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An Empirical Comparison of Alternative

Stochastic Volatility Models

Abstract

We perform an empirical comparison of stochastic volatility models using data
from the German index options market. The models compared are those de-
veloped by Stein and Stein [15], Heston [8], and Schobel and Zhu [12], while

the standard Black and Scholes [4] approach is used as a benchmark.

The parameters of the four models are estimated implicitly from daily cross-
sections of option prices using a simulated annealing algorithm to overcome
the numerical deficiencies of standard optimization routines. The main result
in terms of pricing performance is that there is a clear advantage for stochastic

volatility models compared to Black and Scholes both in and out of sample.

Within the group of stochastic volatility models the more flexible approaches
by Schébel and Zhu [12] and Heston [8], allowing for a non-zero correlation
between stock returns and volatility changes, are preferable to the restricted
Stein and Stein model. In terms of hedging performance a slightly modified
version of the Black and Scholes model is practically indistinguishable from
the stochastic volatility models, and there is evidence that these more complex

models are still misspecified.

Keywords: Option pricing, stochastic volatility, numerical optimization



1 Introduction

In their seminal paper Black and Scholes (B&S) [4] derived a simple closed-form solution
for European options on non-dividend paying stocks. A key input to their formula is the
instantaneous volatility of the log return for the underlying stock, which is assumed to be
constant or at most a deterministic function of time over the remaining life of the option.
Many empirical studies (e.g. Rubinstein [11]), however, document the phenomenon of
a volatility smile or ‘sneer’, i.e. the existence of a systematic relationship between the

implied volatility of the B&S model and the strike price or moneyness of an option.

Several attempts have been made in the literature to explain this result. Some authors
investigate if transaction costs could be responsible for this phenomenon (e.g., Constan-
tinides [5]), others try to explain the smile as the consequence of heterogeneity among
investors (see Benninga and Mayshar [3]). Another line of research has focused on the
use of alternative stock price distributions (like mixtures of lognormals, see Melick and
Thomas [10]), but these models generally suffer form the deficiency that the distributions
under consideration cannot be the result of some stochastic process for the stock price. Fi-
nally, some generalizations of the classical geometric Brownian motion of the B&S model
have been suggested, e.g. the introduction of jump components, stochastic volatility, or

stochastic interest rates.

In contrast to the early work on stochastic volatility by Scott [13], Wiggins [16], Hull and
White [9], and Stein and Stein (S&S) [15], more recent papers like Heston [8], Scott [14],
and Schobel and Zhu (S&Z) [12] have used Fourier inversion techniques to generate closed-

form pricing formulas which only involve the numerical integration of the real part of a



complex function. Bakshi, Cao and Chen [1] present the most general model in this class,
incorporating stochastic volatility, jumps, and stochastic interest rates simultaneously.
However, they point out that ‘... taking stochastic volatility into account is of first-order
importance in improving upon the BS formula‘(pp. 2042-2043.) Therefore, we restrict
the empirical analysis in this paper to models whose only ‘extra feature‘ is stochastic

volatility, differing only in the specification of its stochastic evolution.

The models compared are S&S, S&Z, Heston, and B&S. In S&S, instantaneous volatility
follows an Ornstein-Uhlenbeck process, which is forced to be uncorrelated with innova-
tions in the stock price. S&Z present a generalization of this approach allowing for an
arbitrary correlation between the two processes. Both models, S&S and S&Z, suffer from
the theoretical deficiency that the instantaneous volatility, since it follows a Gaussian pro-
cess, becomes negative with strictly positive probability. The basis of the Heston model
is also an Ornstein-Uhlenbeck process for instantaneous volatility. However, his model
is formulated in terms of the instantaneous wariance which can be shown to follow the
square-root process used by Cox, Ingersoll, and Ross [6] to describe interest rates. As a
consequence, there is a certain chance that implied instantaneous volatilities are negative
for both S&S and S&Z, whereas we will never observe this phenomenon in the Heston
model, since we compute the implied volatility as the (positive) square-root of the im-
plied variance which is non-negative be definiton. The standard B&S model with constant
volatility of log returns serves as the usual benchmark. The models will be compared with
respect to their in sample fit and their out of sample pricing and hedging performance.

Furthermore, we conduct a simple misspecification test as suggested by Bakshi, Cao and



Chen [1].

The main contributions of the paper are twofold: We conduct the first empirical test of the
generalized version of the S&S model developed by S&Z against the restricted alternative
and against the similar Heston specification. In addtion we propose a simulated anneal-
ing algorithm to estimate implied parameters, since conventional numerical optimization
routines get trapped in local minima quite frequently. In consequence, results delivered

by these methods may not be reliable.

The analyses in this paper show that the parameter estimates for stochastic volatility
models exhibit considerable time series variation, i.e. it is likely that the hypothesis of
constant structural parameters would have to be rejected for our sample. Even with-
out running sophisticated tests for the time series consistency of the implied stochastic
processes of the stock and of the instantaneous volatility it is obvious from a simple spec-
ification test that in most cases the more complex models cannot eliminate the empirical

deficiencies of the B&S model.

However, these models are superior in terms of pricing performance to the standard B&S
model both in and out of sample. Moreover, it seems safe to conclude that a non-zero
correlation between equity returns and volatility changes is important for option pricing,
since the implied estimates for this parameter are strictly negative for each individual

observation day in our sample.

The results concerning the hedging performance of the respective models are slightly
different. Stochastic volatility models are still superior to B&S in standard form in most

situations, but a minor modification of the B&S hedge portfolio to take into account ‘vega



risk® yields hedging results that are almost indistinguishable from those of more complex

models.

