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The Markov switching ACD model

Reinhard Hujer, Sandra Vuleti¢ and Stefan Kokot!-2

ABSTRACT

We propose a new framework for modelling time dependence in duration
processes on financial markets. The well known autoregressive conditional dura-
tion (ACD) approach introduced by Engle and Russell (1998) will be extended
in a way that allows the conditional expectation of the duration process to
depend on an unobservable stochastic process, which is modelled via a Markov
chain. The Markov switching ACD model (MSACD) is a very flexible tool
for description and forecasting of financial duration processes. In addition the
introduction of an unobservable, discrete valued regime variable can be justified
in the light of recent market microstructure theories. In an empirical appli-
cation we show, that the MSACD approach is able to capture several specific
characteristics of inter trade durations while alternative ACD models fail. Fur-
thermore, we use the MSACD to test implications of a sequential trade model.

Keywords: Financial transaction data, autoregressive conditional dura-
tion models, nonlinear time series models, finite mixture distributions,

Markov switching models, EM algorithm, market microstructure theory.
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1 INTRODUCTION 2

1 INTRODUCTION

Today it is customary that every single transaction of a financial asset traded on major
financial markets around the world is recorded electronically with detailed information
about the time of occurrence, price and volume and other relevant characteristics. Re-
cently, many of these high frequency data sets have become available at relatively low cost
to academic researchers. Hence, the last fifteen years saw an unprecedented upsurge in
both theoretical and empirical work related to the analysis of market microstructure issues
using transaction data sets that are steadily increasing in size.! This upsurge went hand
in hand with the progress made in computer technology, that made empirical analysis of

such data with ordinary desktop computers possible.

It seems only natural then, that this innovation in both, the quality of data available
for research and the development of the relevant theory was accompanied by the intro-
duction of new econometric methods which were tailor-made for the analysis of many
related policy issues. One of the most promising new approaches is the autoregressive
conditional duration model (ACD), introduced by Engle and Russell (1998), which fo-
cuses on the time elapsed between the occurrences of arbitrary trading events. The ACD
model combines elements of time series models? and econometric tools for the analysis of
transition data® and is therefore perfectly suited for the analysis of high frequency data
sets which, unlike most other time series used before in finance and economics, naturally
arise as irreqularly spaced data sets, i.e. the time between successive observations is not
a deterministic constant but rather a random variable itself. ACD models have been al-
most exclusively applied to high frequency financial data stemming from stock and foreign

exchange markets.

Following the seminal contribution of Engle and Russell (1998), a new branch in

the econometric literature quickly emerged, that tried to extend their original work in

1See Madhavan (2000) for a recent summary of this branch of literature.
2The ACD model is related to the GARCH approach introduced by Engle (1982) and Bollerslev (1986).
3See e.g. Lancaster (1990).
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several directions.? Despite the resulting variety of competing ACD-models, until now no
satisfactory ACD model in terms of forecast accuracy has been reported that could be
used for the prediction of the trading process itself." The main problem is the inability of
existing ACD models to forecast observations in the tails of their distribution, especially
very short trade durations, appropriately.

Our intention is to introduce a reasonable statistical framework for time series of inter
trade durations that can be used for forecasting purposes as well as for tests of the im-
plications of market microstructure models. This will be achieved by the introduction of
an additional latent, discrete valued regime variable whose evolution in time is governed
by a Markov chain. The unobservable regime can be associated with the presence (or
absence) of private information about an asset that is initially available exclusively to a
subset of informed traders and only eventually disseminates through the mere process of
trading to the broader public of all market participants. The inclusion of latent infor-
mation structures in an ACD model can be justified in the light of several recent market
microstructure models. The Markov switching ACD model (MSACD) provides a very
flexible framework, which allows to model trade durations resulting from different data
generating mechanisms depending on the state of the latent information regime and nests
many of the existing ACD models as special cases.

This paper is structured as follows: In Section 2 a brief review of the current state
of art in ACD modelling will be given. The MSACD model is introduced in Section 3
and compared to related work on regime switching autoregressive models. We propose
two different estimation procedures for MSACD models and discuss their applicability
and modify test procedures developed by Fernandes and Grammig (2000) and Diebold,
Gunther, and Tay (1997), so that they can be applied to MSACD models. In an empirical
application in Section 4 we compare the estimation results obtained with the MSACD

model to a selection of alternative ACD models. The usefulness of the MSACD approach

4Compare e.g. Bauwens and Giot (1997), Lunde (1999), Russell (1999), Russell and Engle (1999),
Grammig and Maurer (2000) and Zhang, Russell, and Tsay (2001).

5A comparison of the forecast accuracy of various ACD models with respect to a range of duration
processes of interest has been conducted by Bauwens, Giot, Grammig, and Veredas (2000).
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for testing the implications of market microstructure models is demonstrated in Section 5
and finally, in Section 6 we summarize our main results and give a perspective on possible

issues for future research.

2 THE ACD MODEL

The class of ACD models, introduced by Engle and Russell (1998) is designed to account
for autocorrelation patterns observed in time series of arrival times between successive
occurrences of certain events associated with the trading process. The definition of the
trading event depends on the specific aim of the study. Examples include the time between
successive trades, the time until a price change occurs or until a prespecified number of
shares or level of turnover has been traded.®

Let x, = t, — t,_1 be the time interval between the (n — 1)-th and the n-th trading

event with conditional mean

(1) E(xn|fn) = 77/)n(fnu 01&) = 77/)na

where JF,, may contain lagged dependent as well as lagged and contemporary exogenous
variables, i.e. F, = (21,...,Tn_1,Y1,--.,Yn), and 6, is the corresponding set of param-
eters that determines the conditional mean function. In this framework, all of the time
dependence of the duration process is captured by the conditional mean. The ACD model
is defined by some parameterization of this conditional mean and the following decompo-
sition

Tn
(2) En = %7
where the stochastic process e, is i.i.d. with a non-degenerate density function g (-;6,)

determined by parameters’ 6. and support on the positive real line and an unconditional

6Naturally, the price, volume and turnover duration processes arise from the trade durations series
by dropping intervening observations from the sample, thus yielding a ’thinned’ or *weighted’ duration
process.

"The parameters of the conditional mean 6, and of the conditional density 6. are assumed to be
variation free in the sense of Engle, Hendry, and Richard (1983), ie. if 8, € Oy and 6. € O, then
0= (9¢,9€) € @¢ X O..
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expectation equal to unity. The flexibility of the ACD model can be altered in (at least)
two ways: By modifying the distributional assumption for &,, and/or the functional form
of the conditional mean function ¢, (F,; 6y).

The choice of g(e,) determines the density of x,,, f, (z, | F;0) with 0 = (0,,0.) and
will always belong to the same family of distributions as ¢(-) . An assortment of admissible
distributions is given in Table VI in the Appendix.

In the most simple case of the ACD model, the parameterization of the conditional
mean 1, is completely analogous to the parameterization of the conditional variance in a
GARCH model. Thus, an ACD(p, ¢) model arises when the conditional mean function is

given by the linear autoregressive specification
p q
(3) ¢n:w+25k'¢n—k+zak'$n—k,
k=1 k=1

which can be transformed into an ARMA (max(p, ¢), p) representation, from which expres-
sions for the unconditional mean and variance, as well as for the autocorrelation function
of the duration process can easily be derived.

In order to ensure non-negativity of v,,, the parameters in the linear specification have
to obey some constraints. Alternatively, a nonlinear specification for the conditional mean
that closely resembles the EGARCH model of Nelson (1991) can be used. The logarithmic
ACD (LACD) specification

(4) In(¢n) =w+ > Be-I(Wn i)+ Y ax-In(zyp).

has been suggested by Bauwens and Giot (1997).%8 Analytical expressions for the un-
conditional moments of z, in the LACD specification are quite cumbersome.’ Imposing
stationarity requires additional restrictions on the parameters of the ACD and LACD
specification.

Estimates of the parameter vector are most conveniently obtained by maximum likeli-

hood techniques. The log-likelihood function can be expressed either as a sum of the loga-

8Several other versions of the LACD specification are obtained by inserting different forms of shocks
instead of the lagged durations in (4).
9See Bauwens and Giot (2000) for details.
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rithms of their conditional densities or by their associated conditional intensities though it
is more convenient to estimate # from the log-likelihood in terms of the duration densities
N
(5) L= "In[fy (2, | Fa;0)],
n=1
as defined previously. The estimation results can be used to examine if an acceptable
specification for the dynamics of the duration process has been found. Many tests are

based on the distributional assumption for &,,.

