes in the DDAG have to be evaluated,

and each is constructed only on the two classes which are examined.

For the appropriate strategy in a cyclic structure only J membership functions

for binary argmax rules have to be learnt, namely m(1; 2; Æ), m(2; 3; Æ),..., and

m(J; 1; Æ). Dependent on the state s

0

or respectively the predicted state ŝ

�

from

the preceding time slice, we decide on the current state ŝ based on m(ŝ

�

; ŝ

�

�

; Æ).

4 Design of Comparison

4.1 Data

The data set consists of 13 "stylized facts" [Lucas (1987)] for the German business

cycle and 157 quarterly observations from 1955/4 to 1994/4 (price index base is

1991). The stylized facts are given in table 4.1.

The experts' classi�cation of the data into business cycle phases (abbreviated

as PH) was done by Heilemann and M�unch [1996] using a 4-phase scheme. Phases

are called lower turning points (abbreviated "ltp"), upswing ("up"), upper turning

points ("utp"), and downswing ("down").

IE real investment in equipment-gr

C real private consumption-gr

Y real gross national product-gr

PC consumer price index-gr

PY real gross national product price deator-gr

IC real investment in construction-gr

LC unit labor cost-gr

L wage and salary earners-gr

M1 money supply M1

RL real long term interest rate

RS nominal short term interest rate

GD government de�cit

X net exports (X)

Table 1: Our predictors of business cycle phases are based on economic ag-

gregates that cover all important economic �elds: real activity (labor market,

supply/demand), prices, and monetary sphere. The abbreviation 'gr' stands for

growth rates with respect to last year's corresponding quarter.

4.2 Design

There are six full cycles in the considered quarters. All methods (have to) rely

on some assumption of structural stability over this period, though this is not
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really valid. Thus, we decided to perform a leave-one-cycle out analysis for the

comparison of methods.

For a fair comparison, all optimization in order to gain a rule has to be done on

each of the six training sets alone. Rules are then compared with respect to their

prediction accuracy measured as the average prediction error on the validation

sets:

APE :=

1

6

6

X

i=1

0

@

1

T

i

T

i

X

t=1

1I

s

t

(ŝ

t

)

1

A

;

where T

i

is the number of time-points in the i-th cycle, i = 1; :::; 6, and 1I

s

is the

indicator function for state s 2 S.

This gives an average error on a new cycle, which seems to be more appropriate

as performance criterion than the average error on a single new observation.

Cycles form a natural entity in the given task, and the structural instability

across cycles together with a performance criterion based on single observations

would lead to an unwanted preference of methods that predict well on long cycles.

4.3 Description of static procedures

In the past, mainly static classi�cation methods were used for the multivariate

prediction of business cycles. One reason is the fact that typically the last true

phase is not known (for sure) to do the prediction for the next one. It is only by

observing the continuing evolution of the economy for some more quarters that it

becomes apparent what phase the business cycle was in. Another reason for using

static methods is that we are not only reaching for a good prediction, but also for

a description of phases in terms of the stylized facts. Thus methods were applied

that use as predictors known entities, and for which we want to understand the

connection they have with business cycle phases.

The ideas of modifying static methods outlined in Section 3 now allow for

both, description and prediction: we describe phases using their membership

functions m(s; Æ) : X ! IR, s 2 S and we hope to get better predictions when

combining their evidence with the knowledge on the cyclical structure. We do not

base our classi�cation rule on unknown entities, as our predictions are dependent

on the true state of the system at some point in the past and not necessarily on

the last one.

In the following, we give a short description of those static methods that have

already been applied to the problem, and of which we had membership values for

their prediction on the test cycles, so that the ideas could be easily implemented.

� Name: Linear Discriminant Analysis

� Short: LDA
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Bayes rule with uniform class prior and equal costs. Equivalent to Fisher Dis-

criminant Analysis. No model selection involved.

� Name: LDA with variable selection

� Short: LDA-VS

Policy as for LDA. Optimization of subset of predictors in terms of lowest leave-

one-observation-out error.

� Name: Quadratic Discriminant Analysis

� Short: QDA

Policy as for LDA. No model selection involved.

� Name: QDA with variable selection

� Short: QDA-VS

Policy as for LDA. Optimization of subset of predictors in terms of lowest leave-

one-observation-out error.

� Name: Minimal Error Classi�er of type 1 based on QDA

� Short: Mec1-Q

Bootstrap estimation of errors in projected 2-dimensional spaces. Optimization

of projected space in terms of lowest estimated error with Simulated Annealing

and the Nelder/Mead algorithm.

� Name: Minimal Error Classi�er of type 2 based on QDA

� Short: Mec2-Q

Estimation of errors in projected 2-dimensional spaces by the uniformly minimal

variance unbiased estimator on the original space followed by numerical integra-

tion. Optimization of projected space in terms of lowest estimated error with

Simulated Annealing and the Nelder/Mead algorithm.