One purpose of this study was to investigate whether the S&Z approach or the Heston
model is the dominant alternative among stochastic volatilty models with arbitrary cor-
relation between index returns and volatility changes. For all practical purposes the two
models are found to be equivalent both in terms of pricing and hedging performance.
Thus, although the two approaches are not completely equivalent from a theoretical point
of view, their option prices and hedge ratios seem to be close enough to yield very similar

empirical results.

The rest of the paper is organized as follows: In section 2 we give a brief description of the
four option pricing models used in the empirical analysis. Section 3 contains details on
the data and the simulated annealing algorithm used to estimate the model parameters.
The results are presented in section 4, and some closing comments and conclusions are

given in section 5.

2 The Models

This section briefly introduces the models which will later be compared empirically.
B&S [4] assume that the stock price follows a geometric Brownian motion with constant

instantaneous volatility v, i.e.

dSt = T'St dt + UStth,



where dW; is the increment of a standard Wiener process. Note that the dynamics of the
stock are given under the risk-neutralized probability measure, i.e. under probabilities

that make the discounted stock price a martingale.

In the Heston [8] model the dynamics of the underlying stock and its instantaneous

volatility under the risk-neutralized measure are given by

dSt = T St dt + vt St dWlt
(1)
d’Ut = —ﬁ Ut dt + OdWQt
where the increments of the Wiener processes Wy, and Wy, are correlated with constant

correlation coefficient pg, i.e. dWy; dWoy = pg dt. This process for v; implies through It6‘s

lemma that the instantaneous variance y; = v? follows the process

dyt = K)H(GH - yt) dt + O'H\/EdWZta (2)

where kg, 0y, and oy are the speed of adjustment, the long-run mean, and the volatility
of the instantaneous variance v, respectively. This is analogous to the square-root process
with mean reversion for the short rate in the famous model by Cox, Ingersoll, and Ross [6].

The recently presented S&Z [12] model can be written as

dSt = T St dt =+ v St dWlt
(3)
d’l)t = K(g - Ut) dt +o dWQt
where, again, the increments of the Wiener processes Wi, and Wy, exhibit a constant
correlation p. As in the Heston model, v; follows an Ornstein-Uhlenbeck process. Since
the final option pricing formula is not written in terms of the variance, but in terms of
volatility, this implies a strictly positive probability of observing negative implied instan-

taneous volatilities. The specification in (3) is also used by S&S [15] with the difference
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that they impose the restriction p = 0, so that increments in W; and W5 are uncorrelated.
From an empirical point of view, a comparison between S&Z and S&S is thus equivalent
to a test of the restriction p = 0. On the other hand, the Heston model and S&Z are
not fully nested, i.e. for some parameter constellations prices from Heston models cannot
be reproduced by S&Z, and vice versa.! Hence it remains an entirely empirical question

which (if any) of the models is preferable.

3 Data and Estimation Methodology

3.1 Data

The data for this study consist of a time series of best bid and ask quotes for DAX options
taken from tapes of Deutsche Terminborse (DTB, now EUREX DEUTSCHLAND) recorded
over the period from July 1 to December 31, 1996. We use the midpoint between these
quotes as an estimate for the market price of the option. Put prices were converted to call
prices via the standard put-call parity. This relationship between put and call prices is
easily applicable here, since the DAX is a performance index with dividend reinvestment
and all the options are European. The contemporaneous current level of the DAX index is
taken from the tapes of the computerized trading system IBIS (now replaced by XETRA)
which also provide the best bid and offer prices. The index price used in the analyses

below is the midpoint between the best bid and ask quotes. To avoid systematic biases

n their paper S&Z describe how the parameters of their model must be set to obtain option prices

from the Heston model. See their equation (22).



caused by auctions at the open or the close of the stock markets and around the noon
auction on the floor of the Frankfurt Stock Exchange, only prices (for options and the

DAX) recorded exactly at 11.30 a.m. were used for this study.

Observations for which the midpoint option price violated the lower boundary for Eu-
ropean options given by the difference between current index level and present value of
the strike price were eliminated from the sample. Furthermore, options with a time to
maturity below ten days and above nine months were deleted from the sample due to a
severe lack of liquidity. The final sample then consisted of 7,955 observations for the 126
trading days for the second half of 1996. The median of time to maturity of the options
in the sample is 0.205 years, their median moneyness is 1.014, and their overall median
relative spread is 5%. We compute the moneyness of an option as the ratio of the current
index level to the present value of the strike price, the relative spread is given by the ratio
of the absolute spread to the midpoint between bid and ask. We use the 3-month FIBOR
rate as a proxy for the risk-free rate. Over the sample period the median for this rate was

3.18% p.a.

We group the options in the sample into 15 classes according to their moneyness and their
time to maturity. An option was classified as short-term, if its time to maturity was less
than two months, as medium-term, if time to maturity was no more than six months,
and long-term otherwise. The intervals for the five moneyness categories are [0,0.94),

0.94,0.98), [0.98,1.02), [1.02,1.06), and [1.06, cc), respectively.

The characteristics of the sample with respect to price level, percentage spread and number

of observations are shown in table 1. The observations are spread roughly evenly across



the moneyness groups, except for the lowest moneyness category which only contains 618
observations. The observed option prices reveal a similar pattern with respect to their
time to maturity. The category containing long-term options has only 955 observations,

compared to more than 3,000 for both short-term and medium-term options.