3 THE MARKOV SWITCHING ACD MODEL

3.1 Regime switching models in econometrics

Regression models that allow for time variable conditional mean specifications have a long
history in econometrics. Apart from the literature on testing for structural changes (e.g.
Chow (1960), Goldfeldt and Quandt (1965)), models that allow for repeated, discrete
changes of regime have been used to model macroeconomic time series with differential
behavior in recessions and in expansion phases. Switching regression models first appeared
in Goldfeldt and Quandt (1973). In these models, changes in the regime are modelled as
the outcome of an unobserved, discrete random variable which identifies the state of the
economy in each period. Extensions of this approach lead to models where the regime
variable is itself an autoregressive process, whose behavior is governed by a hidden Markov
chain - which itself could depend on observable variables.

In a seminal paper, Hamilton (1989) combined the Markov chain approach for the
latent regime with autoregressive dynamics in the observed economic time series. His
Markov switching autoregressive model (MSAR) has often been used to model macroeco-
nomic and financial time series, (Turner, Startz, and Nelson (1989), Engel and Hamilton
(1990), Cecchetti, Lam, and Mark (1990), Mundaca (2000), and Dewachter (2001)). The
common link between the MSAR model and the earlier literature on static switching re-
gression models is that both approaches imply that the data generating process of the

dependent variable can be described by a discrete mixture density, where the conditional
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density of the dependent variable, given the regime, is specified to be from some known
family of distributions, usually the Gaussian, and the density of the regime variable is
left unspecified. The regime probabilities are estimated non-parametrically along with
the regression parameters, by imposing the restriction, that the regime density is discrete
valued and has a known, finite number of support points. The MSAR model has been
extended in many ways, e.g. by allowing for time-varying transition probabilities in the
markov chain (Filardo (1994), Gray (1996), and Diebold, Lee, and Weinbach (1997)) or
to model changes in the conditional variances in an ARCH model (Cai (1994), Hamilton
and Susmel (1994), Gray (1996), and Rydén, Teriisvirta, and Asbrink (1998)).

Mixture models for point processes have also a long history. In the context of event
history analysis, mixture models have often been used to model unobserved individual
heterogenity in cross-sectional or panel data (Heckman and Singer (1982), Gritz (1993)
and Allenby, Leone, and Jen (1999)). There are also many applications of mixture models
for count data, (Wedel, Desarbo, Bult, and Ramaswamy (1993), Wang, Puterman, Cock-
burn, and Le (1996), Trivedi and Deb (1997) or Wang, Cockburn, and Puterman (1998)),
but none of these papers treats the case of a time series of events. A notable exception is
the material summarized in the book by MacDonald and Zucchini (1997), who motivate
hidden Markov models as an alternative to other time series models for discrete valued
processes. They avoid to generalize their analysis to point process modeling. Also, they
do not treat autoregressive specifications of the conditional mean of the observable time

series.

3.2 The MSACD model

We will apply the Markov switching framework as a statistical model for financial duration
processes. The general idea is, that the conditional mean of the duration time series
depends on an unobserved random variable s,, which is regarded as the regime or state
the process is in at time ¢,,. At the next time period, the duration process can switch to

another regime. Formally, the discrete valued stochastic process s, can assume any value
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from the set J={j |1 <j < J J € N}

In its most general formulation, the MSACD model assumes, that given the filtration
F, the decomposition (2) holds in the sense that E (¢, | F,) = 1. The conditional mean
of the duration z,, depends on the unobserved regime variable s,, in the following manner

J

(6) wnzzp(sn:j |fn§0)'1/)1(1j)7

j=1
where p (s, = j | Fn; 0) is the probability, that s, is in state j given the filtration F,,. The
regime specific conditional mean 1/)7(3) = FE (z, | sn = j,Fn;0) depends on an associated
set of parameters ij ) and may have an autoregressive specification as in Section 2.

The regime variable s,, switches between the states according to a Markov chain which
is characterized by a transition matrix P with typical element p;; equal to the transition
probability p;; = p (s, = j | sn_1 =14). Thus, the state of the process at time ¢, depends
only on the state of the previous observation. We assume, that the conditional density of
the observed duration f,(x, | s, = j, Fn;6) depends only on the current regime s, and
on F, where 6 € O is a vector containing all parameters that describe the distribution of
Tp, 0= <0§1), e 0&”, 91(1)1), e Gfp‘]),pu, e ,pJJ>I. Any of the densities we introduced in
Table VI for ordinary ACD models can be used as a conditional density in the MSACD
model. Since we cannot observe the realization of the current regime, the relevant density

for statistical inference is the marginal density of the observed durations'®

J
(7) fn(xn|fn59) :Zp(sn:]|fna9)fn(zn | sn:],fn,g)

=1
In order to evaluate this marginal density in a Markov switching model, the filtered regime

probability

(8) €)1 = (n1 = J | Fayrs6),

plays an crucial role. It represents the ex-ante probability for regime j at time ¢,,1,

conditional on information available up to time t,. Filtered regime probabilities can be

10Tn the context of the EM-algorithm introduced in Section 3.5, this density is also referred to as the
incomplete data density.
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obtained from a two-step recursion as follows'!

o &y (@ |50 = j, Fui )

(9) gn‘n = 7 i
> ) (wn | 80 = k. Fui6)

J
(10) & = Dm0
=1

With a given set of start values gﬁg and a given parameter vector 6, one can calculate the

regime probabilities iteratively. Note, that even though the transition probabilities pj;

()

ntiln AT€ time-varying. A static mixture

are constant, the regime probabilities 57(1]‘31 and &
model can be regarded as a special case of the Markov switching model. It is based

on a restricted transition matrix, where the elements of the j-th row are all equal, i.e.

7j = pj1 = ... = pjs. This implies time invariant forecasts of regime probabilities
57(121‘” = m; for all n but 57(1]'31 is still varying in time. This is the key property that

distinguishes a static mixture model from the Markov switching model.
An issue that has to be addressed, is the specification of the conditional mean function
’gbg ). There are in principle two possible ways, in which lagged forecasts can appear. If

) ¢(J’)

the current forecast d)ﬁlj) is a function of ¥, 1, ,, ..

., forecasts are based on the regime
specific forecast error. Note, that the regime specific conditional mean of an MSACD(1,1)
model admits the ARMA(1,1) representation z; = w) + (o) 4+ pU)) .,y — BU) .« (3, —
’gbz(i )1), thus the model implicitly assumes, that economic agents revise their forecasts based
on the deviation between the realized duration x;_; and the regime specific expectation
1(1 )1. Another possible specification is to make 1/),9 ) a function of past forecasts that are
regime independent 1, _1, thus assuming that the deviation between the realized duration
and the unconditional expectation (z; 1 — t; 1) determines the current regime forecast.
However, when regime independent lagged expectations 1) appear in the forecast func-
tion, the problem of path dependence arises. In this case, the regime dependent expected

duration @/},(1]') depends on the entire sequence of realizations for (s, sa, ..., S,). Since we

cannot observe this sequence, we have to consider all J™ possible paths. An evaluation of

1See Hamilton (1994), p. 692-694 for a proof.
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all of the possible paths even for a moderate sample size is prohibitively expensive in terms
of computational effort. Therefore we apply a heuristic solution based on an aggregation
of regime specific conditional means that has been used in the context of Markov switching
GARCH models by Gray (1996) and Fong and See (2001). The unconditional expected

duration 1), is computed by summing over all regime specific conditional expectations
o)
J .
=1
When this specification for the conditional mean is employed, the distribution of ¢,, = 192—"

can be derived as shown in Appendix A.2.

3.8 Inference on the latent regime

Beside the ability to produce forecasts on future durations, in many applications the
regimes themselves can be the quantity that the researcher wants to draw inference on.
For example, in macroeconomic applications, the regimes can be associated with recession
and boom phases in the business cycle. In marketing applications, the inclination to buy
certain goods may be related to unobserved heterogenity among a sample of consumers.
Analogously, in financial applications estimates of the regime variable s, may provide
evidence on the presence of agents with private information.

