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Abstract

This paper determines the cost of employee stock options (ESOs) to shareholders.

I present a pricing method that seeks to replicate the empirics of exercise and

cancellation as good as possible. In a first step, an intensity-based pricing model

of El Karoui and Martellini is adapted to the needs of ESOs. In a second step, I

calibrate the model with a regression analysis of exercise rates from the empirical

work of Heath, Huddart and Lang. The pricing model thus takes account for all

effects captured in the regression. Separate regressions enable me to compare options

for top executives with those for subordinates. I find no price differences. The model

is also applied to test the precision of the fair value accounting method for ESOs,

SFAS 123. Using my model as a reference, the SFAS method results in surprisingly

accurate prices.

JEL classification: G13; J33; M41; M52

Keywords: Employee stock options; Executive stock options; Exercise Behavior;

Fair value accounting; Timing risk

1 Introduction

Employee stock options (ESOs) are a popular instrument to align the interests of employ-

ees to those of owners. This paper focuses on the cost of such options to shareholders.

There are two main issues specific to ESOs that are relevant in this context. First,

most grantees exercise the options considerably earlier than standard option pricing theory

predicts. Second, cancellations before expiry are no less important. Underwater options,
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for instance, held by an employee who is leaving the firm, are forfeited shortly after the

end of the labor contract. In this way, staff and management turnover have substantial

impact on the cost of ESOs.

No matter what the reasons are, all valuation models have to incorporate early exercise

and cancellation. There are two main types of valuation models. Type One tries to

explain why option holders follow a certain exercise pattern. I call such a model rational.

Type Two, which I call heuristic, attempts to describe the stochastics of exercise and

cancellation in a correct way. A proper description is fully adequate for the sole purpose

of option pricing from a shareholder’s perspective.1

This study follows the heuristic approach. I present a pricing method that seeks to

replicate the empirics of early exercise and cancellation as good as possible.

1.1 Why Focus on Empirics?

Of course, from a theoretical point of view it is more appealing to analyze the reasons

behind early exercise and cancellations. But rational models widely rely on hard-to-

determine utility concepts. The utility function and factors like borrowing constraints,

size and frequency of liquidity shocks, stock ownership or initial wealth, as well as the

time to retirement should play an important role in the modelling of exercise decisions

— and they will be important in practice. Nevertheless, it is very difficult to get reliable

information on the interaction of all of these factors.

The nature of such measurement problems is not just academic but also relevant

for accounting. Suppose that the accounting standard for ESOs implements a pricing

methodology that relies on a utility function. If the function is not specified in particular,

there is large discretion on the reported option value left to the accountant. From that

point of view, a precise definition is desirable. But a rational model also determines —

explicitly or implicitly — the option’s value to the employee. Thus, a rational model in

the rank of an official accounting rule affects the interests of more people than a heuristic

model. There is more danger of political and legal discussions on the definitions that

typically result in an extreme position in favor of the party with higher bargaining power.

As an example how the result could look like, remember that ESOs, granted in the context

1Provided that the probability law of stock price movements accounts for the incentives provided by

stock options.
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of an IPO, may be valued at zero volatility since a historical volatility is not available — the

political outcome of a much less-serious measurement problem. Such problems in mind,

the Financial Accounting Standards Board (FASB) is well advised to focus on descriptive

aspects of exercise and cancellation, which are much easier to be objectified.

Besides shareholders, investment banks might also be interested in prices and ESO

hedging strategies that focus on empirical aspects. It is not uncommon to out-source

provision and settlement of ESOs to investment banks. So the bank writes the option,

being less interested in economic rationales for the option holder’s exercise decisions but

a good hedge for risky obligations.

1.2 A Heuristic Pricing Model

The heuristic approach of the present study is new as it does not presume a certain

exercise strategy in advance.

In a first step, a general intensity-based pricing model similar to El Karoui and

Martellini [KM01] is developed. The framework is general enough to incorporate a large

variety of derivatives, provided that the option payoff is well-defined at the time of exer-

cise. It is based on the absence of arbitrage and the assumption that employees have no

private information on future stock prices. Furthermore, it is assumed that the remaining

unhedgeable risk is idiosyncratic to employees and not priced by shareholders.

In a second step, I show that it is possible to calibrate the model with a regression

analysis of exercise rates from the empirical work of Heath, Huddart and Lang. The

model generates a nearly ideal fit with all information that is captured in the regression.

In this sense, the model determines ESO prices at a new degree of precision. So it may

be useful as a reference for other pricing models.

Separate regressions for different employee levels enable me to investigate if options

held by top executives are possibly more (or less) costly than those held by subordinates.

There is no evidence of essential differences.

In a further analysis I check whether all of the path-dependent regressors involved

are really necessary to make the valuation precise. By varying the sensitivity to certain

exercise drivers, I look at changes in the option value. Only about the half of regressors

are relevant, yet a reduced model, with all insensitive regressors removed, still includes

path-dependent components.
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1.3 How Accurate Is SFAS 123?

SFAS 123, the relevant standard for the accounting of ESOs, suggests a simple heuristic

model that reflects early exercise and cancellation as follows: First, the dividend-adjusted

Black/Scholes price is calculated with a maturity equal to the expected lifetime of the

option, given that it vests. In order to correct for premature forfeiture of options, the

resulting B/S price is multiplied by the probability that the option vests. I will refer to

this procedure as the SFAS method. The FASB obviously attached importance to keeping

things simple. That is desirable — the simpler the procedure, the less discretion is left

to the accountant — but it raises the question whether a plain model possibly blinds out

important value drivers.

For the lack of market prices, the SFAS method must be validated with reference mod-

els, in the hope of getting closer to the truth with the latter. Due to the large number

of factors my model accounts for, I hope to provide good reference prices. Earlier stud-

ies, working with reference models as well, found little evidence that the SFAS method

performs dramatically wrong, supposed that the reference model is true and input para-

meters are reliable.2 So does this study. Computing SFAS prices, based on inputs that

are “observed” in the world of my model, I find that the SFAS method is a robust proxy

with a small downward bias.

1.4 Previous Research

As stated above, I classify approaches to modelling exercise behavior into rational and

heuristic. By adjusting Black-Scholes, the — heuristic — SFAS method implicitly picks a

certain exercise policy: Ignoring the (weak) concavity-in-time of the Black-Scholes price,

the SFAS price is correct if options are terminated (cancelled or exercised) at some in-

dependent random time — regardless of moneyness and vesting.3 However, as Rubinstein

[Rub95] argues, independency of stock price path and termination time is rather implau-

sible for several reasons. Furthermore, it is easy to generate exercise policies that keep the

SFAS inputs constant but generate a quite different payoff structure and thus different

option values.

The heuristic approach of Jennergren and Näslund ([JN93] and [JN95]) is closely

2See Carpenter [Car98] and Raupach [Rau03].
3Provided that the remaining risk arising from imperfect hedging is not priced.
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related to the concept of independent termination. The authors introduce an independent

exponentially distributed stopping time as a proxy for option holders who leave the firm.

The option, if stopped, is liquidated at its current intrinsic value. If not stopped, the

option considered in [JN95] pays off only at expiry (like a European option), which allows

for a nearly closed pricing formula. The model can be seen as the prototype of independent

termination. The American counterpart is discussed in [JN93]: Given that the option is

not stopped, the risk-neutral holder freely decides on exercise.

Rubinstein [Rub95] notes that it is difficult to get reliable estimates of relevant input

factors. The option value as suggested by Rubinstein gives a rather radical lower bound

of prices but is based on few (and reliable) factors. Such simple estimates are easier to be

compared between firms. Yet, the question whether a stock options program has positive

value, if seen as an investment in incentives, is then even harder to be answered.

