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A Multiple Factor Model for European Stocks 

 
 
 
 
 
 
 
 
 
 
 
 

Zusammenfassung 
Vorgestellt wird eine empirische Studie, welche die Schätzung eines fundamentalen 
Multi-Faktor-Modells für ein Universum europäischer Aktien beinhaltet. Als Methode 
wurde in Anlehnung an die Vorgehensweise im BARRA-Modell der Querschnittsanalyse 
der Vorzug gegeben. Der Anteil der erklärten Varianz beläuft sich in den wöchentlichen 
Regressionen auf 7,3% bis 66,3% bei einem Durchschnitt von 32,9%. Für die einzelnen 
Faktoren wird die Häufigkeit angegeben, mit der sie sich in den Regressionen signifikant 
erwiesen haben. Den höchsten Erklärungsgehalt im Untersuchungszeitraum hatten 
Länderfaktoren, aber auch Konstrukte wie „Success“ oder „Variability in Markets“. 
 
Schlagwörter: Multifaktorenmodelle, Europäische Aktienmärkte 

 
 

Abstract 
We present an empirical study focusing on the estimation of a fundamental multi-factor 
model for a universe of European stocks. Following the approach of the BARRA model, 
we have adopted a cross-sectional methodology. The proportion of explained variance 
ranges from 7.3% to 66.3% in the weekly regressions with a mean of 32.9%. For the 
individual factors we give the percentage of the weeks when they yielded statistically 
significant influence on stock returns. The best explanatory power – apart from the 
dominant country factors – was found among the statistical constructs „success“ and 
„variability in markets“.  

 

Keywords: Multiple factor models, European stock markets.  
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1 Introduction 

Multiple factor models attempt to describe asset returns and their covariance 
matrix as a function of a limited number of risk attributes. Factor models are thus 
based on one of the basic tenets of financial theory: no reward without risk. In 
contrast to the Capital Asset Pricing Model (CAPM) first presented by SHARPE 
(1964), LINDNER (1965) and MOSSIN (1966) that uses the stock beta as the only 
relevant risk measure, empirical studies – for instance FAMA/FRENCH (1992) –  
could not confirm this very restrictive statement.1 The Arbitrage Pricing Theory 
presented by ROSS (1976) already posited a more general multiple factor structure 
for the return generating processes. However, it neither specified the nature nor 
the number of these factors. 

Starting with the studies of ROSENBERG, multiple factor models have been applied 
early in investment practice, mainly because they allow a differentiated risk-return-
analysis. The applications of multiple factor models are various and are based on 
the analysis and prognosis of portfolio risk. Multiple factor models can give 
valuable insights especially in performance and risk attribution. They provide – 
used prospectively – for a better basis for portfolio construction (because of an 
improved risk prognosis) as well as the basis for deliberate deviations from a 
benchmark portfolio.2  

The objective of this study is the conception and empirical application of a 
fundamental multiple factor model for a universe of 652 European stocks using 
fundamental descriptors. The model is estimated according to a cross-sectional 
approach and its explanatory power is verified over time. The article is structured 
as follows: The theoretical foundations that are relevant for the conception of a 
multiple factor model are presented in section 2. In section 3 we present the basic 
statistical techniques for the identification of multiple factor models. The underlying 
data, the methodology and the findings of the empirical work are presented in 
section 4. The conclusion in section 5 summarises the results. 

                                                 

1  FAMA/FRENCH (1992) found price to book value ratio and market capitalisation (in contrast to beta) to have 
significant influence on stock returns. 