In principle, the regime probabilities given in equation (9) could be employed. A
superior inference on the state of the regime may however be obtained by ex post use
of the full sample information. This will provide us with smoothed inferences {fﬁv =
p(sn = 7 | xn, Fn;0). These may be evaluated using an algorithm, which consists of
a backward recursion starting with the filtered inference 55\??]\7 obtained from (9) and
progressing according to

J )
) G = e 3
k=1 n+ljn

This algorithm has been proposed by Kim (1994). Application of this algorithm is valid
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only, when s, follows a first-order Markov chain and when the conditional density of z,

depends only on the current state s, and on the filtration F,.

3.4 ML-estimation of MSACD models

In the case of regime switching models there are several ways, in which ML estimates
of # may be obtained. The usual approach maximizes the likelihood function based on
the marginal density of x,, which is also known as maximizing the incomplete likelihood
L;(0), since this likelihood is based on observable quantities only, while realizations of the

regime variable are unobservable. Thus we estimate # with an incomplete data set. The

log-likelihood function In £;(6) for the MSACD model

N
(13) nLr(0) = In[falzn | Fu;0)],

n=1
has to be maximized numerically under the linear constraints Zgﬂpkj = 1 for all

j € {1,...,J} and additional restrictions for non-negativity, stationarity and eventually
for distributional parameters. If the conditional mean function ’gbﬁlj ) contains lagged ex-
pectations v,,_g, the likelihood function has to be evaluated observation by observation
for all regimes simultaneously, because of the need to aggregate lagged conditional means
1/)52 . according to equation (11). Also, filtered inferences on the regime probabilities given
in equations (9) and (10) have to be evaluated observation by observation. Since this has
to be repeated several times during each iteration, the resulting estimation procedure is
very time consuming.

The likelihood function for switching models may have more than one local maximum
and these may be located in boundary regions of the parameter space. It is well known
that standard maximization algorithms such as the Newton-Raphson may fail or produce
nonsensical estimates. In such cases the maximization procedure may be started anew
with different start values. It is recommended that estimation should always be repeated

several times with different start values in order to make sure, that a global maximum

has been found.
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3.5  The EM-algorithm for MSACD models

An alternative way of obtaining ML-estimates for Markov Switching models is based
on the Expectation-Maximization (EM) algorithm introduced by Dempster, Laird, and
Rubin (1977). Its numerical robustness offers an advantage over standard maximization
methods. The basis for the EM-algorithm is the hypothetical situation, where we can
observe the realization of the sequence of regimes. Defining the random variables 2 =1
if s, = j and 299 = 1if s, = j and s,_; = 7 and zero otherwise, the complete log-

likelihood function In L(#) is given by

N
nLe(0) = In|J] fal@n: s | Fus 0)]
n=1
N J ' N J J -
(14) = Z Z Zg) ' ln[fn(mn | Sn = j7 ‘Tn; 9)] + Z Z Z Z;;ﬂ) ' ln[pji]-
n=1 j=1 n=2 j=1 i=1

The likelihood contribution of the initial state of the regime s; can be included in the set
of parameters to be estimated. However, it is more convenient to work with a conditional
likelihood function, taking the state of the first observation as given. The EM-algorithm
proceeds by taking the expectation of (14) conditional on the observable data Xy =
(x1,...,ZN,Y1,--.,yn) and evaluates it using some preliminary guess for the parameter
vector fy. The expected complete log-likelihood function In Lrze = Efln Lo (0) | X; 0] for
the MSACD is given by

11] LEc(H, 00) =

(Z & W fo(@n | 50 = . Fu: 0)])
(3 )

7j=1 =1

N
n=1
(15) + Z
where fiﬁv is the full sample inference on the regime obtained by evaluating the backward
recursion (12) using the preliminary guess 6 and'?
()

ji . . i DPji §nN
(16) 5"(’L‘7|]% =p (Sn =1,5-1=1 | LENafN; 90) - 67(111‘”71 . W'
n|n—1

12See Hamilton (1994), p. 701.
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The evaluation of In Lz (6, 0y) constitutes the first part of the EM-algorithm and is com-
monly referred to as the E-step. In the E-step latent variables, in our case the realizations
of the regime indicators, are replaced by their expectations conditional on the observed
sample data Xy and evaluated using an arbitrary guess for the parameter vector 6.
The associated M-step consists of maximizing the expected complete log-likelihood
function In Lgc(0,6y) with respect to the parameter vector 6. The same restrictions
as in the case of the incomplete log-likelihood have to be imposed. Application of the
EM-algorithm has the advantage, that the maximization of In Lgc(0,6,) with respect
to the parameters of the ACD-model and the transition probabilities can be conducted

separately, if 8f”(m”g;”ij’f”;a) =0, Vjmke(1,...J). Then the first order conditions

lead to the following estimator for the transition probabilities'?

- - - & U
) ;:)210(8” =J,sn—1 =1 | zn, Fi;bo) nZ:) Enn

(17) Pji = N - N
Zp(5n71:i|xNifN;90) Zgnz_l‘]v

n=2 n=2

which is essentially equal to the estimator for p;; that we would obtain if the regime vari-
ables s, were observable (i.e. the frequency of observing a transition from state i to state
j relative to the frequency of observing state i), again with unobserved quantities replaced
by appropriate probabilistic inferences. The remaining parameters may be obtained from
the solution to

N J R
(18) SN el (a In fn(2n |;g :]’f"’0)> = 0.

n=1 j=1

Note that the condition af"(m"gj)"ij’f";g) =0, Vjmk e (1,...J) is satisfied when (a)

the specification of the conditional mean function of the ACD-part of the model does not
contain lagged expected durations (so the aggregation procedure described in Section 3.2
can be avoided), (b) the lagged expected durations appearing in the conditional mean
specification are taken to be dependent on the same regime as the current forecast as e.g.
in ’gbﬁlj) = w4+ 0. 1/)7(1]21 +al .z, 4 or (c) only distributional parameters 6. are regime

dependent.
13See Hamilton (1989).
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The EM-algorithm proceeds iteratively in the following manner: Each iteration of the
algorithm contains two steps. Starting from an initial guess for the parameter vector 6,
the E-step consists of the computation of the smoothed probabilities 57(13&\, and 57%\), These
probabilities are plugged into the formula for the expected complete log-likelihood func-
tion. In the M-step, this function is being maximized in order to obtain an updated guess
for the parameter vector 6, which will be used to conduct the E-step in the next iteration
of the algorithm. Thus, by repeating these two steps until a prespecified convergence
criterion is fulfilled the ML-estimates are found. It can be shown that the final estimates

0 maximize both the expected complete log likelihood function as well as the incomplete

log likelihood function.'

3.6 Statistical inference

When conducting specification tests in static mixture and Markov switching models, some
care has to be exercised in order to avoid incorrect decisions as a result of the non-standard
distributions of the test statistics involved. An example is testing whether a given data
set may be described by a N-regime model or whether (IV — 1) regimes are sufficient. The
corresponding likelihood ratio statistic will not have the usual y?- distribution, but differ
from it substantially even in large samples.!> Another example is the usual t-statistic
for Hy : pj; = 0 against Hy : pj; > 0. Under the Null, p;; lies on the boundary of
the admissible parameter space, thus violating one of the regularity conditions needed in
order to derive the asymptotic normal distribution for the t-statistic.

On the other hand, when the number of regimes is known, the maximum likelihood
estimate of the parameter vector # has asymptotically a normal distribution with covari-
ance matrix derived from the usual estimates of the information matrix. Hypothesis tests
may be conducted in the usual fashion, as long as non of the maintained hypothesis vi-
olates the regularity conditions. Therefore, t-statistics for testing whether a particular

regression parameter [3;; is significantly different from zero may be compared to tabulated

14See Hamilton (1990) for a proof.
15Gee Bohning, Dietz, Schaub, Schlattman, and Lindsay (1994).
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critical values of the t-distribution. In the context of Markov-switching regression models,
Hamilton (1996) proposes a variety of specification tests, which are based either on con-
ditional moment conditions implied by the model or on the Lagrange multiplier principle.
Both types of tests require the evaluation of the score function [, = W, where
Jn(xn|Fn; 0) is the density defined in (7). Hamilton derives analytical expressions for the
scores of the incomplete log-likelihood function In £;(0) and all test statistics he considers
are functions of the scores.

Fernandes and Grammig (2000) have introduced specification tests for ordinary ACD
models which are based on the discrepancy between the observed and the theoretical
density respectively hazard function of the residuals and are, with minor refinements,
applicable to the MSACD model as well. In the following, we will discuss the test based
on the density of the residuals only. In ordinary ACD models the test statistic is easily
calculated by noting that the residuals e are independently identically distributed (i.i.d.).