Several authors have modeled the rationales behind early exercise and cancellation

by a utility-maximizing behavior of restricted option holders. For instance, Kulatilaka

and Marcus [KM94], Huddart [Hud94], Rubinstein [Rub95], or Hall and Murphy [HM02]

assume that a representative risk-averse individual continuously decides on holding the

option or exercising it and investing the proceeds in the riskless asset. Carpenter [Car98]

generalizes the setting with regard to the portfolio where the proceeds of exercises are

invested. She introduces additional randomness by a headhunter, occasionally turning

up at the employee’s and offering a new job, changing in this way the current basis for

decision. Furthermore, Carpenter compares the heuristic model of Jennergren and Näs-

lund [JN93] with her rational model. She finds that the three-parameter rational model

neither fits with a sample of exercises better than the one-parameter model with inde-

pendent stopping, nor has it a higher predictive power. The heuristic model gives prices

strikingly similar to that of the SFAS approach, thus supporting the appropriateness of

SFAS 123. Raupach [Rau03] also generalizes the Jennergren and Näslund model [JN93],

focusing on a good fit with empirics. He supposes the option to be exercised at an expo-

nentially growing or constant barrier if it has not been stopped exogenously. Like in the

present paper, the model is used as a reference for the SFAS method. Resulting prices are

similar. Hull and White [HW03] suggest a pricing model that is basically a particular case

of [Rau03] in a binomial framework. Carr and Linetsky [CL00] generalize Jennergren and

Näslund’s concept of a constant hazard rate of stopping to rates depending on time and

current stock price. Particular cases allow for solving parts of the evaluation analytically.
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El Karoui and Martellini [KM01] develop a more general theoretical framework for the

pricing of assets with uncertain time-horizon, which is based on continuous-time hazard

rates as well. The concept of conditional independence, which is central in the technical

framework of my paper, is closely related to the ideas of El Karoui and Martellini.

The paper is organized as follows. Section 2 develops the general pricing framework.

Section 3 summarizes some empirical results of the work of Huddart and Lang. In Section

4, the model is applied to a typical ESO design and calibrated with regressions. Section

5 presents prices and tests the SFAS method. Furthermore, I determine what individual

exercise drivers in the regressions are relevant for prices. Section 6 concludes. Some

evidence on management turnover and a number of proofs are relegated to the appendix.

2 A General Pricing Model

This section develops a general framework which allows to derive a unique price of ESOs

from arbitrage and diversification arguments. I will present a hedging strategy for a

large class of derivatives that minimizes the variance of the hedging error. Provided that

the remaining risk is not priced, the price of an option is then the value of the hedge.

The hedging strategy also makes explicit what information is essential in order to price

ESOs correctly. The model is based on ideas similar to those of El Karoui and Martellini

[KM01].

2.1 Assumptions

Let a vector price processX of traded securities be given with paths in C := C ([0, T ] ,Rn),

and a filtration F =(Ft)t≥0 on a complete probability space [Ω,F ,P]. There is a money
market account paying out a constant yield rate r. Given a fixed time t, I assume every

integrable, Ft-measurable contingent claim to be perfectly replicable by continuous trad-

ing in X and the money market account. For instance, this holds if F is augmented and

(X,F) is a continuous semimartingale, following a stochastic differential equation with

smooth coefficients. In the sequel, I assume all random variables to be square integrable.

To specify some terms, I mean by termination the end of the option contract for any

reason. Terminations at a positive payoff are called exercises, and cancellations otherwise.

I use forfeiture as a synonym of cancellation.
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The option payoff is defined by a mapping f : [0, T ] × C → R+. If an option is

terminated at time t, the holder receives cash in the amount of f (t,X) ≥ 0. The payoff
shall be uniquely determined by the path of X up to t.4 The set of possible times of

termination is restricted to a final set5 {t1, . . . , tK}. Restricting the determinants of the
payoff to t and X precludes that in-the-money options are cancelled, possibly due to

explicit disciplinary clauses in the option contract.

The definition of payoff is flexible enough to cover features like vesting periods or

non-exercise windows. As well, outperformance options or hurdles fit into the framework

the same as path-dependent derivatives like Asian options.

Most of the assumptions could be weakened, yet I will forego generality in favor of

compactness.

Following the methodology of heuristic models, I do not explicitly specify how an

option holder arrives at an exercise decision. I assume that there is a random time τ with

values in {t1, . . . , tK}, at which the option pays out f (τ ,X) (the total of cancellations
simply appears to be {f (τ ,X) = 0}). The joint law of τ and X is assumed to be common

knowledge.

The following assumption is key to the possibility of hedging: At every time, the

current decision on termination and the future development of the price process are in-

dependent. Formally, I assume

P (τ > t,X ∈ B |Ft ) = P (τ > t |Ft ) P (X ∈ B |Ft )

for t ∈ {t1, . . . , tK} and Borel sets B ∈ B (C ([0, T ])). I call the property conditional
independence. It is equivalent6 to the K-assumption

P (τ > t |Ft ) = P (τ > t |FT ) , (1)

to be found in [KM01] or [MS79]. Conditional independence is not total independence

of exercise decisions and X. Quite the contrary, the intuition behind is an option holder

4Formally, f (t, ·) shall be measurable with B ([0, t]), the sub-σ-algebra of Borel sets in C that is

generated by the natural projection C → C ([0, t] ,Rn).
5El Karoui and Martellini [KM01] as well as Carr and Linetsky [CL00] use continuous intensities of

exercise, which seems at least partially inappropriate for ESO since the distribution of exercise time

will jump at maturity and vesting dates. See Huddart and Lang [HL96, fig. 1] for empirical support.

Admitting continuous-time but degenerate distributions is possible but makes the model cumbersome.
6A proof is found in the appendix, Section 7.2.
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who might experience idiosyncratic impulses, to be intractable by the option writer, but

takes all past market information into consideration when deciding whether to terminate

options. Idiosyncratic impulses could be sudden liquidity need, an alternative job oppor-

tunity, serious illness and things like that. The only restriction imposed by conditional

independence is that a termination in t has nothing to do with the further development of

X after t. In other words, option holders do not condition exercise on private information

about the future development of stock prices.7 Note that the path of X on [0, t] may

even enforce termination in t. For instance, the optimal, deterministic exercise strategy

for a traded American option is covered as well. In this case, P (τ > t |Ft ) ∈ {0, 1}, and
conditional independence is trivially given.

2.2 Hedging Strategy

The writer of an ESO — shareholders or an investment bank, servicing the claims arising

from ESO exercises — has to pay f (τ ,X) in τ . I assume that she finances this payoff by

borrowing it from the money market at the riskless rate of interest just in τ until maturity.

Doing so does not narrow her action space. Following this strategy, the option writer has

to pay back H := er(T−τ)f (τ ,X) to the money market in T . To hedge this liability, she

implements a replicating strategy that matures in T as well. It is quite easy to determine

the variance-optimal hedge at an abstract level.

Lemma 1 Among all payoffs that can be replicated by trading in the money market ac-

count and X, the contingent claim

H∗ := EP
¡
er(T−τ)f (τ ,X) |FT

¢
(2)

approximates H best in L2 (P), i.e., it minimizes the variance of the hedging error. The

error has a mean of zero.

Proof. Due to FT -measurability, H∗ can be replicated by trading in X and the money

market. Minimal variance and zero expectation for H∗ −H are elementary properties of

conditional expectations.

7There is empirical evidence that ESO holders process private information when deciding on exercise.

For instance, Huddart and Lang [HL03] report abnormal stock returns following high rates of ESO

exercise. I have to ignore this to keep things simple.
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Despite its formal elegance, representation (2) of H∗ is rather unmanageable. In order

to derive an appropriate hedging rule, I disaggregate the random payoff across time: Set

for some fixed t

Πt := I{τ=t} f (t,X) .

The sum of all Πt returns f (τ ,X). Putting this into (2) and applying conditional inde-

pendence (1) yields

H∗ = EP

Ã
er(T−τ)

X
t

Πt

¯̄̄̄
¯FT

!
=
X
t

er(T−t)f (t,X)EP
¡
I{τ=t} |FT

¢
=

X
t

er(T−t)f (t,X)P (τ = t |Ft ) . (3)

Hedging H by H∗ can now be reinterpreted as follows.

• For every t ∈ {t1, . . . , tK}, implement a bundle of replicating strategies, each paying
f (t,X)P (τ = t |Ft ) in t.