2  Cf. ALBRECHT/MAURER /MAYSER  (1996). 
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2 The general structure of Multiple factor models  

In the general form multiple factor models posit that the period returns of the 
different assets are “explained” by common factors in a linear model. The asset 
returns are influenced by the factors according to the sensitivity or exposure of a 
specific security to these factors. These sensitivities thus play the role of beta in 
the CAPM, which represents the exposure of a security to a whole-market-factor. In 
addition, the asset return is influenced by another component, the so-called 
specific return, which is assumed to be independent of the factor returns. A 
multiple factor model for the i = 1, ..., n relevant securities of a market thus looks as 
follows: 

 Ri = α i + β i1⋅F1 + ... + β ik⋅Fk + ε i.  (1) 

where 

Ri   return to security i, 

α i, β i j  sensitivity/exposure of security i to factor j, 

F1, ..., Fk  the k factors, 

ε i   specific return to security i 

The variables Ri, F1, ..., Fk and ε i are random variables. The variance of ε i is 
denoted by σ²i, the covariance matrix of the factors by Φ. In order to make this 

model a useful instrument, however, some assumptions must be fulfilled. The most 
important is that the specific returns ε1, ..., εn are not correlated amongst each 

other. This implies that the correlation between the returns of two different 
securities is solely determined by their common dependence on the factors 
F1, ..., Fk. It will appear later that this assumption makes the estimation of Σ, the 

covariance matrix of the securities, much easier. Another assumption is that the 
expected specific return E(ε i) is zero, i.e. that the entire expected asset return 
which is not caused by the factor returns is comprised in the component α i. Finally 

it is assumed that the specific returns are independent of the factors. 

Equation (1) holds in period t. The corresponding index has been left out for 
simplicity. It is important to mention, however, that all terms of equation (1) can 

change over time. This is obvious for the asset returns and the factors. For the time 
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being we will also allow the sensitivities to take on different values in different 
periods. 

In financial theory the covariance matrix of the asset returns Σ is of specific 

interest. We will therefore look at equation (1) in matrix notation to see the 
functionality for all assets at one time. R is the random vector of the returns with the 
elements  R1, ..., Rn. As the sensitivities are often referred to as loadings of the 
securities on the respective factors the matrix of these exposures is denoted by ~L . 
The matrix ~L  looks as follows: 

~L
k

n n nk

=

















α β β

α β β

1 11 1

1

L
M M M

L
.      (2) 

The factors are represented by the random vector ~F  with the dimension k + 1 
whereas the first element F0 takes the constant value 1. The remaining elements 
are the random variables F1, ..., Fk. The random vector of the specific returns is 
denoted by ε. As the specific returns are not correlated amongst each other, the 
covariance matrix of ε is a diagonal matrix that is denoted by Ω. The elements on 
the diagonal of Ω are σ²ε1, ..., σ²εn, the variances of the specific returns. Using 

these notations, the matrix notation of equation (1) becomes: 

R = ~L ⋅ ~F  + ε,       (3) 

or in detail: 
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α β β

α β β

ε

ε
.   (4) 

Consider the covariance matrix of R: Σ = Cov(R) = Cov( ~L ⋅ ~F  + ε) 
= L⋅Cov(F)⋅LT + Cov(ε) = L⋅Φ⋅LT + Ω. The matrix L is merley the matrix ~L  with the 
first column (the α i’s) omitted. The random vector F is the vector (F1, ..., Fk)

T.  F0 
being constant, we get: Cov( ~L ⋅ ~F ) = L⋅Cov(F)⋅LT . Under the assumptions of our 
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multiple factor model the covariance matrix Σ thus becomes: 

Σ = L⋅Φ⋅LT + Ω.     (5) 

It should be remarked that the assumptions of the model usually lead to a 
considerable reduction in dimension. A covariance matrix for n securities without 
any restriction has ½⋅n⋅(n + 1) different parameters. In equation (3) there are n⋅k 
parameters for matrix L, ½⋅(k² + k) parameters for matrix Φ and n parameters for 
matrix Ω. Altogether this gives us (n + ½⋅k)⋅(k + 1) parameters. Given a ratio of 

factors to securities common in practice, this signifies a considerable reduction. If, 
for instance, we wanted to estimate the covariance matrix of 500 asset returns 
without any restriction, we would have to estimate 125,250 parameters. If, 
however, we make the assumptions of a multiple factor model with five factors, we 
only have to estimate 3,015 parameters which is only about 2.4% of the original 
number. 