The null hypothesis is
(19) Hy:3 6€0© suchthat g(e;0)=g(e)

where g(g) is the true but unknown density of the residuals and g(e; 0) the density implied
by the parametric ACD model. In order to make this test operational, a kernel density
estimate §(¢) of the density of the estimated residuals is used and the theoretical density
is calculated based on the estimated parameter vector from an ACD specification g(e; é)

Thus the observed mean squared distance D, between the two densities is given by

(20) Dy =3 [o(6h) — o)

Under the null hypothesis (19) and some additional regularity conditions'® the statistic

FG has asymptotically a standard normal distribution. F'G is given by

N - h05. Dg — p05. EDg

(21) FG =

16For details, see Fernandes and Grammig (2000).
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where h is the bandwidth used for density estimation and is of order o(IN~%/°%) when s is

the order of the kernel function employed'”, EDg and VDg are consistent estimates of

Bo, = [Kwdu [lge) de

Vp, = / /K(u)-K(u+v)du dv-/[g(s)]4d6,

v &

and K (-) is the chosen Kernel function. The test is conducted as a one sided test, so that
large, positive values of F'G lead to rejection of Hj.

In contrast to ordinary ACD models the MSACD assumes that residuals follow a
known mixture distribution with mean equal to one and time varying higher moments.!®
The Fernandes and Grammig (2000) test can still be conducted, though one has to take the
time varying nature of the theoretical density into account. The kernel density estimator
provides us with an estimate of the density g(e), which is itself a mixture of the N different
densities g,(¢ | Fn;0). Therefore we propose to make the two densities comparable by
taking the mean of the theoretical densities

N

(22) o(e:0) = > gule | 7o),

n=1
and calculate the distance to the kernel density estimate.
As a second specification test we apply a method advanced by Diebold, Gunther,
and Tay (1997) to test the forecast performance of the MSACD models. Denote by

{fu(zn | Fn;0)}N_, the sequence of one-step-ahead density forecasts evaluated using pa-

rameter estimates 0 from some parametric model and by { f, (2, | Fn; 0)}_, the sequence
of densities corresponding to the true, but unobservable data generating process of x,.

Diebold, Gunther, and Tay (1997) show that a forecast based on a correctly specified

17A kernel function K (u) is said to be of order s if its first s — 1 moments are zero, while the s-th
moment is finite and unequal to zero. E.g. the Gaussian kernel K (u) = —=-exp (—“;) is of order s = 2.

In our empirical application, we used the bandwidth selector h = 1.06- p: - (In(N)) ! - N=%2 where N is
the sample size and p: is an estimate of the standard deviation of the estimated residuals €, as suggested
to us by J. Grammig in personal communication.

18See Appendix A.2.
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density will be preferred by all forecast users regardless of the form of their loss func-
tions. This suggests that forecast performance can be evaluated by assessing whether the

densitiy of the forecasts are correct, i.e. whether
(23) Ho: {fa(@n | Fui 03050 = {falan | Faz 0)105

Since the true distribution f,(x, | F,;6) is never observed, the sequence of conditional

empirical distribution functions defined by
(24) 6= [ hutu | st

is used as a test statistic. As shown by Rosenblatt (1952), under the null hypothesis
the distribution of the sequence of probability transforms én is uniform i.i.d. on the unit
interval, so that any test for uniformity of the én sequence can be used to asses the forecast
performance of the model under consideration. The test can also be used to compare the
performance of several non-nested model specifications.

The recommendation of Diebold, Gunther, and Tay (1997) is to supplement statistical
tests for i.i.d. uniformity by graphical tools. Departures from uniformity can easily be
detected using a histogram plot based on the én sequence. A straightforward x? goodness-
of-fit test can be conducted by exploiting the statistical properties of the histogram under

the null hypothesis of uniformity.

4 EMPIRICAL APPLICATION

4.1 The data set

The data used in our empirical application consists of transactions of the common stock of
Boeing, recorded on the New York stock exchange (NYSE) during a month in 1996 from
the trades and quotes database (TAQ) provided by the NYSE Inc. The sampling period
spans 19 trading days from Nov. 1 until Nov. 27, 1996. We used all trades observed

during the regular trading day (9:30 - 16:00). The trading times have been recorded with
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a precision measured in seconds. Observations occurring within the same second have
been aggregated to one trade, by summing the corresponding volumes and computing a
volume weighted average of their prices. In the final data set we removed two kinds of
censored durations: Durations from the last trade of the day until the close and from the

open until the first trade of the day.

4.2 Analysis of seasonality

It is well known that the length of the durations varies in a deterministic manner during
the trading day that resembles an inverted U-shaped pattern, i.e. intensity is very high
after the open and before the close, while it tends to be low during the middle of the day,
see Figure 1. Engle and Russell (1997) propose to decompose the duration series into a
deterministic function of the time of day, ®(¢,) and a stochastic component x,,, so that
Tp = x, - ®(t,). In this paper, we will apply the two step method proposed by Engle and
Russell (1997) in which the time of day function is estimated separately from the other
model parameters.'® Dividing each duration in the sample by the appropriate time of day
function value, a sequence of deseasonalized durations is obtained.

In order to estimate the time of day function we employ the semi-nonparametric (SNP)
estimator introduced by Gallant (1981) and Eubank and Speckman (1990). The basic
approach is to approximate the unknown function ®(t,) using a fourier series expansion
accommodated by polynomials in the regressor variables. Estimation in the univariate

case is carried out by fitting a regression curve of the type

P Q
(25) Tn=/f0+ Z (Bp - h(ta—1)?) + Z [¢q - cos (g - h(tn—1)) + &g - sin (¢ - h(tn—1))],

q=1
where the normalizing function h(t) is given by

(26) h(t) = 27 - —— tmin_

)
tmax - tmin

19Simultaneous ML estimation would also be possible. Engle and Russell (1998) report that both
procedures give similar results if sufficient data is available.
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and tmin (fmax) i the time of day at which trading begins (ends) at the NYSE. This type
of estimator is especially well suited for our purposes, since it can reproduce non-linear
shapes of the time of day function.?’

Our choice of the smoothing parameters P and () was guided by the analysis in
Andrews (1991b), who shows that when the errors of the regression function are het-
eroscedastic, smoothing parameter selection by minimizing the simple ’leave one out’
cross-validation function over a grid of values for P and () will lead to asymptotically op-
timal estimates. Thus we re-estimated the model for the grid defined by P = 1,2,3 and
@ =1,...,25 and found a minimum of the cross-validation function at P =1 and @) = 1.
A plot of the cross-validation function and the corresponding estimated intraday pattern
is contained in the right panel of Figure 1. In order to assess the fit of the estimated
seasonal pattern, we included the intradaily evolution of the mean durations, computed
over successive 5 minute intervals in the left panel of Figure 1. This alternative estimator
of the seasonal pattern is clearly more severely affected by sampling variation than the
SNP-estimate, and also has the drawback to be a discontinuous function.

Descriptive information about sample moments and Ljung Box statistics of the orig-
inal and the seasonally adjusted duration data are reported in Table I. As expected,
the adjusted duration series has a mean of approximately one. Both time series exhibit
overdispersion relative to the exponential distribution, which has standard error equal to
mean. Another characteristic of the data is the presence of strong, positive autocorre-
lation in the trade durations. Even after seasonal adjustment, the Ljung-Box tests for
no autocorrelation up to 50 lags are rejected at the 5% significance level. Therefore, an
autoregressive approach appears to be appropriate as a model for the durations. In order
to assess the out-of-sample forecast quality of the MSACD model, we divided our initial

data set consisting of 9092 deseasonalized durations into two subperiods. The column

20 Also the SNP approach takes into account that the regressor variable has bounded support, which is
true in our application where the trading day is limited to 6.5 hours per day. Asymptotic normality and
consistency of SNP-estimators for several types of data generating processes with i.i.d. and heteroscedastic
errors have been established in Eastwood (1991), and Andrews (1991a). The same technique has been
applied by several researchers to estimate seasonal components in GARCH-models, see e.g. Andersen
and Bollerslev (1997).
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FIGURE 1: Analysis of intraday seasonality. Left panel: Intradaily 5 minute interval
means and estimated seasonal pattern. Right panel: Cross-validation function.

titled "In-sample" contains the descriptive statistics for the first 6060 observations (corre-
sponding to two thirds of the total sample), which are used to estimate parameters used
for forecast evaluation. The rest of the data set is used to compute out-of-sample fore-
casts, based on the estimated parameters. Descriptive statistics for the second subsample
are contained in the column named "Out-sample". Durations in both subsamples appear
to have similar characteristics, except for the occurrence of very large durations, which
tend to appear more concentrated in the first subsample. This could explain the higher
excess kurtosis as well as the higher value of the Ljung Box statistic in the first subsample.
It is well known, that estimates of the autocorrelation function are sensible to extreme
observations (outliers). Nevertheless, note that although the Ljung Box statistic is much
smaller for the second subsample than for the first, it is still consistent with rejection of

the null hypothesis of no autocorrelation at conventional significance levels.