• Aggregate the differences f (t,X) ¡P (τ = t |Ft )− I{τ=t}
¢
in the money market ac-

count until T.

2.3 Price

Like other authors8, I will assume that the risk of imperfect hedging is not priced. The

option price is then immediately derived from the hedging strategy. The following two

propositions give examples how the absence of a risk premium for the unhedgeable risk

could be reasoned. Proposition 2 uses a CAPM argument, whereas Proposition 3 assumes

that the error can be diversified away.

Proposition 2 Suppose that X covers all assets in the market. The hedging error H∗−H
is then uncorrelated with each asset and every FT -measurable contingent claim. Hence, a

well-diversified option writer will set the value of the hedging error equal to its discounted

expected value, which is zero.

Proof. Let Y be an FT -measurable random variable. By definition, H∗ = EP (H |FT ),

and therefore

cov (H∗ −H, Y ) = EP (H∗ −H)Y = EP EP ((H∗ −H)Y |FT )

= EP (H∗ −H∗)Y = 0 .
8See Jennergren and Näslund [JN95], [JN93], or Carpenter [Car98], for example.
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Proposition 3 Assume that the option writer has granted ESOs to a large number of

employees i. Let the exercise times τ i follow a distribution common to each, and let

furthermore all exercise decisions and X be conditionally independent.9 If the number of

employees tends to ∞ and if, furthermore, the proportional share of the largest option

package vanishes as well, the proportional hedging error vanishes in L2 (P). In particular,

let a fixed price path scenario be given from 0 to T , and let the number of options granted

be equal to each employee. Then, the cash flows will accrue at an approximate density of

f (t,X)P (τ = t |Ft ) over the timeline.

The proof immediately follows from the Strong Law of Large Numbers underP (· |Ft ),

and is therefore omitted.

If no premium is paid for bearing the unhedgeable remaining risk, the cost of an

ESO to shareholders equals that of its hedging portfolio, the latter of which allows for

application of the standard option pricing theory. Let be Q the equivalent martingale

measure, which is unique by the assumptions made at the beginning. By (3),

price = EQe−rTH∗ =
X
t

e−rtEQ [f (t,X)P (τ = t |Ft )] . (4)

Furthermore, the completeness assumptions on X from Section 2.1 ensure that

P (τ = t |Ft ) = Q (τ = t |Ft ) ,

i.e., the conditional probability of exercise remains unaffected by the change of measure.10

Then (4) simplifies to

price =
X
t

e−rtEQ [f (t,X)Q (τ = t |Ft )] = EQe
−rτf (τ ,X) . (5)

In other words, an ESO is priced as if perfectly hedgeable or, equivalently, if τ were an

F-stopping time. This formula has already been used in earlier work.11 In the context of

this paper, however, the disaggregated representation on the right side of (4) turns out

to be more useful. It provides an opportunity to directly transfer empirical evidence on

termination rates into prices.

9Formally, the indicators I{τi>t} and X are to be independent under P (· |Ft ) for all t.
10See appendix, Lemma 6.
11See Jennergren and Näslund [JN93], [JN95] or Carpenter [Car98], for example.
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3 Drivers of Exercise Probability

Since the early 90’s, when the SEC implemented the disclosure of executive stock option

plans, data on stock option grants has grown considerably. Yet, precise data on exercise is

still scarce. Even matching EXECUCOMPwith insider trades does not enable to uniquely

determine when a certain option package was exercised, not to mention terminations. In

this context, the dataset collected by Steven Huddart andMark Lang is unique. It contains

detailed information on stock option grants plus exercises of about 58,000 employees from

7 publicly traded firms between 1985 and 1994. The options run over 5 to 10 years, with

a majority on 10 years.

The dataset was analyzed in several articles: Huddart and Lang [HL96], [HL03], Hud-

dart [Hud98], [Hud99], and Heath, Huddart and Lang [HHL99]. I will calibrate my option

pricing model with results from this work.

In [HL96], the authors choose a grant month to be an observation, where a grant is

the total of all options given to employees at one day in one firm. Every month through

the lifetime of an option is a candidate for being an observation, whereas some have been

eliminated: “We exclude observations for which the strike price exceeded the mid-month

market price, observations after a grant was fully exercised, and observations before the

first vesting date since little or no exercise would occur in those cases.” The aggregation

ends up with a number of 5,060 observations. The authors do tobit and weighted OLS

regressions of the option exercise rate on independent variables such as characteristics of

the time series of past stock prices or factors that relate to an option’s life stage such as

dummies for options being recently vested or those expiring soon. Table 1 summarizes

definitions of regressors and coefficients utilized in this paper. The dependent variable

is called fraction exercised, defined as “the ratio of options exercised in a month to total

options in the grant”. Note that fraction exercised is not a hazard rate since it does

not refer to the number of options remaining from earlier terminations but the total

of options granted. Fraction exercised corresponds to the probability of an option to

be exercised in a certain month and to have been unexercised so far (instead of “given

that. . . ”). Regressions are conducted, first, for all firms in the sample12; second, for each

firm separately; and third, for different classes of the employee level, sorted by the number

of options each person is granted.

12The employee-owned firm “H” is left out.
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With similar OLS regressions on the same database, the paper [HHL99] of Heath,

Huddart, and Lang focuses on “psychological factors (. . . ) above and beyond the rational

factors considered in standard models of exercise”. Main differences between [HHL99]

and [HL96] are grant weeks as observations instead of months, slightly different criteria

for cutting out a grant week, and some different regressors. One of the findings is that

whether or not the recent stock price is larger than all prices through the last year has

major impact on the exercise rate. As well, several short-term returns have strong impact.

Essential regression results and definitions of regressors are summarized in Table 2.

4 Calibrating the Model

This section attempts to reconcile the general pricing model with the empirical findings

of Heath, Huddart and Lang. The following is key to the link between the model and

empirics.

Assumption 4 At every point through the lifetime of an option, the forecasts of the
regression models from [HHL99] and [HL96] provide a sufficient statistics for the current
exercise probability.

In other words, all systematic drivers of the exercise probability are assumed to be

correctly captured by the regression model. What remains — the noise of the regression

model — is equal to the remaining unhedgeable exercise risk.

4.1 Representative Setting

According to the options investigated in [HHL99] and [HL96], I develop a model for Amer-

ican call options on one underlying stock. The empirical results have high explanatory

power with respect to the response of individuals to stock price movements. Yet, a variety

of 7 firms is not enough to reliably investigate the influence of firm-specific factors (like

dividends, industry, firm size) or that of option characteristics (like option term, vesting

rules, hurdles). For instance, a shortening of the option term will probably increase the

mean exercise rate, simply because there is less time to exercise. The regression models

do not directly account for the option term, however. I seek to avoid misspecification due

to unconsidered firm- or option-specific factors by choosing a representative setting that

is as close as possible to parameters from the sample. Hence, the model is not guaranteed

to provide plausible results in other settings as well. It is thus a good signal rather than

12



Variable Name Type All Level 0 Level 1 Level 2 Level 3
Mean

Returns ret90,45 OLS -0.0111 -0.0104 -0.0123 -0.0151 -0.0172
-90 days to -45 -0.039 Tobit -0.0107 -0.0128 -0.012 -0.0158 -0.0197
Returns 0 ret45,30 OLS 0.0274 0.0292 0.0319 0.034 0.0347
-45 days to -30 0.0088 Tobit 0.0275 0.0325 0.036 0.0367 0.0382
Returns ret30,0 OLS 0.0231 0.0213 0.0245 0.0313 0.0328
-30 days to 0 0.013 Tobit 0.0257 0.0273 0.0314 0.0391 0.0416
Market-to-strike mts OLS 0.0104 0.0125 0.0106 0.0078 0.0061
ratio (cut at 5) 2.222 Tobit 0.0087 0.0137 0.0122 0.0103 0.008
Square of ~ mts2 OLS -0.0015 -0.0022 -0.0017 -0.0011 -0.0009