3 Methodologies to estimate multiple factor models 

There are three different methodologies to estimate factor models: 

1. time series analysis, 

2. cross-section analysis and 

3. statistical factor analysis. 

Time series analysis is possibly the most intuitive approach for estimating a 

factor model. Following this methodology, the matrix of the loadings is estimated 
given the known values of the factors. The advantage of this approach is the 
control of the factors which can thus be interpreted easily. Typical factors that are 
considered relevant in many studies, as for instance in the studies of 
BERRY/BURMEISTER/MCELROY (1988), are the excess return of long term bonds, 
exchange rates, price changes of raw materials and inflation. 

Usually a linear regression is performed with the additional assumption that the 
parameters α i, β1i, ..., βki for a security i are constant over time. In the original 

formulation of the model, this constancy was not required. It is reasonable to 
assume, however, that the sensitivity of a stock to a certain factor changes over 
time, especially after mergers or larger restructurings. Even if no 
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constancy of the parameters is assumed, time series based methodologies 
always need some time to adequately adapt to these kind of abrupt changes. 

Cross-section analysis is certainly less intuitive than the time series approach. 

Here the exposures are taken as given. Then a regression is performed over all 
securities in one period and not over one asset over all periods. The matrix of the 
loadings serves as regressor matrix and the estimated parameter vector is 
interpreted as the vector of the factor values. This regression is performed for 
several periods in order to obtain time series for the factor values. Starting from 
these time series we can then estimate Φ, the covariance matrix of the factors. 

The obvious problem of the cross-section analysis is the sensitivities assumed to 
be known. The multiple factor models developed by BARRA3 use fundamental 
descriptors, because sensitivities must correspond to the economic profile of a 
firm. The regression model in period t thus takes the following form: 

r
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M
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δ δ

δ δ

ε

ε

11

1

1 1

.   (6) 

δ tij is the value of descriptor j for security i in period t. The estimate of the 

parameter vector is interpreted as the vector of factor values in period t. If the main 
purpose of the factor model is the simplified estimation of the covariance matrix Σ, 

an exact interpretation of the statistically obtained factors is not necessary. 
However, the selection of the descriptors often suggests a corresponding 
interpretation of the factors which is why this selection should already be based on 
logical and fundamental reflection. 

The third common methodology for the estimation of factor models is the 
statistical factor analysis. Following this approach both the loadings and the 

factors are estimated simultaneously. Consequently both are statistical constructs 
that can on the one hand, “optimally” explain the past, but on the other hand can 
hardly be interpreted economically4. Factor analysis is a multivariate statistical 

                                                 

3  Cf. the work of ROSENBERG (1974) and ROSENBERG/MARATHE (1976). 

4  In some cases, however, it might be possible to gain some insights by analysing the correlation between the 
statistically determined factors and other indicators that are known and can therefore be interpreted, especially in 
the case of simple phenomena like a market factor or individual industry factors. ELTON/ GRUBER  (1988) applied this 
approach in an empirical study. 
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methodology attempting to explain the covariance structure of observable random 
variables by the smallest possible number of linear combinations of these random 
variables (which are interpreted as factors). All variables of the model can be 
estimated based solely on the historical returns using the ML-methodology; 
however, only on the assumption of a multivariate normal distribution of asset 
returns. In addition, the assumption of constancy of the matrix L is required. Further 
information about the application of factor analysis is provided in RAO (1996). The 
advantage of factor analysis is the absolute “objectivity” of the approach. Neither 
the sensitivities nor the factors are defined in advance, but rather are estimated 
based on the data. However, factor analysis requires the constancy of parameters. 