4.8 Estimation results for MSACD models

We focus on the logarithmic class of ACD models based on the Burr distribution for each
regime and distinguish between three different specifications of the MSACD model. In
the restricted (R) MSACD model specification, the restrictions w® = ... = w), ) =

=B 0 = =aY) and p;; = ... = p;y = 7; have been imposed, so that only
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TABLE I: Descriptive Statistics for Boeing trade durations

Subsamples
Statistic I T, In-sample Out-sample
Mean 48.3248 1.0007 1.0435 0.9151
Standard deviation 61.8416 1.1933 1.2471 1.0727
Overdispersion 79.1392 1.4229 1.4905 1.2575
Skewness 3.3137 2.8681 2.8944 2.6647
Excess Kurtosis 18.8846 13.5436 14.2189 9.4243
Minimum 1.0000 0.0141 0.0141 0.0141
1st Quartile 10.0000 0.2323 0.2355 0.2272
Median 27.0000 0.5875 0.6014 0.5589
3rd Quartile 61.0000 1.2980 1.3739 1.1659
Maximum 894.0000 16.1672 16.1672 8.3896
Interquartile range 51.0000 1.0657 1.1384 0.9388
N 9092 9092 6060 3032
Ljung Box® 3815.6633 1362.7593 1018.9819 249.8529

@ The Ljung Box statistic is based on 50 lags. For a significance level of 5%
the tabulated critical value is 67.1671.

the remaining distributional parameters are allowed to vary between regimes. The simple
unrestricted (SUR) model is characterized by the feature that lags of the regime specific
conditional mean may appear in the forecast function, yielding e.g. the following first order
specification In($)) = w@ + B9 . In(h?) ) + o - In(x,_1). Estimation of the R and
SU R specification can exploit the advantages of the EM-algorithm, while the unrestricted
(UR) MSACD model, which includes lags of the regime independent conditional means
obtained by aggregation of regime specific means in the forecast function as in ln(¢§lj )) =
w9+ BU) In(1hp_1) + ' In(z,_1 ), has to be estimated by maximization of the incomplete
log-likelihood function.

The in-sample results of the specification tests for all of the model specifications we

estimated are presented in Table II. None of the specification tests that we performed,

supports the one regime model. Also, the Bayesian information criterion?! (BIC) does

21Gee Schwarz (1978).
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TABLE II: Specification tests for Burr MSACD models, in-sample

Model InC BIC  P(x}) P(LB;) P(FG) P(LB:)

1 Regime specification

LACD(0,1) -6166.24 12367.33  0.0000 0.0000 0.0000 0.0000
LACD(1,1) -6025.59 12094.74  0.0000 0.3335 0.0000 0.6315

2 Regime specification
LACD(0,1)
R -6021.99  12104.94  0.0288 0.0000  0.0000 0.0000
SUR/UR -6001.59  12090.28  0.0000 0.1385 0.0000 0.0000

LACD(1,1)
R -5898.96  11867.60  0.0912 0.4165  0.0053 0.4100
SUR -5864.46  11833.44 0.1145 0.4048 0.0015 0.4905
UR -5883.20  11870.92  0.0125 0.2562  0.0020 0.5505
3 Regime specification
LACD(0,1)
R -6021.99 12131.07  0.0288 0.0000 0.0000 0.0000

SUR/UR  -5899.55 11955.87  0.0172 0.0137 0.0000 0.0000

LACD(1,1)
R -5898.96  11893.73  0.0823 0.3757 0.0056 0.3728
SUR -5828.55  11840.00  0.2666 0.1609 0.0581 0.1822
UR -5840.06  11863.03  0.8391 0.2103  0.4758 0.7746
4 Regime specification
LACD(0,1)
R -6000.27  12113.77  0.9074 0.0000  0.2248 0.0000
SUR/UR  -5869.27 11982.42  0.1757 0.0019 0.0337 0.0000
LACD(1,1)
R -5898.96  11919.85  0.0823 0.3369 0.0056 0.3340
SUR -5804.04 11886.78  0.4558 0.1188  0.7985 0.5552
UR -5834.64  11947.99  0.0556 0.0194 0.0349 0.1278

In £ is the value of the log-likelihood function, BIC is the Bayesian informa-
tion criterion, computed as —2 - In £ + In(N) - k, where k is the number of
estimated parameters, P(Xg) is the p-value of the ordinary x2 goodness of fit
statistic for the i.i.d. uniformity of ¢, using an histogram estimator for its den-
sity based on 20 bins, P(LB¢) is the p-value corresponding to the Ljung-Box
statistic for 50 lags of {, P(F'G) is the p-value of the Fernandes and Grammig
test statistic, P(LBc) is the p-value corresponding to the Ljung-Box statistic
for 50 lags of €. All LB-statistics have been compared to critical values from
a x2 distribution with 50 — (p + q + k) degrees of freedom, where k is the
number of estimated transition probabilities.

not support this model. From the plots of the density estimates of the residuals, as well
as from the histogram of the series of density integral transforms ¢, (see Figure 2), we
find that one regime ACD-models have severe problems to predict very small durations

appropriately. These findings also hold for the out-sample forecasting performance of the
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one regime models. Neither the F'G nor the uniformity test for the (,, series is passed
at conventional significance levels, as indicated by the p-values of the corresponding test
statistics given in Table III. Also, the one regime models perform bad in terms of forecast

accuracy, as indicated by the values of the mean squared error (M SE) and mean absolute

error (MAE).

TABLE III: Specification tests for Burr MSACD models, out-sample

Model P(x3) P(LB;) P(FG) P(LB.) MSE MAE

1 Regime specification

LACD(0,1) 0.0000 0.0000 0.0039 0.0000 1.1687 0.7782
LACD(1,1) 0.0000 0.3802 0.0053 0.4840  1.1268  0.7268

2 Regime specification

LACD(0,1)
R 0.0000 0.0000  0.0000 0.0000 1.2998  0.9006
SUR/UR  0.0002 0.3464 0.4155 0.2602 1.1366  0.7486
LACD(1,1)
R 0.1278 0.4022 0.0065 0.3427 1.1976  0.8200
SUR 0.0228 0.2724  0.0011 0.3382  1.1255  0.7252
UR 0.0296 0.2762 0.0002 0.3258 1.1271  0.7266
3 Regime specification
LACD(0,1)
R 0.0000 0.0000  0.0000 0.0000 1.2999  0.9006

SUR/UR  0.2658 0.1309 0.6546 0.0490 1.1441 0.7564

LACD(1,1)
R 0.1337 0.3627  0.0065 0.3057  1.1976  0.8200
SUR 0.0124 0.0930 0.0000 0.1979  1.1227 0.7205
UR 0.0008 0.1466  0.0000 0.1527 1.1236  0.7271
4 Regime specification
LACD(0,1)
R 0.0000 0.0000 0.0000 0.0000 1.3696 0.9494

SUR/UR  0.0063 0.0269 0.3265 0.0162  1.1356  0.7480

LACD(1,1)
R 0.1337  0.3243  0.0065  0.2704 1.1976  0.8200
SUR 0.0105  0.0156  0.0416  0.0640 1.1247  0.7192
UR 0.0008  0.0217  0.0003  0.0127 1.1257  0.7302

N X N R
MSE=N71- 3 (zn — ¢n)?, MAE=N"1-3 |zn — tnl.
n=1 n=1

Turning to the MSACD model, we estimated 2-, 3-, and 4-regime specifctions with
LACD(0,1) and LACD(1,1) conditional mean functions. The choice of our preferred model

was based on the principle of parsimony and also on our ultimate goal to find a model
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specification that yields a good in-sample fit as well as reasonable out of sample forecast
performance for trade durations. With regard to the in-sample results, the SUR MSACD
specification performed generally better than the corresponding R and U R versions, both
in terms of the values of the BIC and the results of the specification tests that we
conducted. The BIC prefers the 2-regime specification, but the results of the F'G tests
do not support the 2-regime specification at all. Therefore, we focused on the 3-regime
SU R specification, since this was the one, that passed through all in-sample specification
tests we conducted, while at the same time it is more parsimonious than the 4-regime

model, which is also reflected in lower values of the BIC.