All these algorithms were programmed in R and C with Numerical Recipes

[Press et al. (1993)]. Details can be found in [R�ohl and Weihs (1999)].

� Name: Neural Networks

� Short: NN

Multi-Layer Perceptron with one hidden layer and sigmoid activation function.

Conjugate gradient method for change of weights. Neural Connection

c

 2.0 [1997]

was used. Optimization of weights and number of nodes in hidden layer in terms

of errors on 10% test set.
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� Name: Binary linear Support Vector Machines with one-against-rest strat-

egy

� Short: SVM-OR

Quadratic optimization problem solved with active set algorithm [Fletcher (1981)]

in SAS/IML. Leave-one-observation-out optimization of error-penalty parameter

� Name: Binary linear Support Vector Machines with max-win strategy

based on one-against-one comparisons

� Short: SVM-OO

Quadratic optimization as for SVM-OR. Leave-one-observation-out optimization

of error-penalty parameter

� Name: Binary linear Support Vector Machines using a Decision Directed

Acyclic Graph

� Short: SVM-DD

Quadratic optimization as for SVM-OR. Leave-one-observation out optimization

of error-penalty parameter.

4.4 Description of dynamic procedures

In our study, there is one classi�cation method that is based on multivariate

time-series model: the so-called rake-model [Sondhauss and Weihs (1999)] . This

is a dynamic Bayesian network with two time-slices, where the multivariate dis-

tribution of predictors and state in a time-slice is dependent on their realization

in the preceding time-slice in a certain way. The assumed stochastic indepen-

dencies within a time-slice reect those of the Naive-Bayes classi�er. The inde-

pendence assumptions between time-slices broaden those of HMMs to allow for

time-dependencies between predictor variables. The rake model is a multivari-

ate version of so-called Markov regime switching models introduced by Hamilton

[1989] that goes beyond their typical application for predicting switches between

two regimes based on one observational variable modeled as conditional Gaussian

variable [Diebold and Rudebusch (1996)].

The distribution of each predictor variable X

t;k

is modeled to be dependent

not only on the current state s

t

(like in HMMs), but also on its predecessor X

t�1;k

,

k = 1; :::; K, t = 1; :::; T . But it is assumed to be conditionally independent of

all other past and current variables (like in the Naive Bayes classi�er), given the

current state and the predecessor:

P (X

k;t

js

t

; fx

1;t

; :::; x

K;t

g nx

k;t

; s

t�1

; ~x

t�1

; :::; s

0

)
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= P (X

k;t

js

t

; x

k;t�1

; ) ; t = 1; :::; T; k = 1; :::K:

The current state S

t

is conditionally independent of the past S

0

;

~

X

0

; S

1

;

~

X

1

; :::;

~

X

t�1

given the preceding state S

t�1

=s

t�1

:

P (S

t

js

t�1

; ~x

t�1

; :::; s

0

) = P (S

t

js

t�1

) ; t = 1; :::; T:

This is di�erent from the Naive Bayes classi�er, where (non-conditional) inde-

pendence of S

t

and the past is assumed, t = 1; :::; T .

The conditional independence assumptions in the rake-model lead to

� a decomposition of the joint probabilities of state variable and predictor

variables in time-slice t given s

t�1

and ~x

t�1

, so that the conditional class

probabilities can be calculated as follows:

p (s

t

j ~x

t

js

t�1

; ~x

t�1

)

= p (s

t

js

t�1

)

p(~x

t

j ~x

t�1

; s

t

)

p(~x

t

j ~x

t�1

; s

t�1

)

; t = 1; :::; T:

� a decomposition of the conditional probability of predictor variables given

current state and predecessor, so that it resolves into:

p(~x

t

j~x

t�1

; s

t

) =

K

Y

k=1

p(x

k;t

jx

k;t�1

; s

t

); t = 1; :::; T:

For the given problem, we discretized the observed values of stylized facts:

x

k

! q

k

; q

k

2 f1; :::; Q

k

g ; k = 1; :::; K. There were either two or three intervals

de�ning the discretization , that is Q

k

2 f2; 3g, k = 1; :::; K.

For the estimation of transition probabilities we used observed frequencies

on the training sets. This maximum likelihood estimation would not have been

a good choice for the estimation of the probabilities p(q

k

jq

�

k

; s

�

), because for

some speci�cations of s 2 f1; :::; Jg and q

�

k

2 f1; :::; Q

k

g there are only very few

observations or even none in the training sets. Thus we used bayesian parameter

learning with uniform dirichlet priors. For further details, see Sondhauss and

Weihs [1999]. The equivalent sample sizes for the dirichlet priors were optimized

using a leave-one-observation-out analysis.