An empirical comparison between a fundamental multiple factor model estimated 
using the cross-sectional approach and a model estimated using factor analysis 
was performed by BECKERS/CUMMINS/WOODS (1993). As expected, in-the-
sample, the statistical factor model had the highest explanatory power. The 
fundamental factor model can be seen as a general factor model with specific 
restrictions on the interpretability of the factors leading to sub-optimality in the ex-
post explanation of the data. The out-of-the-sample properties, however, stand in 
favour of the fundamental risk model, at least in this study. This implies that a pure 
statistical factor model may lead to an over-fitting of the parameters to the data. 
This can be reduced by making (reasonable) a-priori assumptions on the 
respective interactions. 

 

4 Empirical Study 

4.1 Data base and experimental design 

The objective of this empirical study is the estimation of a fundamental multiple 
factor model for a universe of European stocks using cross-section analysis. This 
methodology was preferred to the statistical factor analysis because the results 
are more easily interpretable and because the constancy of the sensitivities is not 
required. In addition, the study examines the explanatory power of the model over 
time. 

The database consists of a selection of 656 European stocks from 12 EU member 
countries as well as Norway and Switzerland. These stocks, due to their market 
capitalisation and liquidity, form a standard working universe for European 
investment funds. For this universe the asset returns were calculated on a weekly 
basis and adjusted for capital measures. If the price of stock i in 
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period t is denoted by pti the return rti for this period is calculated as follows: 

 rti = 
1,i-t

1,i-tt i  - measures capitalfor  adjustment + dividend+

p
pp

.  (7) 

Time series for the weekly returns were calculated in local currency5 from 
01.01.1988 to 30.06.1998. Friday is the base day for the return calculation. 

In the next step the descriptors must be determined for each stock and each 
period. The descriptors examined herein are variables that play a central role in 
fundamental equity research. The selection of the descriptors is based on the list 
of descriptors that has already proven its worth in the BARRA model. The following 
descriptors have been selected: 

1. SIZE: The natural logarithm of the market capitalisation (market cap = number 
of shares multiplied by the current stock price). 

2. SUCCESS: The natural logarithm of last year’s return. The return is calculated 
as current stock price divided by the price one year ago. The current price is 
adjusted for capital measures. 

3. BTOP (book to price): The equity value stated in the last balance sheet of the 
company divided by the current market capitalisation. This indicator is often 
used in equity research to identify “cheap” stocks. 

4. ETOP (earnings to price): Predicted earnings of the current financial year 
predicted by analysts divided by the current market capitalisation. This 
descriptor is very similar to BTOP. As ETOP uses predicted future earnings, 
this indicator is more up to date than BTOP; on the other hand, however, it is 
less objective and precise. 

5. VIM (variability in markets): The historical specific variance σ²εi, i.e. a measure 

for the variability in the past. 

                                                 

5  If the returns are calculated in local currency, currency covariances can be modelled separately for the tracking 
error prognosis. This, however, is not subject of this article. 
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6. YIELD (dividend yield): Last dividend divided by current market capitalisation. 

7. PEG (price to earnings to growth): The price earnings ratio (the reciprocal of 
ETOP) divided by earnings growth of the last four years. ETOP is thus 
relativised. PEG can give some insight into the development stage of the 
company. 

8. PBROE (price to book to return on equity): The quotient of market cap to book 
value (the reciprocal of BTOP) is divided by the return on equity over the last 
four years. In analogy to PEG for BTOP. 

9. RSI6M (relative strength index, 6 month): Relative strength index by LEVY. The 
logarithm of the quotient of the average stock price over the last week to the 
average price over the last six months. 

10. REV1M: Revision of earnings on a one-month basis. The current earnings 
predictions divided by the earnings that were estimated by analysts one month 
ago. This indicator measures the changes in analysts’ predictions. 

11. REV3M: Revision of earnings on a three-month basis. The current earnings 
predictions divided by the earnings that were estimated by analysts three 
months ago. 