5.385 Tobit -0.0006 -0.0017 -0.0014 -0.0009 -0.0009
Volatility vola OLS 0.004 -0.0001 0.0082 0.0112 0.0121

0.393 Tobit 0.0039 -0.0037 0.0082 0.0118 0.0120
Fraction recently vest OLS 0.0077 0.0029 0.0082 0.0116 0.0086
vested 0.035 Tobit 0.0099 0.0033 0.0095 0.013 0.0108
Fraction of avail OLS 0.0063 0.0039 0.0057 0.0019 0.0085
grant available 0.344 Tobit 0.0076 0.0065 0.0082 0.0078 0.0175
Life left tleft OLS -0.0002 -0.0001 -0.0004 -0.0008 -0.0009

5.692 Tobit -0.0004 0.0002 -0.0001 -0.0008 -0.0009
Fraction to canc OLS 0.1663 0.2632 0.2525 0.3262 0.238
be canceled 0.012 Tobit 0.1624 0.2824 0.2178 0.2571 0.1148

Table 1: Regression estimates from Huddart and Lang [HL96, table 5, 6] “. . . [by em-
ployee level] of options exercised on stock price variables, options recently vested, options
available, life left, and options to be canceled.” The end of an event month serves as
reference time for returns. Accordingly, ret90,45 is the log stock price return between 60
and 15 days before beginning of the event month. Further definitions from [HL96, table
4]: “The unit of observation is a grant month. Statistics are for all grants with more than
ten grantees and all grant months with market-to-strike ratios in excess of one. There
are 5.060 such grant months. (. . . ) Market-to-strike ratio is the lesser of five and the
ratio of the market price of the stock to the strike price of the option at the end of the
exercise month. Volatility is the standard deviation of log daily stock price returns over
the year prior to the grant month. Fraction recently vested is the number of options that
vested in the three months prior to the exercise month expressed as a fraction of options
granted for months in which the market-to-strike ratio exceeds 1.15, and zero otherwise.
Fraction of grant available is the ratio of options available to be exercised (i.e., vested and
unexercised) to the options granted as of the beginning of the exercise month. Life left is
the number of years remaining in the option life prior to expiration. Fraction to be can-
celed is the number of vested, unexercised options from a grant that will be canceled in the
coming three months, expressed as a fraction of the total grant.” Further definitions from
[HL96, table 6; indices adapted]: “Level 0 employees were among the top 5% of employees
receiving options at their company; level 1, among the next 20%; level 2, among the next
25%; and level 3, among the final 50%.”
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Variable Mean Standard Coefficient t-Statistic
deviation

EXER 0.0020 0.0081 — —
Intercept — — −0.00219 213
AVAIL 0.3695 0.2224 0.00264 14.6
CANCEL 0.0101 0.0367 0.05466 33.3
VEST 0.0785 0.1130 0.00108 3.9
RATIO 0.7673 0.1834 0.00251 12.9
RETWK1 0.0081 0.0573 0.01055 14.3
RETWK2 — — 0.01232 17.1
RETWK3 — — 0.00491 6.9
RETWK4 — — 0.00032 0.5
RET6MO1 0.1466 0.2619 0.00008 0.4
RET6MO2 0.0954 0.2823 −0.00075 24.8
MAX 0.2632 0.4404 0.00194 20.6
Adjusted R2 0.2849
Number of observations 12,145

Table 2: Descriptive statistics and regression from Heath, Huddart and Lang [HHL99,
table 3, 4]. Definitions: “There are 12,145 weekly observations of options exercised ex-
pressed as a fraction of options granted. EXER, AVAIL, CANCEL, and VEST are the
fraction of the total number of options awarded from a single grant that, relative to obser-
vation week, are as follows: exercised, available for exercise, and to be canceled within six
months; and, that have vested in the prior six months, respectively. RATIO is the differ-
ence between the market price of the stock on the Monday of the observation week and the
strike price, divided by the option’s Barone-Adesi and Whaley [1987] value as of the same
date. RETWK1 is the return on the stock in the week prior to exercise. RET6MO1 is
the return on the stock over months −7 to −2, inclusive relative to the observation week.
RET6MO2 is the return on the stock over months −13 to −8, inclusive. Returns are the
logarithm of the ratio of closing stock prices on the days bracketing the relevant period.
MAX is a dummy variable that takes the value one if the stock price in the observation
week exceeds the maximum of the daily closing stock prices computed over trading days
−21 to −260, i.e., the maximum over the prior year excluding the month prior to the
observation week.”
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a stringent seal of approval if the SFAS pricing method turns out to be consistent with

my model in Section 5.1. Large inconsistency, in contrast, could disprove SFAS 123 to be

appropriate.

I will determine the price of a particular call option with the following characteristics:

The option runs from t = 0 to T = 10 y. It is not exercisable from grant until V = 2 y and

fully vested afterwards. There are no further exercise restrictions such as block periods

around financial statement disclosures. The option is granted at the money, with a strike

price K equal to the normalized stock price X0 = 100. So the payoff has the form

f (t,X) = I{t≥V } [Xt −K]+ .

I assume that the stock price path follows a stochastic differential equation

dXt = µXt dt+ σXt dWt

with constant coefficients, as in the Black/Scholes model. The drift µ = 13.5%, volatility

σ = 41.6%, and continuous dividend yield δ = 3.0% are set equal to the mean value over

the 7 publicly traded firms in [HL96, table 1]. The risk-free interest rate is set to r = 7%.

4.2 Modelling the Probability of Termination

The pricing formula price =
P

t e
−rtEQ [f (t,X)P (τ = t |Ft )] is evaluated by path sim-

ulation. To do that, I have to determine the termination probability P (τ = t |Ft ) for

every drawn path X and every potential exercise time t ∈ {t1, . . . , tK}. I will specify
the probability in two different ways, depending on whether the option is exercisable or

not: The regression models in Table 1 and 2 refer only to observations where the option

is in the money, where some of the options are vested, and where at least some of the

options remain to be exercised. Accordingly, I define an option to be exercisable in t

iff f (t,X) > 0 and P (τ ≥ t |Ft ) > 0. The following subsections define the termination

probability recursively, starting from t = 0 until T .

4.2.1 Exercisable Options

Given a path X and some t such that the option is exercisable, the regression returns a

crude exercise probability according to

p∗crude (t,X) := α+ β1x1 (t,X) + · · ·+ βnxn (t,X) (6)
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where xi (t,X) are the regressors of Table 1 and 2, respectively.13 Time t runs from 0 to

10 in 480 steps (denoted by ∆t), the quarter of a month each.14

Huddart and Lang [HL96] do not report the intercept of the regression analysis since

they are mainly interested in the identification of the drivers of exercise intensity. Yet,

the general level of intensity is essential for pricing — it has strong impact on options being

exercised earlier or later, even on being exercised at all. I reconstruct the intercept from

mean values of the dependent variable and regressors. By taking the expectation on both

sides of (6), α is eliminated, ending up with

p∗crude (t,X) = Ep
∗
crude (t,X)+β1 (x1 (t,X)− Ex1 (t,X))+. . .+βn (xn (t,X)− Exn (t,X)) .

(7)

The sample mean values from Table 1 and 2 now specify the equation in full, enabling

me to make numerical calculations.

It may happen in some cases that the regression will forecast values outside of [0, 1],

which is not meaningful for probabilities. The model only makes sense if such cases are

negligible. Keeping this in mind, I simply “cap” and “floor” the values, setting

pcrude (t,X) := 1 ∧ [p∗crude (t,X)]+ ,

where a ∧ b = min (a, b).

4.2.2 Unexercisable Options

The regression models have no explanatory power for the case that the option cannot be

exercised. According to my definition, this is the case if P (τ ≥ t |Ft ) = 0 or f (t,X) =

0. When the cumulative termination probability has reached 1 already, all subsequent

probabilities clearly must be zero. If not, i.e., if P (τ ≥ t |Ft ) = 0 and f (t,X) = 0,

options are assumed to be cancelled independently of FT at a constant hazard rate λ.