Exact forward propagation of evidence in dynamic Bayesian networks was

used to predict the phase of the cycle at time-points t given the evidence of the

last known state s

0

and observations ~x

1

; :::; ~x

t

, t = 1; :::; T :

ŝ

t

= argmax

s2S

p

L

(s j ~x

t

; :::; ~x

1

; s

0

)
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5 Results

In general, the performance of classi�cation rules for the prediction of business

cycle phases is pretty low, as it can be seen in the �rst column of Table 2: at

best we get an error rate of 37%. This is not surprising, given the diÆculties of

the problem, namely the complex and changing dependencies. Quite a surprise,

though, is the even poorer performance, when classifying with exact transitions.

To see how this can happen, we looked at the classi�ers predictions for cycles.

Typical for the pitfall we ran into is the following course of predictions of the

modi�ed NN

+

classi�er for the third cycle, compared to the static classi�er NN

and the true phases in Table 3.

Average Prediction Error

Static Exact

Method equal estimated

LDA 0.52 0.60 0.55

QDA 0.53 0.60 0.61

LDA-VS 0.52 0.63 0.52

QDA-VS 0.51 0.52 0.53

Mec1-Q 0.46 0.55 0.52

Mec2-Q 0.37 0.44 0.44

NN 0.37 0.53 {

SVM-OR 0.55 0.56 {

SVM-OO 0.50 0.55 {

Table 2: Average Prediction Errors Using Exact Transitions

NN 3 1 1 1 2 1 1 2 1 2 3 2 3 3 3 3

NN

+

3 3 4 1 2 2 2 2 2 2 3 3 3 3 3 3

True 4 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3

Table 3: Predictions of the NN classi�er with and without exact transitions on

the third cycle compared to the true phases coded as LTP=4, Up=1, UTP=2

and Down=3

Once the classi�er has mispredicted, it had big diÆculty to predict the phase

for the consequent quarters, because it is only allowed to compare for example

upper turning points (2) with downswing (3), where the evidence in the predictor

variables potentially indicates the true upswing (1), and might be no real help.

After an error, either the classi�er 'waits' in the mispredicted state for the cycle

to pass that state (like in the example), or it passes through all states, until

prediction and true state meet again.
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The importance of this risky behaviour of the classi�cation with exact transi-

tion is emphasized by the average local error rates given in Table 4 calculated for

the various methods for the four phases: the turning point phases are particularly

hard to identify, thus the probability that we get trapped is very high.

Local Error Rate

Method LTP Up UTP Down

LDA 0.72 0.32 0.81 0.51

QDA 0.97 0.26 0.92 0.33

LDA-VS 0.74 0.36 0.69 0.46

QDA-VS 0.90 0.40 0.86 0.16

Mec1-Q 0.56 0.38 0.84 0.46

Mec2-Q 0.38 0.31 0.82 0.30

NN 0.76 0.24 0.41 0.35

SVM-OR 0.82 0.39 0.67 0.49

SVM-OO 0.66 0.40 0.73 0.47

Table 4: Local Errors Rates

For example, when we "help" the classi�ers to identify the beginning of a

new cycle, by correctly starting in a lower turning point instead of a downswing,

the diÆculty to identify this transition is circumvented, and all of a sudden the

results change quite a lot, as you can see in Table 5.

Average Prediction Error

Static Exact

Method equal estimated

LDA 0.52 0.41 0.48

QDA 0.53 0.70 0.70

LDA-VS 0.52 0.55 0.49

QDA-VS 0.51 0.41 0.40

Mec1-Q 0.46 0.44 0.41

Mec2-Q 0.37 0.35 0.29

NN 0.37 0.34 {

SVM-OR 0.55 0.56 {

SVM-OO 0.50 0.xy {

Table 5: Average Prediction Errors Using Exact Transitions Given True First

Phase

For the "good" methods Mec2-Q and NN we now observe an improvement

in the APE. But of course, changing the starting value in a leave-one-cycle-out

analysis so that a certain phase transition no longer needs to be identi�ed, is
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cheating: in real life we are highly interested in identifying phase transitions

correctly.

So we have to �nd another way to help classi�ers out of the trap: we no longer

propagate the predicted state as the true one, but we propagate the probability

that a certain state is true, given the state s

0

at time-point t

0

:= 0 and the past

observations of predictor variables. Of course, we can only hope this strategy to be

useful for probabilistic rules, where membership values have some interpretation

as conditional class probabilities. The �rst step is the same as before. We predict

ŝ

1

using ~x

1

and s

0

:

pred(~x

1

j s

0

) = arg max

s=s

0

;s

�

0

p

L

(s j ~x

1

; s

0

):

The prediction of ŝ

2

is di�erent. Instead of assuming ŝ

1

=pred(~x

1

j s

0

) to be the

true state, we propagate to be in state s

0

with probability p

L

(s

0

j ~x

1

; s

0

) and in

state s

�

0

with probability (1�p

L

(s

0

j ~x

1

; s

0

)).