12. ROE (return on equity): Ratio of the earnings of the current financial year to the 
equity capital of the firm. 

13. CROE (cash flow return on equity): Ratio of the cash flow of the current 
financial year to the equity capital of the firm. 

14. F1CV: The coefficient of variation of analysts’ earnings estimates for the 
current financial year. This indicator measures the level of agreement among 
analysts about the near future of the firm. 

15. F2CV: The coefficient of variation of analysts’ earnings estimates for the 
following financial year. 
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First the database6 must be “cleaned”, i.e. extreme values must be identified and 
modified. This is done using the so-called skipped Huber method. For each 
observation of a variable the absolute deviation from the median is calculated. The 
median of the variables is calculated over all periods and all assets at a time. 
Afterwards the median of the deviations is calculated. The median of the 
observations plus/minus 5.2 times the median of the deviations serve as limits. 
Extreme values are then referred to the respective limits. This methodology does 
not differentiate between observations that take on such extreme values because 
of measurement errors and those that are real extreme values. This is considered 
acceptable and even necessary, because it can be assumed that measurement 
errors represent the majority of the cases and because extreme values can distort 
the results of the linear regression. The advantage of this methodology in 
comparison to the more common winsorization (cutting off all values beyond three 
times the standard deviation) is that the extreme values themselves do not 
influence the values that are used for their identification. 

The adjustment for extreme values variables are then standardised. This is done 
according to the usual method, i.e. the mean value of all observations (over all 
periods and all assets) is subtracted from each observation. The resulting value is 
divided by the standard deviation of the observations (over all periods and all 
assets). If xi t is the value of observation i in period t the standardised values yi t are 
calculated as follows: 

 yi t = 
x x

s
it

x

−
.        (8) 

x  is the mean value and sx the standard deviation of all observations. These 
figures are determined based on the data already adjusted for extreme values. 

In the next step the filtered and standardised descriptors are aggregated to so-
called risk indices like in the BARRA model. The attribution of the descriptors to 
the different risk indices and the selection of the risk indices that are to be used in 
the model were based on fundamental criteria. 

                                                 

6  The accounting data were provided by Worldscope-Disclosure, the consensus estimates by IBES. For the reported 
data from Worldscope we had to consider a time lag for the publication of the accounts. We assumed a relatively 
conservative lag of six months from the end of the financial year until utilisation of the data in our factor model. 
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In addition to the risk indices constructed for the descriptors we added, as in the 
BARRA model for European stocks, another risk index which is in fact nothing 
more than a blue chip dummy variable. As blue chips we consider the largest 
companies that together represent 10% of the total market capitalisation. If a stock 
is a blue chip, the variable takes on the value 1, otherwise it is 0. 

In addition to the risk indices we include country and industry factors. For each 
country or industry a dummy variable is defined which takes the value 1 if the stock 
can be attributed to the respective country or industry. 

4.2 Estimation of the multiple factor model  

For every week a regression of the asset returns on the risk indices as well as on 
the country and industry dummy variables is performed. The regression model for 
period t thus takes the form: 

{
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.  (9) 

rt is the vector of the actual asset returns. The matrix Lt represents the values of all 
the risk indices as well as of the country and industry dummy variables, whereas 
δ ti1, ..., δ tiu stand for the risk indices, lti1, ..., ltiv for the country dummy variables and 

bti1, ..., btiv for the industry dummy variables for stock i. Consequenctly we can state 
that u + v + w = k. The dummy variables look as follows: 

 




⇔
⇔

=
�otherwis

country  from is Stock 

0
1

tij
ji

l  and 




⇔
⇔

=
�otherwis

industry   tobelongs Stock 

0
1

tij
ji

b . 