Independent cancellations before maturity account for the empirical fact that employees

who leave the firm usually have to exercise their ESOs shortly. If an option is out of

the money or unvested at that time, it is forfeited. For that reason, I set the constant

cancellation rate to λ = 3%, a value that is used by practitioners as a rule-of-thumb for

the fluctuation of staff. Section 7.1 in the appendix summarizes some evidence that 3%

13Note that all regressors refer to the past and present of stock price paths, besides deterministic
factors. Hence, p∗crude (t,X) is Ft-measurable.
14Since the dependent variable of the regression in Table 1 is a monthly rate, the coefficients are divided

by 4 in 6.
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is a good proxy for the large group of top managers (large if weighted by the number

of options granted). Obviously, the calibration of the model could be improved by a

regression model that includes cancellations directly. It is likely that fluctuation rates are

negatively related with firm performance, so that the option cancellation rate might be

higher than 3%.

4.2.3 Recursion

Let p (t,X) := P (τ = t |Ft ) be the (marginal) probability of termination at t. Let fur-

thermore pcanc := 1 − exp {−λ∆t} be the hazard rate of cancellations for one step and
denote by premain (t,X) = 1−

P
s≤t p (s,X) the probability of options not being terminated

until t (including t). The definition

p (t,X) :=

 pcrude (t,X) ∧ premain (t−∆t,X) : f (t,X) > 0

pcanc premain (t−∆t,X) : f (t,X) = 0
(8)

fulfills the above requirements (with formally setting premain (−∆t,X) := 1). Capping

pcrude (t,X) with premain (t−∆t,X) ensures that the cumulated termination probability

does not exceed one. Note that pcanc corresponds to a hazard rate, whereas pcrude (t,X)

is an unconditional probability, which is believed to account for the decline of exercisable

options through time in a correct way without further modifications.

The definition of p (t,X) ensures p (T,X) ≤ 1 but not p (T,X) = 1 in general, which
conflicts with the fact that each option must either be exercised or cancelled. If the option

expires out of the money, this is no problem for the determination of the price since the

lack of probability occurs in cases without payment. The case that the option matures in

the money is considered below in detail.

Finally, let me remark that the specification of cancellation frequencies has large im-

pact on prices. Although such events contribute zero to expected option payoffs, more

frequent cancellations make premain run off earlier, setting all subsequent probabilities to

zero. Otherwise, subsequent steps could contribute valuable payoffs to expectation with

positive probability. Above that, cancellations influence subsequent p (t,X) via some

regressors, too.

4.3 Computing

The stock price process X is approximated by a recombining binomial tree of 480 time

steps. The simulation ofX is conducted by drawing ups and downs over the tree under the
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physical measure. Given a realization of X, the probability p (t,X) is determined at each

t and added to the sum of probabilities of the corresponding node Xt from earlier simula-

tions that hit the same node. After 20.000 paths and normalization of the probabilities I

obtain an approximation of the joint distribution of (τ ,Xτ) under the physical measure.

The moments are computed directly, whereas the pricing formula (5) is evaluated with

probabilities multiplied by the Radon/Nikodym derivative of each node.

4.4 Criteria of Consistency

Of course, I was initially doubtful whether a regression model that was not designed to

price an option gives plausible results in this context. Above, I stated that {p∗crude (t,X) ∈ [0, 1]}
should hold in nearly all cases. Furthermore, the distribution of (τ ,Xτ) should have mo-

ments similar to those of the sample. I introduce two further criteria of consistency, both

of which concern the cumulative termination probability. I will check under what condi-

tions the outcome of the cancellation probability is consistent with the hypothesis of a

constant λ = 3%. It has become clear already that the model is automatically correct

if the total termination probability pcum (t,X) := 1 − premain (t,X) equals one for some

t ≤ T . The same is true if the option expires out of the money. If, possibly pcum (T,X) < 1

on such a path, the lack can be addressed to forfeitures at maturity, which are neither

recognized by the regressions nor in a causal connection with the fluctuation of employees.

It does not matter whether the “lack” is removed by an extra-portion of cancellations at

T or not.

Suppose now that pcum (T,X) < 1 and f (T,XT ) > 0. If the assumption of a given,

constant hazard rate of cancellations were perfectly true, one should observe pcum (T,X) =

1. Since this is not the case, I compute a hypothetical cancellation rate that would fill

the gap between pcum (T,X) and 1. It is defined as follows. Let q be the total probability

of exercise for a certain path, excluding termination. As specified above, cancellations

must go back to the vesting period and out of-the-money periods. Summing up the total

length of periods out of the money plus the vesting period to l, the implicit cancellation

rate

λimpl (X) := −1/l ln (q)

defines the first criterion of consistency. This rate is still constant in time but individual

to each path. It is meaningful only on the subsample of options expiring out of the money

and should take values close to the pre-specified λ if the model is calibrated well.
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The second criterion of consistency has the same idea behind but the scope is nar-

rower: Let A := {f (T,XT ) > 0 for all t ∈ [V, T ]} be the total of paths that keep the
option continuously in the money. If the model is miscalibrated, this should crop up

most strikingly on A where cancellations are limited to the vesting period [0, V ]. The

conditional cumulative probability of termination for such paths,

pcum,A := E
P (pcum (T,X ) | A) ,

should be equal or close to one. I will refer to pcum,A = 1 as the all-in-the-money condition.

4.5 Final Calibration

I start with an attempt to choose empirical parameters without modification. Expecta-

tions in (7) are set equal to the sample means from Table 1, coefficients are those from

Column “all”, which are estimates on the whole sample of employees. Ep∗crude (t,X)

equals 0.007, the mean monthly exercise rate as reported in [HL96]. The simulated

mean of p∗crude (t,X) is biased upward to 0.0080, which is no problem from the outset

since simulated expectations of the regressors do just loosely correspond to the real-world

counterparts. That higher mean value is simply the forecast of the empirical model

in another situation. Many simulations of p∗crude (t,X) however fail to be within [0, 1].

There are more than 10% negative values. Furthermore, I observe pcum,A = 0.78 and

sup pcum (T,X ) = 0.87, both of them values that should plausibly approximate one. Al-

ternative coefficients from Table 1 and 2 lead to similar results. I conclude that the overall

termination probability is clearly underestimated.

As a consequence, I limit the input that derives from empirics to regression coefficients

henceforth, returning from (7) to the original regression equation (6). The intercept α is

not considered to be given by the regression anymore but calibrated such that the criteria

of consistency as specified above are met as good as possible.15 Figure 1 shows prices

for different models that arise from a variation of the intercept. Here, the (resulting)

probability Ep∗crude (t,X) is mapped to the price. The left edge at 0.70% corresponds to

the original calibration.

Negative exercise “probabilities” become negligible at a mean exercise probability in

excess of 0.9%. They occur in less than 1% of the sample, mostly combined with low

15Alternatively, one could also recalibrate the cancellation rate λ to fill the gap between pcum,A = 1
and the observed value of 0.78. But λ were to be set to 18%, which is much too high to be associated
with a rate of staff turnover. Besides, resetting λ could not correct the problem of negative p∗crude (t,X).
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Figure 1: Option prices, depending on the expectation of the monthly termination prob-
ability, determined under the physical measure of the pricing model. By variation of the
regression intercept, different such expectations are obtained as well as different prices.
The graph maps the expectation (“Mean Exercise Frequency”) to the price. The left edge
at 0.70% corresponds to the first specification of section 4.5. “HL96 OLS - all” denotes
prices for OLS regressions on the full sample in [HL96] (see Table 1). “HL96 TOBIT
- all” is the counterpart with tobit coefficients. Prices of “HHL99 OLS” result from the
regression in [HHL99] (see Table 2). Price curves for regressions over subsamples ac-
cording to the employee level are very similar. “Amer. Call” denotes the unique price an
unrestricted investor would pay under assumptions of standard option pricing theory.
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Figure 2: Option prices depending on pcum,A, the cumulative termination probability, given
that the option is continuously in the money from vesting to maturity. Pairs of pcum,A and
price are obtained by variation of the regression intercept; pcum,A is determined under the
physical measure of the pricing model. The categories “OLS” and “TOBIT” refer to the
corresponding regression coefficients from [HL96]; see Table 1. “HHL99” denotes prices
arising from coefficients of Table 2, which stem from [HHL99]. The appendices “All” or
“Level i” refer to subsamples of different employee level, sorted by the number of options
a person received. Level 0 are the top 5% of employees; Level 1, among the next 20%;
Level 2, among the next 25%; and Level 3, among the final 50%.

payoffs.