Furthermore this model also showed the best out of sample forecast performance
among all models that we considered as indicated by the low values of the MSE and
MAE. Focusing on the out of sample results, the SUR specifications tend to give more
accurate forecasts than the corresponding U and UR specifications, as indicated by the
values of the M SE and M AFE. On the other hand, the test statistics for the F'G and the
uniformity test of the forecast density do seem to favor the R model in the LACD(1,1)
case, while the SUR/U R model is preferred in the LACD(0,1) case. Perhaps surprisingly,
the models that pass the specification tests tend to perform worse in terms of forecast

accuracy than the models that do not pass them.

Even though the result of the F'G test for the out-sample does not support the 3-
regime SUR LACD(1,1) specification, we find that it offers a reasonable compromise
between ’'in-sample’ and ’out-sample’ performance and therefore will be used to conduct
tests of the implications of market microstructure theories in Section 5. Table IV contains
the corresponding parameter estimates, standard errors and results of the specification
tests described above for the selected 3-regime SUR LACD(1,1) specification. Standard
errors have been computed based on numerical derivatives of the incomplete log likeli-
hood function using the quasi-maximum likelihood (QML) estimates of the information
matrix as suggested by White (1982). The same model was also estimated based on the

total sample of 9092 observations for use in Section 5. The parameter estimates for the
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entire sample are presented in the column entitled "Total sample" and differ from the
"In-sample" estimates only marginally, thus reinforcing the impression, that the chosen
MSACD specification provides a robust model for the data generating process of the trade

durations during the sample period under consideration.

TABLE IV: Estimation Results for the SUR 3-Regime log. Burr MSACD(1,1) model

In-sample Total sample

Parameter Estimate  Stderr. Estimate  Stderr.
w® -0.0102  0.0107 -0.0165  0.0166
alV 0.0215  0.0072 0.0262  0.0125
BV 0.9663  0.0154 0.9511  0.0296
kD 2.1565  0.1570 2.1955  0.1228
o2 0.8749  0.1366 0.8665  0.1286
w® 0.0243  0.0161 0.0187  0.0043
al? 0.0238  0.0159 0.0188  0.0046
B 0.9757  0.0176 0.9812  0.0046
k3 1.6385  0.0776 1.6577  0.0600
2 0.3559  0.0516 0.4080  0.0444
w® -0.0181  0.0053 -0.0399  0.0167
al® 0.0031  0.0018 0.0077  0.0043
8 0.9883  0.0029 0.9741  0.0117
k(3 3.4156  0.3910 3.0937  0.2745
o2® 1.8981  0.3673 1.6414  0.2246
P11 0.4112  0.0701 0.3889  0.0581
P12 0.2572  0.0386 0.2211  0.0341
P13 0.3232  0.0817 0.3279  0.0660
' 0.4206  0.0821 0.4290  0.0607
D22 0.5932  0.0377 0.6065  0.0382
P23 0.5416  0.0943 0.5410  0.0849
N 6060 9092

Ing -5828.55 -8430.96

BIC 11840.00 17053.34

X? 22.3630 okok 19.3242 okok
LB 46.5509 Hokk 44.9270 Hokk
FG 1.5708 *x -0.2250 Hokk
LB- 45.7174 Hokk 54.4470 *

* indicates that the Null-hypothesis of the corresponding spec-
ification test may not be rejected at the 1%-significance level,
** at the 5%-significance level, and *** at the 10%-significance
level.

For purposes of comparison, Figure 2 contains plots of the density estimates for &, as
well as the histograms for the ( series for the 1-regime and the 3-regime specifications. The

plots for the in-sample clearly show, that the MSACD model produces forecast residuals
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that match the implied theoretical density very well and tends to give accurate forecasts
over the whole range of observed values of x. In contrast, the plots for the one regime
model show, that estimates of the residual density disagree sharply with the theoretical
density, and that it tends to produce systematically biased forecasts of small = (the
histogram for the first four quantiles is outside of the 95% confidence interval).
Out-sample plots for the one regime model confirm this picture, while the density plots
for three regime MSACD model reveal that the theoretical and estimated density of the
residuals still seem to match quite well, but the variance of the kernel density estimates
has increased substantially. Furthermore, the out of sample histogram estimates appear
to be more wiggly and occasionally lie clearly outside of the confidence interval. Even so,
there is no sign of a systematical pattern of over- or underestimation as in the case of the

one regime model.
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FIGURE 2: Results of the specification tests for 1-regime versus 3-regime MSACD(1,1)
models. First row: Estimates of the density of the log residuals and corresponding the-
oretical density of log residuals implied by the estimated in-sample model. Second row:
Histogram plots of the cumulative forecast density and 95% confidence intervals for the
in-sample. Third row: Theoretical and estimated density of log residuals for out-sample.
Last row: Histogram plot for the out-sample.



5 TESTING IMPLICATIONS OF SEQUENTIAL TRADE MODELS 28

5 TESTING IMPLICATIONS OF SEQUENTIAL TRADE MODELS

In the framework of Easley, Kiefer, O’Hara, and Paperman (1996), henceforth denoted
as EKOP, the price setting behavior of market makers is explained by the presence of
traders who have superior information affecting future price movements. Their setup is
a mixed (discrete and continuous time) sequential model of the trading process, in which
trades arise because of the interaction of three types of economic agents, informed and
uninformed traders and a risk neutral, competitive market maker.

The magnitude of the bid-ask spread depends on the arrival rates of informed and
uninformed traders which are governed by independent Poisson processes in their original
framework and on the likelihood of the occurrence of three different types of information
events ("no news", "good news" and "bad news") which are determined every day before
the first trade takes place. Given the occurrence of a news event which has probability 7y,
either a bad news event occurs with probability g or a good news event with probability
(1—np). On a trading day without a news event all transactions result from the arrival of
buy and sell orders from uninformed traders. The arrival rate of both, buy and sell orders
by uninformed traders, is assumed to be determined by independent Poisson processes
with identical arrival rate equal to Ay. The probability structure of the trading process
is summarized by the tree diagram in Figure 3.

However, if a news event occurs there will be additional order arrivals resulting from
the transaction demand by informed traders, who are assumed to be risk neutral and
competitive. Informed traders observe a signal, indicating either the presence of good or
bad news, so their trade arrival rate will dependent upon the type of information event.
When a low signal indicates bad news, the profit maximizing investment strategy will be
to sell the asset, so the aggregate sell arrival rate will be higher than on a no news day,
while on a good news day there will be a higher occurrence rate of buys. EKOP assume
that two independent Poisson processes govern the arrival of informed buyers and sellers,

both having the same arrival rate equal to A;.

Note, that the EKOP model implies, that trading evolves in different velocities, de-
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FIGURE 3: Structure of the trading process according to Easley, Kiefer, O’'Hara and
Paperman (1996).

pending on the type of the signal that has been observed by informed traders. It also
implies that the data generating process of the trade durations will be a mixture of ex-
ponential distributions, with mixture probabilities determined by the probabilities of the
information regimes. The information regime itself is a latent random variable. Thus, the
MSACD model may be motivated by a generalization of the EKOP model, in which it is
assumed that (a) the information regime is not independent in time, but evolves accord-
ing to a Markov chain during the trading day, (b) the arrival rates of both, uninformed
traders and informed traders are not restricted to be the same for buyers and sellers, and
(c) the conditional densities of the trade durations given the regime are not independent
exponentials but rather follow a LACD(1,1) model, with marginal Burr density.