The parameter vector ft is interpreted as the vector of the factor values, the vector 
of the error terms ε t represents the specific returns. However, the variances of the 
error terms ε i t cannot be considered to be constant over all assets. This 

heteroscedasticity can be accounted for by using a GLS- or weighted linear 
regressison model. 
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There are several empirical indications that the volatility (i.e. the variance) of a 
stock decreases with the size of the company increasing. This is why we assume, 
following the methodology of BARRA, that the square root  of the market 
capitalisation is invertedly proportional to the variance of the error term7. If this 
assumption is true, we can perform a weighted linear regression with the roots of 
market capitalisation as weights. The estimator for the parameter vector which is 
interpreted as the vector of the factor values then becomes (cf. for instance 
MONTGOMERY/PECK (1982), chapter 9.2): 

 $f t  = (Lt
T⋅W t⋅Lt)-1⋅Lt

T⋅W t⋅rt.      (10) 

Wt is the diagonal matrix of the weights. The elements on the diagonal of Wt are 
the roots of market capitalisation of the stocks, all the other elements are 0. 

Because of the incorporation of the country and industry dummy variables we face 
the problem of multi-collinearity, i.e. the matrix of the regressors Lt is not of full 
rank. A restriction on the industry factors is introduced to circumvent this problem:  

  f ti
i=u +v+1

k

∑ = 0 .        (11) 

Due to this restriction, general movements of the market are solely accounted for 
by the country factors. 

The result of the weekly regressions is an estimation of the factor values. Having 
obtained the time series for the factor values, we can estimate the covariance 
matrix of the factors Φt using an exponential smoothing factor in order to give less 
weight to the observations of past periods. Each element ϕtij of the matrix Φt is 

thus estimated as follows: 

   $ ( $ $ ) ( $ )ϕ
λ

tij

u

t u,i i t u, j j
u

t

=
−

⋅ ⋅ − ⋅ −− ⋅ − ⋅
=

−

∑1
1 0

1

t
f f f f

Λ
.    (12) 

                                                 

7 Cf. CONNOR /HERBERT (1998). 
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The parameter Λ is used to standardise the weights in such a way that their sum is 
t. Λ is calculated as follows: 

   Λ = ⋅
=
∑1

0
t-1

i

i

t-1

λ .         (13) 

For λ = 1 we get Λ = 1, so that equation (13) is simply the common unbiased 
estimation of ϕtij. The choice of the value of the exponential smoothing factor λ 

determines the weight that is attributed to past observations. 

The explanatory power of the weekly regressions will be verified by a quality 
measure. We use the quality measure R²A calculated as follows: 

   R²A =
( )

( )
1

2

1

2

1

−
−

⋅
−

−

=

=

∑

∑
n

n k

y y

y y

i i
i

n

i
i

n

$
.      (14) 

According to KVÅLSETH (1985) this definition of a quality measure is the most 
appropriate among the many different definitions suggested in the literature. 

In order to determine the covariance matrix Σt = Lt⋅Φt⋅Lt
T + Ωt a quantification of the 

diagonal matrix Ω describing the specific risk is still required. To estimate Ω this 

study follows the methodology suggested by CONNOR/HERBERT (1998). The matrix 
Lt consists of the risk indices as well as of the country and industry dummy 
variables in period t and is consequently known. An estimate for the matrix Ωt is 
gained from the model for the specific risk. The covariance matrix of the factors Φt 

is estimated based on the results of the weekly regressions. Consequently, the 
covariance matrix of the assets in period t can be estimated as follows: 

   $ $ $Σ Φ Ωt t t t
T

t= ⋅ ⋅ +L L .        (15) 

4.3 Results 

For the weekly regressions the 15 descriptors were aggregated to six risk indices. 
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The attribution of descriptors to the respective risk indices was based solely on 
fundamental criteria. The risk indices were calculated as the unweighted arithmetic 
mean of the (standardised) descriptors contained therein. The attribution of the 
descriptors is shown in table 1. 