By virtue of its rigor, I choose the all-in-the-money condition as the primary bench-

mark of consistency. As a preliminary analysis for that step, Figure 2 shows option prices

as a function of pcum,A instead of the mean exercise frequency as in Figure 1. Note that

point “1” in the abscissa refers to the lowest α that entails pcum,A = 1. For higher α, the

probability clearly stays constant at 1, while the price may decrease in α, as is seen in

Figure 1.

Switching from the mean exercise rate as common attribute of calibration to pcum,A

reduces most of the price differences between the models. Given some pcum,A ∈ [0.7, 1],
the maximal deviation of an individual model’s price from the mean over models is below

3.5%.
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In order to determine the final option value, the intercept α is now chosen to be the

least value such that the all-in-the-money condition is met. The right edge of Figure 2

thus provides the option value of each model. In adapting α this way, I change the original

model as cautious as possible. Yet, higher α would result in consistent models as well,

except that the mean exercise frequency were even more distant from the empirical mean.

The implicit cancellation rate λimpl (X) shows mean values between 3.5% and 5.9%,

which I consider to be in a reasonable scope.

5 Results

Table 3 summarizes prices and characteristics of the joint distribution of (τ ,Xτ) for dif-

ferent model set-ups. Characteristics such as mean values under the physical measure and

the correlation of τ and Xτ are rather consistent across models. They roughly correspond

with their empirical counterparts.16

Prices according to different regression models are quite similar in general. Option

holders capture about 72% of the value of a corresponding American option.17 Further-

more, options under the OLS models are — slightly, but systematically — less expensive

than under the tobit models. They show surprisingly low differences across employee

levels within each OLS / tobit model class. Models of rational option holders such as

Hall and Murphy [HM02] or Carpenter’s utility maximizing model [Car98] provide many

factors that potentially generate a difference in the cost of an option held by a top exec-

utive as opposed to a floor manager. Primary candidates for such factors are the utility

function, in combination with initial wealth, stock ownership, the degree of diversification,

borrowing constraints, or the stochastic size of liquidity shocks relative to wealth. My

model suggests that these factors cancel each other out. Yet, there are effects that could

generate a systematic dependency on employee level — under the same regression coeffi-

cients, but in another context. For instance, Huddart and Lang [HL96] conclude from a

higher sensitivity to historical volatility that lower-level employees are more risk-averse

on average than top executives. Simulated volatilities, however, vary much less than in

reality, which turns the sensitivity to volatility into a fixed effect. If I was introducing

16The empirical characteristics are recalculated in part from other figures in the descriptive statistics
of [HL96]. Hence, they are unreliable. For details, see the description of Table 3.
17Calculated according to the procedure of Barone-Adesi and Whaley [BAW87]. A vesting period of

two years can be neglected for the given stock price process.
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Regres- Emplo- Ep Price SFAS pexcum Eτ EXτ ρ Eλimp (X)
sion yee Error
Type Level
96-OLS All 1.04% 37.25 −1.3% 51.7% 6.1 3.07 14.2% 5.60%
96-OLS Lev. 0 1.43% 36.76 −3.4% 59.9% 5.5 2.59 13.6% 3.50%
96-OLS Lev. 1 1.16% 37.46 −2.2% 56.0% 6.0 2.89 14.4% 4.10%
96-OLS Lev. 2 1.05% 38.50 −1.3% 52.8% 6.8 3.28 11.0% 4.50%
96-OLS Lev. 3 1.09% 37.62 −1.2% 54.6% 6.3 3.05 14.4% 4.50%
96-TOB All 1.14% 38.61 −5.5% 50.4% 5.9 2.98 −2.0% 5.90%
96-TOB Lev. 0 1.10% 38.70 −4.7% 51.5% 6.2 3.02 2.5% 5.20%
96-TOB Lev. 1 1.12% 38.48 −5.0% 51.4% 6.0 2.97 2.6% 5.40%
96-TOB Lev. 2 1.13% 39.26 −5.4% 51.4% 6.3 3.05 −4.5% 5.10%
96-TOB Lev. 3 1.12% 37.45 −3.7% 53.5% 5.7 2.85 10.8% 5.30%
HHL99 All 1.16% 38.63 −4.8% 56.6% 6.1 2.82 4.9% 3.80%
directly from the sample – – – ≈6.7 2.22 ≈20% –
PriceSFAS (sample inputs) 37.94
PriceAmerican 51.21

Table 3: Prices and selected characteristics of the probability law of termination arising
from different regression models. The intercept of all regression equations was taken to
be the least value such that the cumulative probability of termination, given the option
was completely in the money, just equals one. “96” refers to the coefficients of [HL96],
to be found in Table 1, whereas “HHL99” denotes those from [HHL99]. For the meaning
of the employee level subsamples, see Figure 2. The lower the figure, the higher the level
of the employees. All characteristics are expectations under the physical measure of the
corresponding pricing model — except price. Ep is the mean monthly exercise probability.
“SFAS Error” denotes the proportional deviation of the option price according to SFAS
123 from the model price, given that the latter is true: SFAS prices are derived from
Black/Scholes prices with a maturity equal to expected option lifetime, given that it vests.
The result is multiplied by the probability that the option vests, here exp{−2λ}. pexcum
denotes the probability of exercise over the full option lifetime. Eτ is the mean exercise
time and EXτ the mean stock price performance at exercise, ρ denotes the correlation
of τ and Xτ . All means are computed under the condition that the option is exercised.
Eλimp (X) is the mean implicit cancellation rate. Row 3 from below reports reference
values of the descriptive statistics in [HL96, tables 1, 3, 4]. The mean exercise time is
an unweighted average over firms, the correlation is privately reported by Steven Huddart.
PriceSFAS (sample inputs) gives the SFAS price for a mean exercise time of 6.7 and a
probability of vesting at exp{−2λ}. PriceAmerican is the option price according to the
procedure of Barone-Adesi and Whaley [BAW87].
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stochastic volatility into the probability law ofX, differences in the sensitivity to volatility

could become more important. With all due care, one could argue as follows. Given that

volatility tends to persist some time, a higher sensitivity leads the option holder to forfeit

more option time value18 in turbulent times since more options are exercised just when the

option has a high time value. Altogether, an introduction of stochastic volatility should

reduce the option value under high sensitivity to volatility as opposed to low sensitivity.

5.1 Testing the Accounting Standard

This section tests whether the SFAS pricing method accounts for the most important

factors. Recall that the SFAS method has two exercise related input parameters: the

probability that an option vests and the mean lifetime of an option, given that it vests.

Do these parameters capture the major part of factors influencing the “true” value? Of

course, there is no such truth, just other models. If one believes, as I do, that it is

important to achieve a good fit with empirics, my model is interesting since it nearly

exactly replicates the empirical results of the regressions. So I validate a two-factor

model with a ten- or eleven-factor model, depending on the number of regressors in use.

The usual procedure would be to estimate the exercise related inputs for both models

on the same sample, and to compare the corresponding prices. To compute the SFAS

price, I take the average across firm-specific exercise times from [HL96] as a proxy for the

mean lifetime, given vesting. For lack of data on options cancelled before vesting, I set

this probability equal to exp {−V λ} = exp {−0.06}, in accordance with the assumption
λ = 3% in my model. The resulting SFAS price of 37.94 is located in the middle of

the regression model prices, suggesting so far that the SFAS method is a strikingly good

proxy. Of course, it must be noticed that the representative setting is quite special. For

the lack of data, I cannot carry out further checks.

In a second test, I assume my model to be true. Computing the mean exercise time

under my model, I get SFAS prices, the proportional errors of which are listed in Table 3.