— Insert table 1 about here —

3.2 Estimation of the Model Parameters

The parameters of the four models considered in this paper were estimated implicitly
by minimizing the sum of squared differences between market prices and model prices
(SSE). For each observation day ¢ (t = 1,...,126) we estimate the parameter vector ¥,

by \Tlt with the property

~

U, = argminSSFE;
Wy

Ny R 9
= aIg H&}tﬂz [Cit — Cit(Sy, e, Kig, T ‘I’t)] )
i=1

where S; and r; denote the level of the DAX index and the FIBOR rate at date ¢, re-
spectively, and K;; and 7; represent the strike price and the remaining time to matu-
rity of option ¢ on day t. C}; is the observed market price for option 7 on day ¢, and
@t(St, s, Kit, Tir; y) is the theoretical price? given the parameter vector ¥;. For example,
in the case of the classical B&S model, we have ¥; = (v;) where v; denotes the implied

volatility on day ¢, and CA'Z-t(St, e, Kit, T3 W4) is given by their well-known formula. For the

2The formulas for the theoretical option prices for the three stochastic volatility models and for B&S

are given in the appendix.



S&Z model we would have Uy = (vy, k¢, 0¢, 0y, pt)-

It turns out that the estimation of W, poses a serious numerical problem. Conventional
numerical optimization routines came to a standstill in local minima very frequently.
Some of the algorithms also showed the tendency to stay too close to the starting values
used for the minimization process. To overcome these problems we used a simulated
annealing algorithm to solve the above minimization problem for each day t. The main
property of this method is that, in contrast to standard routines, it will always find
the global minimum of the objective function, since it asymptotically searches over the
whole parameter space. This implies that the result of the optimization process will be
independent of the starting values for the parameters. The main innovative feature of
simulated annealing is that the direction in which the parameter space is searched can
be changed randomly which prevents the algorithm from getting stuck in local minima.?
The only potential drawback of this method is that it is more demanding in terms of
computing time than standard procedures, a disadvantage that may become less and less

severe given the advances in computer development.

3An introduction to simulated annealing plus some examples of the advantages of this method over
conventional optimization techniques can be found in Goffe, Ferrier, and Rogers [7]. We compared sim-
ulated annealing to various numerical optimization routines contained in the NAG Fortran library. For
a sample of simulated prices from the S&Z model only the simulated annealing method found the true

parameter values, independent of the starting values.



4 Empirical Results

4.1 Parameter Estimates

As expected, models with a larger number of free parameters generally show a better fit
to the data than the simple B&S model as indicated by the sum of squared errors (SSE)
shown in table 2. There is a reduction of about one third in SSFE from B&S to S&S, the
simplest stochastic volatility model. However, the restriction of uncorrelated innovations
in index level and volatility is binding, since the median SSF for Heston and S&Z are just
one fourth of that observed for S&S. Indeed, we observe strongly negative implied values
for p and py on all of the 126 days in the sample. Our estimates for py are comparable

in magnitude to those found by Bakshi, Cao and Chen [1].

— Insert table 2 about here —

In contrast to their study the median B&S implied spot volatility v in our sample is
substantially larger than the estimated instantaneous volatility (or variance, respectively)
for the other models. This higher implied volatility can at least partially compensate the
ability of stochastic volatility models to generate the empirically observed fat tails in the
distribution of the price changes of the underlying. The fact that B&S implied volatilities
are larger is thus merely a technical consequence of the severe restrictions that are imposed

on this model.

It is also interesting to note that the option prices in our sample imply a considerable time

series variation in volatility (variance) itself, since o (o) are rather large for all models.
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This supports the hypothesis that uncertainty in volatility is directly incorporated into
the option pricing process by market participants. The median estimates for o are 0.2968
for S&S and 0.2575 for S&Z. In the Heston model, we obtain a median of 0.4355 for oy.
The fact that the latter estimate is so much larger than those for the first two models can
be explained by looking at the parametrization needed for Heston to obtain the prices
generated by an equivalent S&Z model. As S&Z show in their paper (equation (22), p.
7,) the volatility of variance would have to be twice as high as the volatility of volatility

to obtain the same prices from the two models.

4.2 Simple Checks for Misspecification

A first simple test for misspecification is to look at the variation of the parameter esti-
mates. Since none of the coefficients in the models are time dependent, we should observe
hardly any variation at all, if the models are correctly specified. In table 2 we show the 25
percent and 75 percent quantile of the estimates for the respective parameters over the

126 days in the sample.

It is obvious that the implied volatility estimates for B&S are all in a rather narrow band
around the median with an interquartile range of just 0.017. For the stochastic volatility
models instantaneous volatility is not a structural parameter but a second underlying, so
that time series variation for this parameter is to be expected. It is more disturbing to
see the strong variation in k, o, and @ for all three models. For example, for the S&Z
model the speed of adjustment parameter x has an interquartile range of around seven

which is about 1.06 times its median. Similar numbers are obtained for the other models

11



and parameters. This results suggest that all three stochastic volatility models are still

misspecified.

Another way to perform a misspecification test is to compute model specific instantaneous
implied volatilities 9;; for each option 7 on each day t¢. If the stochastic volatility models
are specified correctly a graph of these instantaneous volatilities against the moneyness

of the options should be a flat line.

— Insert figures 1 and 2 about here —

We estimate these implied volatilities in ¢ using the current price of the underlying and
the current interest rate as well as the other structural parameters from our estimation
on day t — 1, i.e. we find 0;; as the value for the instantaneous volatility (or variance)
that makes the theoretical price equal to the observed midpoint. The results showing the
average implied volatilities for the different levels of moneyness and the four models are

presented in figures 1 (short-term options) and 2 (long-term options).

The message in these figures is very clear. Each of the four models still exhibits a significant
smile or skew for short maturities, although the graph corresponding to the S&Z model
flattens out for higher moneyness values. For long-term options the picture is similar.
Again the stochastic volatility models cannot eliminate the smile, and the the graph
produced by B&S is surprisingly flat. However, for values of M above 0.96 the S&Z model

generates a graph almost parallel to the z-axis.
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4.3 Out of Sample Pricing Performance

The pricing performance for the four models is measured by the absolute DM and absolute
percentage pricing error out of sample (table 3). In addition, table 4 shows the percentage
of cases in which the respective model overprices an option and the relative frequency of

observations for which the theoretical price fell outside the bid-ask band.