Table 1 

Risk Index Descriptor(s) 

SIZE SIZE 

SUCCESS SUCCESS, RSI6M 

VALUE BTOP, ETOP, PEG, PBROE 

VIM VIM, REV1M, REV2M, F1CV, 
F2CV 

YIELD YIELD 

PROFIT ROE, CROE 

 

The index BLUECHIP was added to these six risk indices so that there were 
seven risk indices in the regression. 

The stocks were attributed to countries according to the location of the 
headquarters of the respective companies. The firms were located in the following 
countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, 
Netherlands, Norway, Spain, Sweden, Switzerland and the United Kingdom. The 
attribution to the different industries was again based on fundamental criteria 
following the approach of MSCI. However, as this categorisation seems to be too 
detailed for the purpose of a factor analysis (there are more than 30 industries), 
the MSCI-industries were aggregated to ten sectors. These sectors are: finance, 
healthcare, raw materials, commercial services, consumer goods and retail, 
machine construction / electrical goods, media / leisure / software, multi-industry, 
oil / energy equipment and utilities / telecom. 

Empirical studies of BARRA have shown that continental European industries can 
be considered sufficiently similar to each other to be represented by only one 
single factor or one single dummy variable respectively8. The British industries, 

                                                 

8 Cf. CONNOR /HERBERT (1998). 
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however, are too different from the rest and must thus be represented by individual 
dummy variables. In this context Ireland has been classified as continental 
European. Each stock either belongs to one of the ten continental European 
industries or to one of the ten British industries. The restriction in order to avoid 
multi-collinearity has been applied both to the continental industries and to the 
British ones. 

Consequently there are 41 regressors in the weekly regressions. These include 
seven risk indices, 14 country dummy variables, ten continental industry dummy 
variables and ten British industry variables. For every week between 1 January 
1988 and 30 June 1998 a regression of the 41 regressors on the returns of the 
656 stocks was performed. The actual number of asset returns in each regression, 
however, is slightly lower. This is due to the fact that not all of the stocks was 
already listed on the stock market in 1988 and that in some periods data for 
certain stocks were missing. The number of observations varies between 473 at 
the beginning of the examination period and 653 at the end. The mean of the 
numbers of observations is 581. 

The first regression was done for 7 January 1988, the last one for 25 June 1998. 
547 regressions were calculated altogether. The quality measure R²A was 
calculated according to equation (12) to determine the fit of the regressions. The 
values for R²A ranged from 7.3% to 66.3% in this study. The arithmetic mean was 
32.9%, the median value 32.1%. The respective values in a similar study of 
BARRA9 ranged from 9.6% to 56.3% with an arithmetic mean of 30.2%. Figure 1 
shows a histogram of the values of R²A. 

                                                 

9 Cf. CONNOR /HERBERT (1998). 
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Figure 1 

Histogram of R ²A
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The horizontal line indicates the upper limit of the interval 

Table 2 shows selected quantiles of values of R²A. 

Table 2 

Quantile R²A 

Minimum 7,3% 

10% 20,1% 

25% 25,5% 

Median 32,0% 

75% 39,3% 

90% 45,8% 

Maximum 66,3% 

 

The values of R²A over time are displayed in figure 2 and figure 3. Figure 2 shows 
the weekly values for the randomly selected period from 4 January 1990 to 26 
December 1991. 
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Figure 2 

R ²A over time
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Looking at the entire examination period in this format would have been too 
confusing. In order to give an overview of the whole period we determined equally 
weighted 1-year moving averages for R²A. These were calculated following the 
according to formula: 

    ~R RA,t A,t -i
i

2 1
52

2

0

51

=
=
∑ .       (16) 

Figure 3 shows the values of ~RA
2  over the entire available period: 

Figure 3 
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Moving average for R ²A
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Date is indicated in the format YYMMDD 

The analysis shows that approximately 32% of total variance of the asset returns 
can be explained by the factor model. In comparison with other studies this value 
can be considered satisfactory. Moreover, figure 3 shows that the values of R²A 
have slightly decreased over time. 