A systematic but low downward bias and very low variance add further evidence about

the impressive accuracy of the SFAS method.

I also test other stock price volatilities because σ is a delicate point in my model. The

intercept is recalibrated to meet the all-in-the-money condition for every volatility chosen.

18From the perspective of the “risk-neutral” option writer.
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Figure 3: Model prices and SFAS prices for different volatilities. Other parameters are

kept constant at the values of the representative setting (Section 4.1). The regression

model’s intercept α is fitted to fulfill the all-in-the-money condition of consistency. Prices

according to SFAS 123 are computed under the assumption that my model were true. For

the notation of model specifications, see Figure 1. The coefficients stem from estimates

across all employee levels.

Figure 3 shows that the pricing error is stable.

5.2 What Driver Is Relevant?

This section investigates if really all regressed exercise drivers are important for option

valuation. For instance, short-term returns are suspected of being irrelevant since a

positive return (increasing the exercise probability if βi > 0) is offset by a mirror-inverted

negative one (decreasing the probability) in most nodes. Because short-term returns are

nearly uncorrelated with other factors, — especially with payoff — the contribution to the

expected payoff of such a return is presumably a constant, regardless of its βi.

The following modification of regression models aims at changing the sensitivity to

a single regressor, while keeping the left-hand side of the regression at a constant mean

value. In doing so, I seek to give an answer to the following question: “Do I need to know

to what degree single values of a factor drive single values of exercise probability, or is

it enough to know the impact of the factor’s mean on mean exercise probability?” If the

sensitivity to a regressor appears to be irrelevant for prices, the influence of the regressor
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is fully captured by a constant. In the set-up of Section 4.5, even the constant becomes

irrelevant since it is superimposed by calibration of the intercept α.

The sensitivity to regressor i is changed by altering βi. The expectation of p
∗
crude (t,X),

however, shall be invariant, which is achieved by a formal rearrangement of (6) to

p∗crude (t,X) = µ0 + β1 (x1 (t,X)− µ1) + . . . + βn (xn (t,X)− µn) (9)

with µ1,. . . , µn ∈ R. The constant µ0 is set equal to the expected exercise probability
under the simulation (denoted by EP . . .). In other words, I set µ0 := EPp∗crude (t,X),

given that α has been calibrated to fulfill the all-in-the-money condition. If, furthermore,

µi = E
Pxi (t,X) (10)

for i = 1, . . . , n, equation (9) is still equivalent to the original regression model (6).

Except µ0, each term on the right side has expectation zero, implying that E
Pp∗crude (t,X)

is invariant to a change in βi.

Equation (10) is not easily achieved since the regressors are interdependent: At t, the

regression variable avail19 equals pcum (t−∆t,X ), which is a function of earlier values

p∗crude (s,X). The variable canc := avail I{t≥T−0.25} introduces further dependencies. So

all regression equations are linked, albeit not strongly since the corresponding βi are small.

Let some µ = (µ1, . . . , µn) ∈ Rn be given. Formally, (10) is fulfilled exactly when a fixed

point of the mapping µ 7→ ¡
EPx1 (t,X) , . . . ,E

Pxn (t,X)
¢
is found. Because that mapping

is a contraction, I can start with a µ equal to the expected values from [HL96] and iterate

the process of entering µ into (9), computing expectations EPxi (t,X), re-entering them

as new µ and so forth. While µ0 is kept constant at the goal level, µ converges to a fixed

point, whereas EPp∗crude (t,X) tends to µ0. In practice, about four iterations are needed

to get a sufficiently stable µ.

So far, nothing has been changed except that α from (6) is now split into pieces

fulfilling (10). I am now in a position to investigate the price effect of an expectation-

neutral change of coefficients βi in (9). If the price does not react, the corresponding

regressor can be left out.

Because of the obvious interaction between the market-to-strike ratio and its square,

which is a regressor, too, I rearrange equation (9) once more such that the new coefficients

can be interpreted as steepness and convexity of the dependence on the market-to-strike

ratio (see appendix, Section 7.4).
19See Table 1 and 2.
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Figure 4 shows how the price reacts to a change in βi for the models of Table 1.

Within each column, the modified coefficient takes values in a geometric sequence from

0.25βi (left edge) via βi (center) to 4βi (right edge). A flat curve signals low relevance of

sensitivity to the corresponding exercise driver. As expected, short-term returns play a

minor role. The low impact of the sensitivity to volatility must be interpreted with care

since the variance of historical volatility over one year, based on monthly returns, is too

low within the model to have any effect. The irrelevance of vest, the fraction of options

recently vested, is surprising for the moment since the basic coefficient is in the same order

as that of avail. But the variable is unequal zero only within a quarter after vesting, so

that the small number of relevant observations does not have much power. I conclude

that the complexity can be downsized to considering five variables. The most important

driver, mts, depends just on the current stock price. However, the path dependency that

comes into play by avail cannot be resolved.

An analysis of the model from Table 2 gives similar results (Figure 5). Again, all

short-term returns are negligible, as well as vest.

6 Conclusion

In this paper I present a new pricing model for employee stock options. The general

version is able to react to a principally unlimited number of factors driving exercises and

cancellations of options. I show that the model can be calibrated by regression analyses

of the exercise frequency done by Heath, Huddart and Lang20.

The valuation method of the accounting standard SFAS 123 is validated with my

model as a reference. Given the model is true, the corresponding SFAS prices — computed

with inputs gained from my model — are strikingly similar, suggesting that the SFAS

method captures all essential features of exercise behavior well. Of course, the result is

limited to plain call options similar to those in the regression sample.

Based on separate regressions for different employee levels, I compute option values

assignable to top executives and groups of subordinates. I find no evidence that the

differences in exercise behavior have implications on the option value. A further analysis

shows that only a part of exercise-driving factors is essential for the determination of

prices.

20See [HL96] and [HHL99].
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Figure 4: Expectation-neutral variation of OLS regression coefficients βi from [HL96].

Within each column, βi is changed in a geometric sequence from 0.25βi (left edge) via βi

(center) to 4βi (right edge). For the definition of regressors and the precise meaning of

the subsamples “All” . . . “Level 3”, which correspond to the employee level, see Table 1.

The coefficients for “mts” are in fact γ1 and γ2 from section 7.4 in the appendix, which

can be interpreted as steepness and convexity of the dependence on the market-to-strike

ratio.
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Figure 5: Expectation-neutral variation of OLS regression coefficients βi from [HHL99].

Within each column, βi is changed in a geometric sequence from 0.25βi (left edge) via βi

(center) to 4βi (right edge). For the definition of regressors, see Table 2.
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This paper leaves room for improvement in many respects. Tailoring the regression

analysis to meet the needs of my pricing model would make the results more significant.

First, a logit or probit regression is more appropriate than a linear model, since its forecast

is a probability from the outset. Second, cancellations are both informative and price-

relevant so that the termination rate (exercise plus cancellation) should be the dependent

variable. Third, I suspect option-specific factors (such as vesting time) and employee-

specific factors (such as time to retirement) of being heavily price-relevant. It would be

interesting to take them into consideration, in particular since some of the factors could

be observed by outsiders.

Further evidence should be added to the relation between the regression model and

the FASB method. It well may be that the price discrepancy between the SFAS price and

the model price is larger under other conditions.

In addition to the primary goal of ESO valuation, the model is an appropriate starting

point for the analysis of rent-extracting exercises, conducted by managers who possess

private information on the future firm value.

7 Appendix

7.1 Some Evidence on Management Turnover

This section summarizes some empirical results on the turnover of managers in several

countries, in order to support the choice of λ = 3% for the continuous hazard rate of

cancellations. The link between cancellations and turnover relies on the fact that currently

unexercisable options are typically forfeited if an option holder leaves the firm. The

turnover of top executives, as collected here, might be less representative for all employee

levels. Yet, the weight of options received by the top group is very large in most cases.

Board members are often the only grantees.

Hadlock and Lumer [HL97] report an annual rate of 3.8% for CEOs from a sample of

259 U.S. firms. Kaplan [Kap94] compares the CEO turnover in large U.S. and Japanese

firms, resulting in rates of 2.2% (Japan) and 2.9% (U.S.), provided that CEOs who enter

the supervisory board are left out. I assume that they may continue to hold the options.