— Insert table 3 about here —

The DM pricing error e;; is defined as the difference between the observable midpoint
price and the theoretical price of an option given the estimated parameter vector from
day t — 1, i.e.

eir = Ciy — éz‘t(starta Kit, Tit; (I}t—l)- (4)
The relative pricing error is then defined as e;;/Cj;.*

Looking at absolute DM pricing errors in table 3 first, we find that models with more
degrees of freedom exhibit a better overall pricing performance than the standard B&S
model. For the complete sample, B&S produces a median absolute pricing error of DM
3.16, compared to DM 2.41 for S&S and DM 1.61 for both S&Z and Heston. Again, as
in the case of the goodness of fit in the estimation stage, the introduction of a non-zero

correlation between index returns and volatility changes improves the pricing performance

41t is common practice to use the complete lagged vector ¥; ; to perform an out of sample pricing
test, see for example Bakshi, Cao and Chen [1, 2]. This is not entirely consistent with the notion of
volatility as a second underlying for the option, since it is implicitly assumed to remain constant from

t—1tot.
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of stochastic volatilty models significantly so that S&Z and Heston perform better than

S&S.

The ranking of the four models becomes less clear if we look at individual moneyness-
maturity groups. All four models perform best for short-term options deep in the money.
The main reason for this result is that theoretical option prices in this class are almost
model independent, since they approach the nonparametric lower boundary given by the

difference between current index level and discounted strike price.

There are six moneyness-maturity classes for which S&S performes worse than B&S, es-
pecially for options deep out of the money. For example, for options with time to maturity
greater than six months and moneyness below 0.94, the median absolute error for B&S is
DM 6.78 in contrast to DM 10.12 for S&S. On the other hand, we observe this phenomenon
only once for the more general S&Z and Heston models. For short-term, deep out of the
money options with less than two months to maturity the two stochastic volatility models
produce median absolute errors of DM 1.76 each, whereas here B&S has a median error

of just DM 1.54.

The numbers in table 3 also provide evidence for a time to maturity effect in pricing
performance. For example, for options in the money (1.02 < M < 1.06) the difference in
median absolute DM pricing errors between B&S and S&Z increases from DM 0.16 for
short-term options to DM 3.42 for long-term options. A similar pattern can be found for
options with M > 1.06. This maturity effect also reverses the ranking of models for options
with M < 0.94. As we had seen for short-term options in this group B&S performed even

better than S&Z or Heston, but this is no longer true for options with at least six months

14



to maturity. Here S&Z and Heston generate a reduction in median absolute pricing errors

of more than DM 2 compared to B&S.

For at the money options we observe a rather striking result: The relative performance of
the B&S model compared to its alternatives is worst for short-term options, whereas all
four models exhibit a similar pricing quality for long-term options. This is surprising, since
it is commonly assumed that the B&S model is most applicable for short-term options

with a strike around the current index level.

The results for the absolute percentage pricing errors regarding the ranking of the four
models are qualitatively very similar to those obtained for DM errors. For the cheapest
options (short-term, out of the money) we observe the largest percentage errors. Here,
S&7Z and Heston generate average relative errors close to 90 percent of the observed option
price. On the other hand, for short term options deep in the money, all four models exhibit
relative pricing errors of just 0.3 to 0.5 percent. In general, the relative error is strictly
decreasing with increasing moneyness for all four models. A potential explanation for
this result is that the estimation method implicitly gives higher weights to options with
higher prices, so that if relative squared errors were minimized the picture might look very

different.

— Insert table 4 about here —

The overpricing statistic shown in table 4 is interesting, since it gives an idea of whether
pricing errors are systematic or (more or less) just noise. In the latter case we would

expect overpricing to appear just as often as underpricing, i.e. in about 50 percent of the

15



cases.

For maturities above two months and moneyness values below 0.94 we observe a very high
percentage of cases with overpricing for both B&S and S&S compared to S&Z and Heston.
For example, options with a maturity between two and six months are overpriced by B&S
in 80.9 percent and by S&S in 90.6 percent of the sample whereas for S&Z and Heston this
share is only around 45 percent. An intuitive explanation for this result is based on the
negative (implied) correlation between index returns and volatility. For options far out of
the money to have a positive payoff at maturity, index returns over the remaining life of
the option must be large and positive. Given a negative correlation between returns and
volatility changes this implies on average a decrease in volatility, so that these options
will be cheaper in the Heston and S&Z models than for B&S or S&S. The same logic
applies vice versa to options far in the money with a medium or long time to maturity.
For the case M > 1.06 and a time to maturity between two months and half a year the
percentage of overpricing for S&Z and Heston is very close to 50 percent for both models.
In contrast to this, B&S overprices these options in just 3.9 percent of the cases. S&S
exhibits a very systematic pattern in mispricing, since more than 80 percent of the options

in this category are underpriced.

A statistic emphasising the generally poor performance of models without a correlation

component is the number of categories for which the percentage of overpricing is not even

50f course, this is based on the assumption that the probability of hitting the market price exactly is

equal to zero.
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in the range between 35 and 65 percent®. For B&S this occurs in fourteen, for S&S still
in ten of the fifteen classes. Both S&Z and Heston produce these systematic patterns in
only four cases, which shows that the additional flexibility given by a non-zero p is very

valuable.

Similar to the results for absolute DM and percentage pricing errors the very high per-
centage of overpricing produced by the B&S model for short-term at-the-money options is
again somewhat surprising. The worst performance for S&Z and Heston is again observed
for short-term options far out of the money. Underpricing occurs in more than 90 percent

of the observations for both models, an even higher frequency than those produced by

B&S and S&S.