Another implication of the EKOP model, that we would expect to be consistent with
our generalization, is that the occurrence of buyer and seller initiated transactions depends
on the information regime. We therefore propose to test this implication of the EKOP-

model by running an auxiliary regression of the type

J—-1 P
(27) by =7+ ¢ cos(h(ty)) + 8 - sin(h(t.)) + 3 B €+ @ busy,
j=1 p=1

where b, = p(b, = 1) is the probability, that the n-th observed trade is buyer initiated,

fr(ﬁv is the smoothed inference on the state of the regime variable s, implied by the
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estimated MSACD model presented in Section 4.3, b, is the indicator variable, which is
equal to one, if the n-th transaction was buyer initiated, and equal to zero, if it was seller
initiated?? and the sine and cosine terms are included in order to control for deterministic
time of day effects in the occurrence rates of buys and sells, with normalizing function
h(t) as defined in equation (26). The inclusion of lagged b,, helps to account for possible
strategic behavior of the informed traders, who may be reluctant to trade large quantities
of the stock in a single trade, but rather prefer to split trades during the trading day. It is
well known, that trades with large quantities have higher price effects than small trades,
and thus, strategic order placement by informed traders might help them to hide their
information as long as possible.2 This specification assumes, that the absolute value of
the likelihood of being in regime j determines, whether the n-th trade will be more likely
a buy or not.

We also consider a second specification of the regression function, in which the

smoothed probabilities are replaced by log ratios

g £y
r) =1In (;j) ) ; i F
n|N

in the regression function. This specification stresses the importance of the magnitudes
of the probability of being in regime 7 relative to the probability of being in regime j as
the main determinant of the inclination to buy. If e.g. the probability of all three regimes
is the same at some point in time, the log ratios will all be equal to zero, while if regime
1 has higher probability than regime 2 then the corresponding log ratio will be positive.

If additionally the regression coefficient of 7“7(11’2) is positive too, then the likelihood of

22We employed the 'quote test’ proposed by Lee and Ready (1991) to determine the trade direction.
This algorithm compares trade prices to the prevailing bid and ask prices. If trades occur before quotes
are posted, the quote test compares the actual trade price to lagged trade prices, but if the trading day
starts with a sequence of trades at the same price, it is not possible to classify them unambiguously.
Note that at the NYSE each trading day starts with a batch auction conducted by the delegated market
maker, so an unknown number of trades after the open will result form these batch auctions, rather than
from continuous trading. In our sample of Boeing transactions there were 25 trades in total that could
not be classified, so the sample sizes for the regressions conducted in this section differ from those in the
last section.

23 Another explanation for time dependence of the b,, sequence is herding behavior induced by strategic
considerations of uninformed traders, who condition their own trades on the observed order flow.
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observing a buy will increase, whenever gfj@v is greater than ffjgv

Note that by comparing the magnitude and the sign of the two [ coefficients we are
always able to identify the nature of the information regime unambiguously in either of
the two specifications. If, as in the preceding example, the log ratio of regime 1 and 2 has
a positive coefficient, and additionally the coefficient of the log ratio of regime 1 and 3 has
a negative sign, then regime 1 is the no news regime, regime 2 is the bad news regime and
regime 3 is the good news regime. Since the dependent variable is qualitative in nature,
we estimate the parameter vector of the regression function employing the probit model.
In order to find a reasonable specification for the regression function, we tried a number
of different model specifications. The results of the estimation are presented in Table V.

Models 1, 2, and 3 include all possible combinations of the smoothed regime prob-
abilities as regressors, models 4, 5, and 6 additionally include sine and cosine terms to
control for time of day effects, and model 7 includes lags of b, in the regression function.?*
In models 8, 9, and 10 the regime probabilities {fﬁv are replaced by the log ratios i),
Note that the magnitudes and signs of the estimates of the § parameters in the first six
models imply that the first regime is associated with good news, the second is bad news
and the third is the no news regime, but with the exception of models 3 and 6 (where
fr(jgv and fr(jgv appear as regressors) we find at least one of the parameter estimates to be
insignificantly different from zero, as indicated by their ¢-statistic. Furthermore, when it is
included, it is always the coefficient of the first regime 55&\7 that is found to be significant.
We interpret this as evidence, that the model has no problems to classify the first regime.
It seems to be clearly separated from the other two regimes. This is also consistent with

the significance of 57(12&\, and {fj’gv in models 3 and 6, as the corresponding coefficients only

indicate differences from the reference category, which in the both models is associated

(1)

with the omitted regressor, the probability of regime 1 §n| N

We therefore focus on the implied classifications of regimes 2 and 3 in models 7 to

10. Note that when lags of b, are included as regressors, as in model 7, the implied

24We included all significant lags of b, in this specification. We also estimated specifications with
higher order lags, but non of the corresponding parameter estimates appeared to be significant.
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classification of the regimes 2 and 3 changes, while the parameter estimates still indicate
that regime 1 is the good news regime. Also, the parameters of the sine and cosine terms
become insignificant. Note furthermore, that at the 5% significance level, both regime
probabilities in model 7 are not significantly different from zero. We interpret this as an
indication, that the absolute values of the regime probabilities might not be as important
as their relative magnitudes. This intuition is confirmed by the regression results for
models 8, 9, and 10, where both of the log ratios are significantly different from zero. All
three specifications also imply, that the first regime is the good news regime (since, the
coefficient of the log ratio of regime 2 and 1 is always negative, implying, that a higher
probability of being in regime 1 than in regime 2 increases the probability of observing
a buy), while regime 2 is the no news regime and regime 3 is associated with bad news.
Thus, we conclude with high confidence, that this classification is the right one, and,
since the parameters of the included log ratios are significantly different from zero, we

find convincing evidence in favor of the generalized EKOP model.

Another quantity of interest is the probability of informed trading, that is implied
by the parameter estimates of the EKOP model. The corresponding quantities for our
generalized version of the EKOP model can be derived from the stationary distribution of
the Markov chain. These ergodic probabilities m; can be interpreted as long run forecasts
of the regime probabilities 51(\],1“]\, for r — 00.2 The ergodic probabilities implied by
our estimated 3-regime logarithmic Burr MSACD(1,1) model can be calculated from the
transition probabilities of the Markov chain and are equal to m; = 0.2873, my = 0.5445,
and w3 = 0.1682. Thus, if we stick to our classification of the regimes based on the probit
estimates, the probability of informed trading in the sample period is equal to 1 — 19 =
0.4555, while the probability of being in the good news regime 1 is roughly two times that
of the bad news regime 2. These results nicely conform to our economic intuition, that
the bulk of transactions results from order placement by uninformed traders, and that

the November of 1996 basically saw a bull market for the common share of Boeing.

25See Hamilton (1994), p. 684.
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FIGURE 4: Evolution of the stock price of the common shares of Boeing during November
1996.

The price of the Boeing share rose from 93.625 US-$ at the beginning of our sample
period to 99.500 US-$ at the end of November, see Figure 4. Most of the price changes
are zero (69.20%), and there are approximately as many positive price changes (15.41%),
as there are negative ones in our sample (15.29%), but the positive price changes appear
slightly more concentrated in the second half of the sample, than in the first half and
they are larger on average, when overnight returns are included.?® Note that neither the
evolution of the prices nor the price changes has been used to estimate any of the regime

probabilities or to classify the resulting information regimes.

26The share of positive price changes that is larger than one tick (0.125 US-$) is equal to 0.36% and
the maximum of the observed price changes is equal to 13 ticks (1.625 US-$), while the corresponding
share for the negative price changes is only 0.30% and the maximum price drop is equal to -4 ticks (-0.500

US-$).



TABLE V: Estimation results for probit models
Model 1 Model 2 Model 3 Model 4 Model 5
Variable Estimate  t-statistic Estimate  t-statistic Estimate  t-statistic Estimate  t-statistic Estimate  t-statistic
Constant 0.1111 2.2249 0.1079 4.3882 0.3578 7.1471 0.1117 2.1860 0.1087 4.3966
gff‘;\, 0.2468 2.8847 0.2500 3.7778 - - 0.2455 2.8549 0.2484 3.749
gfj}\, -0.0032 -0.0612 - - -0.2500 -3.7778 -0.0030 -0.0587 - -
gfj‘}v - - 0.0032 0.0612 -0.2468 -2.8847 - - 0.0030 0.0565
P20 ) ) ) ) ) ) ) ) ) )
P (2:3) ) ) ) ) ) ) ) ) ) )
cos(h(tn)) - - - - - - -0.0313 -2.0041 -0.0313 -1.6402
sin(h(tn)) - - - - - - 0.0401 2.1190 0.0401 2.0994
by — - - - - - - - - - -
bpn— - - - - - - - - - -
by — - - - - - - - - - -
by — - - - - - - - - - -
bns - - - - - - - - - -
N 9067 9067 9067 9067 9067
InL -6184.8 -6184.8 -6184.8 -6181.29 -6181.29
In Lo -6191.9600 -6191.96 -6191.96 -6191.96 -6191.96
LRy 14.3209 14.3209 14.3209 21.3435 21.3435
P(LRy) 0.0008 0.0008 0.0008 0.0003 0.0003
R;IZ 0.0025 0.0025 0.0025 0.0037 0.0037
R%N 0.0016 0.0016 0.0016 0.0023 0.0023
Ry p 0.0012 0.0012 0.0012 0.0017 0.0017
BIC 12396.94 12396.94 12396.94 12408.14 12408.14

STAAON AAVHL TVIINANOHAS A0 SNOILVOITIINI ONILSAL ¢

N is the number of observations, In £ is the value of the maximized log-likelihood function, In £y is the value of the log-likelihood function when only
a constant is estimated, LRy is the likelihood ratio statistic for testing the current model against a specification with constant only, P(LRg) is the
corresponding p-value, R%/[Z is the value of the McKelvey and Zavoina R2, RZN is Aldrich and Nelson’s R2, and R?V[F is McFadden’s R2. t-statistics
have been computed based on QML estimates of the information matrix.

ve



TABLE V: Estimation results for probit models (cont.)