Thus, the probability to be in state s

�

0

now is the sum of the probabilities of

the two paths that can lead from s

0

to s

�

0

: s

0

!s

0

!s

�

0

and s

0

!s

�

0

!s

�

0

:

p

L

(s

2

j ~x

2

; ~x

1

; s

0

)

=

X

s=s

0

;s

�

0

p

L

(s

2

j ~x

2

; s)p

L

(s j ~x

1

; s

0

):

Later, more than two states are possible and the general rule for prediction use

conditional state probabilities recursively calculated by:

p

L

(s

t

j ~x

t

; :::; ~x

1

; s

0

)

=

X

s2S

p

L

(s

t

js; ~x

t

; :::; ~x

1

; s

0

)p

L

(sj~x

t�1

; :::; ~x

1

; s

0

)

Actually, we add-on the structure of a HMM on classi�cation rules (lets denote

this by HMM-CR) and predict phases using the forward procedure for �nding

the next state. The parameters of the distribution of the HMM-CR are de�ned

separately for the transition probabilities and the so-called emission probabilities

of HMMs, the p(~xjs), ~x 2 X, s 2 S. The transition probabilities are either

set to be equal for admissible states (non-weighted comparison) or estimated as

observed frequencies on the training set (weighted comparison). The emission

probabilities comply with the estimated conditional probabilities on the training

set that were used to build the rule (see equation 1).

The average prediction errors in Table 6 show that the classi�cation with

forward propagation leads to an improvement of results for most classi�ers, though

the size of improvement is disappointing:
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Average Prediction Error

Static Propagated

Method equal estimated

LDA 0.52 0.54 0.50

QDA 0.53 0.50 0.50

LDA-VS 0.52 0.54 0.52

QDA-VS 0.51 0.51 0.52

Mec1-Q 0.46 0.45 0.45

Mec2-Q 0.37 0.34 0.38

NN 0.37 0.37 {

SVM-OR 0.55 0.56 {

Rake { { 0.36

Table 6: Average Prediction Errors Using Forward Propagation

Whether or not a weighting of membership values with estimated transition

probabilities leads to better predictions, can not �nally be decided upon by our

results: for LDA, QDA and QDA-VS we observed a superiority of predicting

with weighting, but for QDA-VS and Mec2-Q a superiority of predicting without

weighting. Theoretically we would assume a superiority for the weighted strategy,

but these considerations depend on the additional assumptions

� that transition probabilities are stable over time, and

� that they are only dependent on the last state, and

� that they are as important for the prediction as the observation vector.

Thus, it is not very surprising that the results do not con�rm the theoretical

considerations.

6 Conclusions

Summarizing, from the analysis of the results one might deduce the following gen-

eral conclusions on the incorporation of background knowledge about a cyclical

class structure into classi�cation rules:

� Incorporation of cyclic structure by weighting membership values is only

useful for membership values on a ratio scale.

� Prediction based on classi�cation with exact transitions is risky, because one

false prediction might entail many succeeding errors. In domains, where one

phase is particularly diÆcult to detect it is very likely that this might cause

bad classi�cation results.
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� A promising method for state prediction is forward propagation of state-

probabilities as in hidden Markov models.

For the prediction of business cycle phases none of the implemented ideas has

lead to a major improvement of average prediction accuracy, though. This might

have been caused by two reasons:

� The minimum average prediction error that can be obtained when predict-

ing the four phases of business cycles based on the given data and the design

of comparison is about 33%. This high error rate might be caused by the

known structural instability of all dependencies - those between past, cur-

rent and future economic entities as well as those between economic entities

at the same time. The resemblance of the average prediction errors of the

best methods (NN, Mec2-Q, and Rake) - taking into account their totally

di�erent model assumptions - might suggest this explanation. Moreover,

in Weihs, R�ohl, and Theis [1999] it was found that a-priori restricting one-

self to a certain group of only two predictors leads to best forecasts on

the sixth cycle based on exact transitions. This might indicate that the

other so-called 'stylized facts' of the German economy are unstable in their

relationship to business cycle phases. Therefore, our next step will be to

analyze the adapted methods for this group of two predictors.

� All compared multivariate classi�cation methods are based on resampling

methods to identify the best classi�cation rule that ignore the cycle struc-

ture of the data. Therefore, these methods might be improved by using

the leave-one-cycle-out idea together with our ideas for predicting the next

state also for model identi�cation. This might possibly lead to better clas-

si�cation results, too.
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