The existence of a bid-ask spread creates a no arbitrage band around the midpoint price
of an option, so that a non-zero pricing error does not automatically indicate a potential
arbitrage opportunity. It is even possible to argue that a theoretical price between bid
and ask constitutes no mispricing at all. Therefore, table 4 reports the relative frequency

of cases in which the theoretical price is either less than the bid or greater than the ask.

Even for the two most general models the chance of obtaining prices below the bid or
above the ask is still around 45 percent for the total sample, and these numbers are even

worse for B&S (62.8 percent) and S&S (57.5 percent). There is a systematic tendency

6Even for the category with the smallest number of observations (92), the probability of obtaining
less than 35 percent or more than 65 percent of cases with overpricing is much less than 1 percent if the
true probability for overpricing is one half. Since this argument implicitly assumes independence, it is
certainly not quite rigorous, but it still gives a good idea of whether there is a systematic tendency in

the direction of mispricing.
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for this percentage to decline with increasing moneyness for all four models. We obtain
theoretical prices outside the bounds for almost 90 percent of the options in the category
with M < 0.94, whereas this occurs for just twelve to 30 percent when M > 1.06. A natural
explanation for this result is that DM spreads tend to get wider the more expensive the
options are. The median relative spreads in table 1 do not exhibit much variation over the

five moneyness categories, so that DM spreads do increase with increasing option prices.

As a common characteristic for the variables related to pricing performance (except DM
errors) we find that options out of the money with a very short time to maturity are
priced worst by all four models. This may in part be due to a tick-size problem, since
the model prices may be so low in this category that the midpoint price simply has to
be far off in percentage terms. The problem becomes less severe when time to maturity

increases, since option prices then increase as well.

We also observe a related time-to-maturity effect for options in the money, i.e. all those
with M > 1.02. For longer maturities the performance of all the models deteriorates, and
a potential explanation is again that for short maturities the choice of the pricing model
is almost irrelevant. Any model will yield prices that are reasonably close to the European
lower boundary, but this no longer holds when time to maturity increases. The dynamics
of the underlying variables become more and more important, and prices from different

models will be systematically different.
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4.4 Hedging Performance

It is generally accepted that the hedging performance of a model is more important than
its pricing quality since option traders are more worried about the changes in the value
of their positions than the absolute value itself. The success or failure of a given model
depends on its ability to properly describe the price changes of options given a change in

the value of the underlyings.

— Insert table 5 about here —

We test the hedging performance of the four models using the same technique as Bakshi,
Cao, and Chen [1]. Using parameters estimated on day ¢ — 1 we compute on day ¢ the
sensitivities of the option price with respect to the risk factors, i.e. the usual ‘delta‘ for the
B&S formula and the partials 0C'/0S; and 0C/dv; (0C/0y;) for the stochastic volatility
models.” Next, a portfolio is formed which should exhibit no sensitivity to any of the risk
factors and which should thus earn the risk-free rate over the next time interval. In the
case of the stochastic volatility models the portfolio consists of one option short, and the
underlying and another option (with different strike and/or different time to maturity)

long.®

"The hedging test was also run using parameters estimated on day ¢ to determine the hedge ratios for

the same day. The results are almost indistinguishable from those reported above.

81f possible, we always use an option with the same time to maturity, but with a different strike price.
If there is no such option we use an option of the next available maturity date. Although theoretically
irrelevant the choice of the hedging instrument will almost certainly have an impact on the empirical

results. We therefore also used options with the same strike, but a different maturity to form the hedge
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For B&S the hedge portfolio just consists of a fraction of the underlying. As Baskhi, Cao,
and Chen [1] point out the comparison between B&S and the other models with their
two-instrument hedges is implicitly unfair against B&S, since the second instrument will
always hedge part of what is called convexity or I'-risk, i.e. the risk that the hedge ratio
of the option with respect to the underlying index may change over time. Therefore we
adopt the methodology of these authors and introduce an extended version of B&S which
incorporates both a delta and a ‘vega’ component. Of course, given the assumptions of
B&S this extension is inherently inconsistent, since there is no volatility risk in the model,

but in practice it seems to be a widely accepted way of hedging option positions.

If the proceeds from the short sale of the option do not cover the costs of acquiring the
hedge portfolio, the necessary funds are borrowed at the risk-free rate. The position is
unwound completely on day ¢ + 1 (which may be more than a day after ¢, e.g. if the
position is held over a weekend.) The net wealth remaining after liquidation (positive or
negative) is recorded as the DM hedging error, since under ideal conditions this wealth
should always equal zero (neglecting a potential discretization error, since the position is

held longer than just an infinitesimal time span.)?

The most important overall result is that for the purpose of hedging the choice of a model
is almost irrelevant, as long as the hedge position contains two instruments. Extended

B&S, S&S, S&Z, and Heston produce median DM hedging errors of 0.94, 0.94, 0.93, and

portfolio. The results shown here were the most favorable for all the models.

9 A natural restricition for the options used in the hedging test is that observations for these contracts
must be available both for day ¢ and day ¢ + 1. The total number of hedges is thus lower than the total

numer of observations in the sample (around 5,600).
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0.92, respectively. The simple B&S model generates hedges that are considerably more
unreliable, since its median DM hedging error for the complete sample is 1.36. Compatible
with the results presented for pricing performance above the hedges of all four models
work best for short-term options deep in the money, for which the option price and,
consequently, also the hedge ratios become independent of the model being used. In this
category we find the same ranking of models as in the overall sample, with B&S performing
significantly worse than the other four approaches between which there are hardly any

differences.