Model 6 Model 7 Model 8 Model 9 Model 10
Variable Estimate  t-statistic Estimate  t-statistic Estimate  t-statistic Estimate  t-statistic Estimate  t-statistic
Constant 0.3572 7.0751 -0.6549 -10.9844 0.1551 7.8313 0.1562 7.7974 -0.7724 -24.4609
(1)

& x - - - - - - - - - -
gfj;\, -0.2484 -3.7490 -0.1190 -1.6594 . . . . . .
ey -0.2455  -2.8625 -0.1621  -1.7886 - - - -

r - - - - 0.0843  -4.4836 -0.0835 -4.4281 0.0484  -2.3643
T1(7'2.3) - - - - 0.0367 3.3643 0.0363 3.3200 0.0262 2.2527
cos(h(tn)) -0.0313 -1.6402 -0.0112 -0.5454 - - -0.0322 -1.6852 -0.0117 -0.5685
sin(h(tn)) 0.0401 2.0994 0.0204 0.994 - - 0.0380 1.9913 0.0193 0.9396
by — - - 0.9189 29.5350 - - - - 0.9185 29.5184
bn—2 - - 0.3307 9.9744 - - - - 0.3297 9.9441
by — - - 0.2079 6.1627 - - - - 0.2080 6.1672
b — - - 0.1114 3.2775 - - - - 0.1116 3.2802
bn—3 - - 0.0961 2.9807 - - - - 0.0960 2.9754
N 9067 9062 9067 9067 9062

InL -6181.29 -5170.79 -6180.93 -6177.57 -5169.55

In Lo -6191.96 -6188.88 -6191.96 -6191.96 -6188.88

LRy 21.3435 2036.177 22.0605 28.7946 2038.657

P(LRy) 0.0003 0.0000 0.0000 0.0000 0.0000

Ri\/IZ 0.0037 0.2865 0.0039 0.005 0.2869

R‘SXN 0.0023 0.1835 0.0024 0.0032 0.1837

RMF 0.0017 0.1645 0.0018 0.0023 0.1647

BIC 12408.14 10432.70 12389.20 12400.70 10430.22

STAAON AAVHL TVIINANOHAS A0 SNOILVOITIINI ONILSAL ¢
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6 CONCLUSIONS

In this paper we proposed a new framework for modelling autocorrelated inter trade
duration time series obtained from high frequency data sets from asset markets. The
class of Markov switching models has been in use in econometrics for quite a while, but
until now these models were based on marginal Gaussian processes. We showed, that by
analogy this framework may be used to estimate models based on non-Gaussian marginal
distributions as well, and we described two alternative estimation techniques that may be
employed in this context.

The MSACD model introduced in this paper was shown to be a successful tool for
forecasting time series of inter transaction durations. We showed that the MSACD model
yields better in-sample fit and quite reasonable out-of-sample forecast performance com-
pared to alternative ACD models. A further asset of the MSACD model is its natural
interpretation in the context of recent market microstructure models, suggesting that the
existence of heterogenously informed investors is a major determinant of asset price vari-
ation. We showed how to use MSACD models for trade durations to test the implications
of a generalized version of the market microstructure model by Easley, Kiefer, O’Hara,
and Paperman (1996).

Recently, the ACD-framework has been extended to the multivariate case as well [see
Russell and Engle (1999) and Russell (1999)]. A promising strategy for future research
would be to combine the Markov switching approach with a multivariate extension of the
ACD model. This would allow one to develop a more natural test of implications of many
related microstructure models, as we might be able to explain the evolution of buyer and
seller initiated trades as a bivariate duration process that depends on the unobservable

stochastic information process.

A  APPENDIX

A.1  Distributions for ACD models



TABLE VI: Distributional specifications for ACD models

Exponential Weibull G. gamma®? Burr®“
Parameters (&) (&:1.7) (&1, v) (6,7, Kk, 0%)
Restrictions >0 £ny,y >0 &y, v >0 ényk,02 > 0and 0% < K
1 I'(v) 2(1+%)-r(;1g+1)
' 1 ) ) (D)
vy v v v k1
70 o) So(2) e (-(2)) wo(E) e((2)) GRS
Fulen | Fuif)  1—esp(-2)  1—exp(-(2)) T (v (2)) 1= (1+0(2))
. ttar) e (Cart) ew(-(Tat)) el =ta 1)
Tt | Fn3 6)° 6% = - ( &n 1) : r(u&)—r(m(t_fs—ifl)w)'E (1+022;“-<t7t1n71)“)
e r(v+2 T(1+2)N(5—2
L R (R RN () ER (LTI N e

¥ ]
“T(y) = [u e “duand T (y,g) = [u? e “du.
0 0

b When v = 1 the generalized gamma reduces to the Weibull, while v = 1 and v = 1 yields the exponential distribution.
¢ The Burr nests the Weibull as a limiting distribution when 62 — 0 and the exponential, when both 62 — 0 and & = 1.
4 By (t | Fn;6) is the hazard function for ¢, <t < t,.

¢ For all distributions E (z,, | Fpn;0) = ¢y = %"

XIANHddV 'V

LE



A APPENDIX 38

A.2  The distribution of the residuals € in the MSACD model

Starting with the marginal density of x, given in (7), which is a mixture distribution with

— Tn

J . .
expectation 1, = > 5%;_1 . 1/),(1] ), the density of the residuals ¢, = "o is equal to
j=1

J
(28) gn(gn|fn39):"/)n'zp(3n:j|‘7:n§0)'f:v(5n'z/)n|3n:ja'7:n§0)a
=1

where f,(-) denotes the density function of the durations z,. The mean of ¢, is given by

Blen | Fal = B [ |f] by,

and thus independent of n as in a standard ACD model. Recall, that for a mixture density of

J
the form f (y) = Y p(s = j) - fj (y|s = j) the raw (uncentered) moments s, are given by?’

o =E (™) =Y (s =34) - E(y"|s = ).

)

In order to derive an expression for the variance of ¢,,, we first define Var(z, | s, = 7, Fn) = o -

)

In general the regime specific variance g5;’ will depend on the conditional distribution assumed

. . 2
for z,. The uncentered second moment of z, is equal to E (x% | sp = j,fn) = g,(f ) + (1/)7(1]))

J . . N 2
and so the regime independent second moment is F (x% | .’Fn) = > 57(3‘3171 . <Q£f) =+ (z/)g)) )
i=1
Thus the regime independent variance of z,, is

Var(zy | Fp) = E(:vi | Fn) — [E(zn | fn)]Q
) ) 2
4 4 9
St o+ 30 (49) ).
7=1 7=1
The variance of g, is a function of the moments of z,, and is equal to

Var(e, | Fn) = 1/) Var(z, | Fn)

ey 2
- Zgﬂ'“ wn+Z§”‘”1 <¢> B

(29) = z/)—% - B(ay, | Fa) —
Thus, in general the variance of ¢, will change over time (and higher moments of ¢,, also). From
the expression in the second line of (29) a sufficient condition for time invariance of Var(e, | Fy)

is satisfied, when all the regime specific conditional means are equal (1, = 1/)7(5 )) and the regime
)

probabilities are independent of time (fn\nq

be derived in the same manner.

2TSee Cameron and Trivedi (1998), p. 130.

= m;). Expressions for higher order moments can
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