The following table shows how often a factor proved to be significant in the weekly 
regressions. This was examined using a simple t-statistic. However, it has to be 
kept in mind that the estimates of the parameter vector are interpreted as 
estimates of the factor values. If the zero-hypothesis of the t-test holds true, this 
only means that the value of this factor was equal to or near zero in this particular 
week. It does not signify that the factor is generally irrelevant. If, however, a factor is 
only rarely significant, it should be clarified whether it is still reasonable to keep this 
factor in the model. Table 3 shows how often (as percentage of all 547 
regressions) a factor was significant at a 5% level. 
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Table 3 

No. Factor Frequency No. Factor Frequency 

1 United Kingdom 70,6% 22 UK – Utilities / Telecom 25,4% 

2 Italy 68,2% 23 Oil / Energy Equipment 22,1% 

3 France 67,1% 24 Norway 21,6% 

4 Germany 62,0% 25 Ireland 21,4% 

5 Spain 61,6% 26 UK – Machine Construction / 
Electrical Goods 

21,4% 

6 Netherlands 52,5% 27 YIELD 18,6% 

7 Switzerland 44,6% 28 UK – Commercial Services 18,1% 

8 Belgium 43,3% 29 Utilities / Telecom 15,9% 

9 Sweden 41,0% 30 VALUE 14,8% 

10 SUCCESS 36,6% 31 Machine Constr. / Electr. Goods 13,9% 

11 Austria 36,4% 32 UK-Media / Leisure / Software 13,7% 

12 UK – Healthcare 32,7% 33 UK - Multi Industry 13,7% 

13 Denmark 32,5% 34 Consumer Goods and Retail 13,2% 

14 Finland 32,2% 35 Raw Materials 12,4% 

15 Finance 29,3% 36 PROFIT 12,1% 

16 UK – Raw Materials 28,5% 37 BLUECHIP 11,0% 

17 UK – Finance 27,4% 38 Healthcare 10,8% 

18 UK – Consumer 
Goods and Retail 

27,4% 39 Commercial Services 10,4% 

19 VIM 26,0% 40 Media / Leisure / Software 7,3% 

20 UK – Oil / Energy 
Equipment 

25,8% 41 Multi Industry 6,0% 

21 SIZE 25,4%    

 

The factors in table 3 are arranged according to the frequency of their significance 
in the regressions. The country factors were significant most frequently. This is not 
surprising if we keep in mind that due to the construction of the matrix of the 
regressors, the intercept (i.e. general market movements) was integrated in the 
country dummy variables. Especially the factors of the large and important 
countries proved to be significant in more than 60% of all cases. As far as the risk 
indices are concerned, no clear picture emerges. The indices SUCCESS, VIM 
and SIZE are significant in a minimum of 25% of the regressions. The indices 
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PROFIT and BLUECHIP, however, are at the lower end of the table. The situation 
for the industry dummy variables is no less diverse. It is striking, however, that the 
British industry factors are significant much more often than their continental 
counterparts which prove to be significant least frequently of all factors. In the end 
table 3 conforms to the satisfactory overall impression of the results of the 
regressions. 

5 Conclusion 

Multiple factor models are a powerful tool for the statistical formulation of return 
generating processes and can thus make detailed risk analysis and prognosis 
easier. There are three different methodologies for the statistical identification of 
the model: time series analysis with previously defined factor values, cross-section 
analysis with previously defined factor sensitivities and statistical factor analysis 
with simultaneous identification of loadings and factors. For reasons of more 
accurate interpretation we chose the cross-sectional approach was chosen for this 
study. The results of the estimations can be considered very satisfactory, as the 
multiple factor model explains more than 30% of the variance on average. 
Possible extensions of this study are the enlargement of the stock universe or the 
integration of bond portfolio analysis. 
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