Again, this aggregate analysis tells only part of the story, since there are cases in which
even the simplest model beats all or at least some of the others. Consider, for example,
options far out of the money (M < 0.94) with short time to maturity. Here B&S has a
median DM hedging error of 1.14, compared to 1.54, 1.41, 1.96, and 2.16 for the other
four models. Simple B&S also performs best for long-term options in general. When time
to maturity is longer than six months B&S exhibits the best overall hedging performance
with a median DM error of 1.95 compared to around DM 3 for the stochastic volatility
models. Note that in this case S&S performs better than the correlation models, too.
On the other hand, for options in the money with a short or medium time to maturity
the models with two hedging instruments clearly beat the simple B&S, which generates
hedging errors about twice as large. For example, for 1.02 < M < 1.06 and up to two
months to maturity the median DM error is 1.10 for B&S, compared to 0.56, 0.56, 0.51,
and 0.49 for the other four models. This result seems a little counterintuitive in that

there should be no significant convexity risk in this category because the hedge portfolio
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(approximately) consists just of one unit of the underlying.

The results for options out of the money (M < 0.98) are in general rather mixed. No model
dominates the others, and it is interesting to note the large differences (with varying signs)

between S&Z and Heston in these categories.

5 Summary

Theoretically, stochastic volatility models have the ability to mend the deficiencies of
the B&S model. However, it has to be investigated empirically if they actually perform
better than simple models. This study compares three stochastic volatility models and
the standard B&S model using a sample of stock index option prices form the German
market. It presents the first empirical test of the S&Z model which is a generalization of
the S&S approach, augmenting the latter by introducing an arbitrary correlation between

the stock and instantaneous volatility.

The parameters are estimated implicitly using a cross-section of option prices for every day
in the sample. Due to numerical problems with standard optimization routines a simulated
annealing algorithm is used which is much more likely to find the global optimum of
the objective function. It turns out that the most important feature determining the
pricing quality of stochastic volatility models is the correlation between index returns
and volatility changes. The S&S with a zero correlation performs much worse than S&Z
and Heston in terms of the average sum of squared errors in the estimation stage. The

estimated correlation is strongly negative for both Heston and S&Z for all days in the
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sample, indicating that a decrease in volatility is expected in bull markets, and vice cersa.
Still, the S&S model is much more flexible than B&S and easily outperforms this simple

approach in terms of goodness of fit in sample.

Concerning pricing performance out of sample stochastic volatility models are again
clearly superior to B&S, although there are some cases in which the simpler models
perform better than more sophisticated approaches. This ranking is not reproduced in
our hedging test, where an extended B&S model eliminating not only stock price, but
also ‘vega‘ risk, yields hedging results that are almost indistinguishable from those of

stochastic volatility models.

In summary, the greater flexibility provided by stochastic volatility models clearly im-
proves the pricing of index options on the German market. However, these models are not
able to consistently outperform simpler approaches, especially when the models are com-
pared with respect to their hedging performance. This might be considered as a slightly
disappointing result at first sight. Nevertheless, these models still have the potential to
perform better than B&S or related models. Improvements can be made in terms of pa-
rameter estimation. In a very recent paper Baskhi, Cao, and Chen [2] suggest to use the
Method of Simulated Moments to estimate the parameters of stochastic volatility mod-
els. This approach yields just one estimate of the parameter vector for a time series of
cross-sections of option prices and thereby eliminates the inherent inconsistency of daily
changing parameter estimates. These authors still do not use sampling information from
both the time series of stock and option prices, since they do not include the stock price in

their set of moment conditions. Furthermore, as long as we do not know the distribution
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of hedging errors, we can only compare two models in terms of the average errors they
produce. There is a definite need for further research (both theoretical and emprical) to

obtain more precise answers to these problems.
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A Appendix

e Black and Scholes:

e Heston:
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In each cell the entries are the median of the observed midpoint option prices, the median of the relative
bid-ask spread (in brackets, computed as the difference between ask and bid, divided by the midpoint
price), and the total number of observations (in square brackets). The option quotes and the contempo-
raneous index levels are recorded at 11.30 a.m. daily for the period from July 1 to December 31, 1996.
The moneyness ratio M is measured as the current index level divided by the present value of the strike

Table 1:
Descriptive Statistics of the Sample

price.
Time to maturity
< 2 months |2 - 6 months|> 6 months|All maturities
2.28 6.95 29.58 4.81
M < 0.94 (0.030) (0.052) (0.110) (0.042)
[248] [278] [92] [618]
5.06 23.45 56.60 15.60
0.94 < M < 0.98| (0.051) (0.075) (0.071) (0.062)
[709] [865] [189] [1,763]
34.68 67.40 102.42 56.32
Moneyness|0.98 < M < 1.02| (0.054) (0.054) (0.063) (0.055)
[757] [928] [179] [1,864]
109.39 133.22 165.27 128.40
1.02 < M < 1.06| (0.040) (0.045) (0.053) (0.044)
[664] [835] [163] [1,662]
224.17 243.85 310.35 246.61
M > 1.06 (0.030) (0.035) (0.036) (0.034)
[652] [1,064] [332] [2,048]
All 49.50 93.52 140.07 83.35
moneyness (0.044) (0.047) (0.054) (0.046)
groups [3,030] [3,970] [955] [7955]
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The table shows the median of the parameter estimates for the four models, the 25 percent quantile (in
brackets), and the 75 percent quantile (in square brackets). Each day ¢t (¢t = 1,...,126) the parameters
are estimated using a simulated annealing algorithm to minimize the sum of squared differences between
observed market prices and theoretical option values. The theoretical prices for the various models are
given in the appendix. In the B&S, S&S, and S&Z models v represents the instantaneous volatility of the
log returns of the underlying index, whereas in the Heston model y stands for the instantaneous variance.
The parameters k, 8, and o, (km, 0m, o) are, respectively, the speed of adjustment, the long-run mean,
the volatility of the instantaneous volatility v; (the instantaneous variance y;). The correlation between
log index returns and volatility (variance) changes is denoted by p (pm). SSE is the sum of squared

€rrors.