Kang and Shivdasani [KS95] find 3.1% p.a. for Japanese firms when the turnover is cor-

rected for executives remaining on the board. The U.S. sample of Denis, Denis and Sarin
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[DDS97] yields a weighted mean rate of 7.5%, yet it is not corrected in the above sense.

The same problem holds for the rate of 9.2% from Mikkelson and Partch [MP97], where

CEO turnover in unacquired U.S. firms is measured over ten years. Dahya, McConnell

and Travlos [DMT02] report a forced CEO turnover at rates between 2.7% and 5% from

a dataset of 470 industrial firms in the U.K.

7.2 Equivalence of Conditional Independence and K-Assump-

tion

Lemma 5 Conditional independence and the K-assumption are equivalent.

Proof. Let the K-assumption hold and let B be some Borel set in C. Then, for t ≥ 0,

P (τ > t,X ∈ B|Ft) = P (P (τ > t,X ∈ B|FT ) |Ft)

= P
¡
1{X∈B}P (τ > t|FT ) |Ft

¢
= P

¡
1{X∈B}P (τ > t|Ft) |Ft

¢
(K-assumption)

= P (τ > t|Ft)P (X ∈ B|Ft) ,

which means that X and τ are conditionally independent. If, conversely, the latter holds,

and P (X ∈ B|Ft) > 0, then

P (τ > t|X ∈ B,Ft) = P (τ > t|Ft) . (11)

Since all Borel sets B span FT (when augmented), the left side of (11) may be extended

to P (τ > t|FT ), which yields the K-assumption.

7.3 The Exercise Probability Under the Change of Measure

Lemma 6 Let the pricing kernel dQ/dP be integrable and Ft-measurable. (This can, for

instance, be achieved by sufficiently smooth coefficients and non-degenerate diffusion of

the stochastic differential equation driving X, which enables ln (dQ/dP) to be represented

as a stochastic integral in terms of X.) The K-assumption or, equivalently, conditional

independence implies

P (τ = t |Ft ) = Q (τ = t |Ft ) .
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Proof. Let Y be some bounded, Ft-measurable random variable. ThenZ
P (τ = t |Ft )Y dQ =

Z
P (τ = t |FT )Y dQ (K-assumption)

=

Z
P (τ = t |FT ) Y

dQ

dP| {z }
FT -measur.

dP

=

Z
I{τ=t}Y

dQ

dP
dP (definition of P (· |FT ) )

=

Z
I{τ=t}Y dQ,

which means that P (τ = t |Ft ) meets the definition of Q (τ = t |Ft ). Uniqueness of the

latter entails identity.

7.4 Separating Steepness and Convexity for mts

Let M be the market-to-strike ratio. It enters the regression model (9) by two instances:

directly, as M , and as M2. When the importance of the regressors is analyzed in Section

5.2, the obvious interaction of M and M2 are not to be neglected. I rewrite (9) such that

new coefficients give rise for a more intuitive interpretation. Starting with an excerpt of

the right side of (9), β1 (M − µ1) + β2 (M
2 − µ2), where µi are the expected values of M

and M2, I set

f (M) := β1 (M − µ1) + β2
¡
M2 − µ2

¢ !
= γ1 (M − µ1) + γ2

¡
(M − µ1)

2 − µ2
¢
. (12)

By taking expectation on both sides I get µ2 = E
P (M − µ1)

2 = µ2 − (µ1)2. Since (12)
must hold for all M , it follows that γ2 = β2 and γ1 = β1 + 2µ1β2. Now,

∂
∂M

f (µ1), the

steepness at the mean value of M , is independent of γ2. Given that the distribution of

M − µ1 is symmetric, even the mean steepness E
P ∂
∂M

f (M) is untouched of γ2, since the

derivative is then antisymmetric around µ1. Because
∂2

∂M2f (M) is totally independent of

γ1, it is legitimate to interpret γ1 and γ2 as separate coefficients of the model’s steepness

and convexity with regard to the market-to-strike ratio.

References

[BAW87] G. Barone-Adesi and R. E. Whaley. Efficient analytic approximation of ameri-

can option values. Journal of Finance, 42:301—320, 1987.

32



[Car98] Jennifer N. Carpenter. The exercise and valuation of executive stock options.

Journal of Financial Economics, 48:127—158, 1998.

[CL00] Peter Carr and Vadim Linetsky. The valuation of executive stock options in an

intensity-based framework. European Finance Review, 4:211—230, 2000.

[DDS97] David J. Denis, Diane K. Denis, and Atulya Sarin. Ownership structure and

top executive turnover. Journal of Financial Economics, 45:193—221, 1997.

[DMT02] Jay Dahya, John J. McConnell, and Nickolaos G. Travlos. The cadbury commit-

tee, corporate performance, and top management turnover. Journal of Finance,

57(1):461—483, 2002.

[HHL99] Chip Heath, Steven Huddart, and Mark Lang. Psychological factors and stock

option exercise. Quarterly Journal of Economics, 114(2):601—627, 1999.

[HL96] Steven Huddart and Mark Lang. Employee stock option exercises. an empirical

analysis. Journal of Accounting and Economics, 21:5—43, 1996.

[HL97] Charles J. Hadlock and Gerald B. Lumer. Compensation, turnover, and top

management incentives: Historical evidence. Journal of Business, 70(2):153—

186, 1997.

[HL03] Steven Huddart and Mark Lang. Information distribution within firms: Evi-

dence from stock option exercises. Journal of Accounting and Economics, 34(1-

3):3—31, 2003.

[HM02] Brian J. Hall and Kevin J. Murphy. Stock options for undiversied executives.

Journal of Accounting and Economics, 33:3—42, 2002.

[Hud94] Steven Huddart. Employee stock options. Journal of Accounting and Eco-

nomics, 18:207—231, 1994.

[Hud98] Steven Huddart. Tax planning and the exercise of employee stock options.

Contemporary Accounting Research, 15(2):203—216, 1998.

[Hud99] Steven Huddart. Patterns of stock option exercise in the united states. In

J. Carpenter and D. Yermack, editors, Executive Compensation and Shareholder

Value, chapter 8, pages 115—142. Kluwer Academic Publishers, 1999.

33



[HW03] John Hull and Alan White. Accounting for employee stock options. Working

Paper, 2003.

[JN93] L. Peter Jennergren and Bertil Näslund. A comment on "valuation of executive

stock options and the FASB proposal". Accounting review, 68(1):179—183, 1993.

[JN95] L. Peter Jennergren and Bertil Näslund. A class of option with stochastic lives

and an extension of the black-scholes formula. European Journal of Operational

Research, 91:229—234, 1995.

[Kap94] Steven N. Kaplan. Top executive rewards and firm performance: A comparison

of japan and the united states. Journal of Political Economy, 102(3):510—546,

1994.

[KM94] Nalin Kulatilaka and Alan J. Marcus. Valuing employee stock options. Financial

Analyst Journal, 50:46—56, 1994.

[KM01] Nicole El Karoui and Lionel Martellini. Dynamic asset pricing theory with

uncertain time-horizon. Working paper, 2001.

[KS95] Jun-Koo Kang and Anil Shivdasani. Firm performance, corporate governance,

and top executive turnover in japan. Journal of Financial Economics, 38(1):29—

58, 1995.

[MP97] Wayne H. Mikkelson and M. Megan Partch. The decline of takeovers and

disciplinary managerial turnover. Journal of Financial Economics, 44:205—228,

1997.

[MS79] G. Maziotto and J. Szpirglas. Modele général de filtrage non linéaire et

équations différentielles stochastiques associées. Annales de l’Institut Henri

Poincaré, 15:147—173, 1979.

[Rau03] Peter Raupach. The valuation of employee stock options - how good is the

standard? Working paper, 2003.

[Rub95] M. Rubinstein. On the accounting valuation of employee stock options. Journal

of Derivatives, 3(1):8—24, 1995.

34