Table 2:

Implied Parameter Estimates

v K 0 o P SSFE

0.1213 1,399.48
B&S [(0.1152) (1,053.85)
[0.1321] [1,884.57]
0.0944 | 3.8058 | 0.0868 | 0.2968 899.54

S&S |(0.0839) | (2.0429) | (0.0608) | (0.2293) (483.66)
[0.1117] | [6.8497] | [0.1217] | [0.3529] [1,327.23]
0.0920 | 6.1176 | 0.1157 | 0.2575 | —0.4936 | 227.49

S&Z |(0.0775)| (2.4097) {(0.0921) | (0.1879)|(—0.5779)| (111.03)
[0.1074] | [9.4030] | [0.1362] | [0.3534] | [-0.3954] | [486.51]

Y KH On OH PH SSE

0.0095 | 7.1525 | 0.0200 | 0.4355 | —0.5747 | 223.95
Heston | (0.0075) | (4.1130) |(0.0168)|(0.3372) | (—0.6986) | (114.36)
[0.0138] |[11.0323]| [0.0255] | [0.5331] | [—0.4688] | [501.43]
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Table 3:
Pricing Errors (Out of Sample)

The entries in the table are the median absolute DM pricing error and the median absolute percentage

pricing error (in brackets). The absolute DM pricing error for option 7 on day ¢ is defined as |e;| with

eir = Ciy — @-t(st,rt, K, Tig; \Tlt,l), where @t (St, re, Kit, Tit; l/I\lt,l) represents the theoretical price of the

option using the implied parameter estimates from day ¢ — 1. The absolute percentage pricing error is
defined as 100 - |e;/Ci|.

Time to maturity

Model | < 2 months|2 - 6 months| > 6 months | All maturities

B&S |1.54 (76.3)[3.15 (40.7)| 6.78 (23.3)|2.41  (48.3)

Mo<o0os | SES |156 (71.7)|487 (55.6)[1012 (33.2)|282  (58.9)

' S&Z [1.76 (89.4)|1.91 (27.6)| 4.44 (15.7)[1.94  (41.3)
Heston|1.76 (89.4)|1.82 (25.4)| 4.63 (17.4){1.93  (40.5)

B&S |2.61 (49.2)[513 (22.1)] 520 (9.7)|414  (26.9)

S&S |1.84 (99.8)[4.49 (19.4)| 8.16 (14.0)|3.51  (22.6)

094 M <098 oo |145 (31.8)|1.67 (7.2)| 357 (6.9)|1.68 (11.4)
Heston|1.56 (29.6)|1.60  (7.0)| 4.08 (7.0){1.69  (11.4)

B&S |4.33 (12.6)[317  (44)] 419 (4.2)]3.72 (64

S&S |1.59  (4.6)[2.32  (2.5)| 4.00 (4.0)|2.03  (4.0)

Moneyness| 098 < M <102\ oo v 1147 (15)|168  (27)] 400 (3.9)1.69  (3.5)
Heston|1.60 (£.8)|1.78  (2.8)| 3.87 (4.0)|1.81  (3.5)

B&S |1.34  (1.2)[337 (2.6)] 745 (4.6)|2.44 (2.1

S&S |1.43  (1.4)[354  (2.7)| 455 (2.9)|2.58  (2.1)

LO2s M <106 ooy 1118 (10|15 (1.2)] 403 (2.9)]143  (1.2)
Heston|1.21 (1.1)|1.53 (1.2)| 3.38 (2.2)|147  (1.2)

B&S |1.10 (0.5)|3.86  (1.6)] 6.49 (1.8)|2.66  (1.0)

V>0 | S&S (088 (04)]226  (0.9)] 429 (1.2)[1.83  (0.7)
= S&Z [0.88 (0.9)|1.61  (0.6)| 450 (1.4)[1.46  (0.6)
Heston|0.81 (0.3)|1.58  (0.6) 4.21 (1.3)|1.42  (0.6)

B&S |1.99 (5.2)[3.79  (3.6)] 5.95 (4.2)|3.16  (3.9)

All moneyness | S&S |1.40 (2.1)[3.12  (3.2)| 5.12 (3.4)|2.41  (3.2)
groups S&Z [1.26 (2.7)|1.66 (1.9)| 4.09 (3.0)|1.61  (2.3)
Heston|1.30 (2.8)|1.62 (1.9)| 4.07 (2.7)|161  (2.2)
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Table 4:
Frequency of Overpricing and Violations of Bid-Ask Bounds
(Out of Sample)

In each cell the entries are the relative frequency with which the four models overprice the options in the
sample and the relative frequency with which the theoretical prices generated by the models fell outside
the band between the observed bid and the observed ask prices (in brackets). The DM pricing error for
option % on day t defined as e;; = Cj; — @t (St, e, Kit, Tit; l/I\lt,l), where C‘,-t(st, rey Kig, Tt} 'Tlt,l) represents
the theoretical price of the option using the implied parameter estimates from day t—1. A model overprices
an option if the theoretical price is greater than the observed midpoint price, i.e. if e;; < 0. An observation
is counted as outside the spread, if CA'it(St, re, Kit, Tits {I}t_l) < C%or CA'it(St, re, Kit, Tits {I}t_l) > C%, where
C?l, (C%) denotes the observed bid (ask) price for option i on day ¢.

Time to maturity

Model | < 2 months|2 - 6 months|> 6 months|All maturities

B&S [27.8 (95.2)|80.9 (93.5)|77.2 (91.3)[59.1  (93.9)
S&S |35.5 (98.0)|90.6 (96.8)|88.0 (94.6)|68.1  (96.9)
S&Z | 7.7 (94.4)|45.7 (85.3)|55.4 (78.3)|31.9  (87.9)
Heston| 5.2 (93.5)|45.0 (80.2)|51.1 (76.1)|29.9  (85.0)

M < 0.94

B&S |76.3 (97.2)]92.8 (92.6)[66.7 (81.0)[83.3  (93.2)
S&S [69.0 (95.1)|93.2 (91.3)86.2 (89.4)|82.7  (92.6)
S&Z |27.6 (89.3)53.5 (70.0)|69.3 (70.4)|44.8  (77.8)
Heston|26.8 (88.6)|51.3 (67.4)|63.0 (72.0)|42.7  (76.4)

094 <M <0.98

B&S [92.2 (86.5)[66.9 (66.0)|31.3 (54.7)|738  (73.2)
S&S |55.5 (69.8)|44.1 (59.1)[59.2 (56.4)|50.2  (65.1)
S&Z |53.2 (67.0)[48.3 (48.9)|63.1 (55.8)|51.7  (56.8)
Heston |61.0 (69.4)|53.5 (50.0)|63.1 (58.1)|57.5  (58.6)

Moneyness [0.98 < M < 1.02

B&S [44.7 (27.4)|14.6 (55.2)|16.6 (68.1)[26.8  (45.4)
S&S |19.0 (31.8)| 6.1 (58.7)|32.5 (50.8)|13.8  (46.9)
S&Z |53.6 (25.5)[47.4 (23.2)|61.4 (40.5)|51.3  (25.8)
Heston|56.8 (24.5)|46.5 (22.9)|68.7 (46.0)|52.8  (25.8)

1.02 < M < 1.06

B&S | 81 (10.6)] 3.9 (41.2)[13.6 (44.3)] 68  (31.9)
S&S [16.4 (6.4)|19.5 (22.6)|40.1 (31.6)|21.8  (18.9)
S&Z 422 (6.0)[54.1 (11.0)|65.4 (34.9)|52.1  (18.3)
Heston |41.9 (4.1)|47.8 (10.0)[66.0 (38.6)|48.9  (12.7)

M > 1.06

B&S |54.7 (60.4)]45.7 (64.8)|34.0 (62.1)|47.7  (62.8)
All moneyness | S&S [40.6 (55.9)|43.5 (58.9)|56.1 (57.0)|43.9  (57.5)

groups S&7 [41.2 (52.2)|50.6 (40.5)|64.1 (50.9)|48.7  (46.2)
Heston|43.4 (52.0)|49.4 (59.5)|63.9 (55.7)|48.9  (45.9)
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Table 5:

Absolute DM Hedging Errors

The entries in the table represent the median absolute DM hedging error. On each day t a hedge portfolio

is set up for an option sold short by going long the underlying index and, in the case of the extended
B&S model and all the three stochastic volatility models, another option (with different strike price
and/or different time to maturity). In the case of the standard B&S model only the underlying index
is bought. The number of units for the components of the hedge portfolio are chosen such that over a
time period of infinitesimal length, the portfolio should have no exposure to any risk factor. The option

price sensitivities needed to compute these quantities are calculated using the paramters estimated on

day t — 1. If the proceeds from the short sale do not cover the costs of the hedge portfolio the funds

are borrowed at the risk-free rate observed on day ¢t. On day ¢t + 1 the complete portfolio is liquidated.
The absolute DM hedging error is then defined as the absolute value of the DM amount that is left after

liquidation.
Time to maturity
Model |< 2 months|2 - 6 months|> 6 months| All maturities
B&S 1.14 1.52 3.36 1.38
ext. B&S 1.54 1.17 2.64 1.45
M < 0.94 S&S 1.41 1.11 2.78 1.39
S&7Z 1.96 1.60 2.59 1.90
Heston 2.16 1.43 2.63 1.90
B&S 1.44 1.54 1.91 1.51
ext. B&S 1.36 1.24 2.47 1.37
0.94 < M < 0.98 S&S 1.40 1.28 3.15 1.40
S&Z 1.23 1.65 1.29 1.55
Heston 1.65 1.24 3.26 1.53
B&S 1.41 1.39 1.77 1.42
ext. B&S 0.81 0.95 2.50 0.93
Moneyness |0.98 < M < 1.02| S&S 0.83 1.04 2.65 0.98
S&Z 0.80 0.95 3.35 0.94
Heston 0.77 0.97 3.90 0.92
B&S 1.10 1.17 1.58 1.18
ext. B&S 0.56 0.54 1.78 0.58
1.02< M < 1.06| S&S 0.56 0.57 1.91 0.59
S&Z 0.51 0.55 1.89 0.56
Heston 0.49 0.54 2.08 0.56
B&S 1.02 1.41 2.37 1.33
ext. B&S 0.59 0.97 3.52 0.92
M > 1.06 S&S 0.50 0.96 4.12 0.85
S&Z 0.49 0.86 3.71 0.74
Heston 0.49 0.84 4.00 0.73
B&S 1.26 1.38 1.95 1.36
All ext. B&S 0.82 0.92 2.78 0.94
moneyness S&S 0.81 0.96 3.10 0.94
groups S&Z 0.84 0.90 3.08 0.93
Heston 0.83 0.89 3.33 0.92
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Figure 1:

Implied Volatilities for Short-Term Options

The graphs in the figure show the implied volatilities for individual options as a function of
their moneyness for the four models. Implied volatilities on day ¢ are computed by equating the
theoretical price based on the structural parameters estimated on day ¢ — 1 (none for B&S).
Short-term options are options with a time to maturity up to two months.
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Figure 2:

Implied Volatilities for Long-Term Options

The graphs in the figure show the implied volatilities for individual options as a function of
their moneyness for the four models. Implied volatilities on day ¢ are computed by equating the
theoretical price based on the structural parameters estimated on day ¢ — 1 (none for B&S).
Long-term options are options with a time to maturity between six and nine months.
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