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ABSTRACT

We investigate methods to estimate intra-day liquidity mea-
sures which take into account boundary bias problems affecting
the open and closing trading period. In a simulation study we
demonstrate the severity of boundary effects when using standard
kernel approaches and find that local linear as well as variable
kernel estimators offer a much improved performance. In an
empirical application using financial transactions data we find a
striking asymmetry between the open and close of the New York stock
exchange trading process that standard kernel smoothers fail to detect.
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1. INTRODUCTION

The notion of liquidity is a crucial one in economics and finance. While
there is probably little doubt about the importance of this concept for any
theory of asset allocation, at the same time there is no operational, generally
accepted definition that indicates how to measure the degree of an asset’s
liquidity. As Grossman and Miller (1988) put it: ” The T-bond Futures pit
at the Chicago Board of Trade is surely more liquid than the local market for
residential housing. But how much more?”

Broadly speaking, liquidity can be considered as an asset’s ability to be
traded in large quantities at reasonable prices given the demand and supply
conditions at the time of the trade. While this definition is certainly intu-
itively appealing, it does not provide us with an unambiguous measure of
liquidity that could be used e.g. for comparison between assets or markets.
Yet it emphasizes that volume, price and time to order execution are the
principal factors that contribute to the liquidity of an asset. Commonly used
measures of liquidity such as the bid-ask spread, the liquidity ratio or the
variance ratio fail to account for these three factors appropriately and none
of these liquidity indicators explicitly incorporates the time factor.! This
drawback was addressed by Gouriéroux, Jasiak, and Le Fol (1999), hence-
forth referred to as GJL, who introduced a new class of intra-day market
liquidity measures. By distinguishing different trading events their methods
account for all three liquidity components. The measures take the trade ar-
rival process as a starting point, but are easily modified to take account of
other characteristics associated with each trade event. So called weighted
durations focus on the time until a prespecified volume or value has been
traded, or the time until a given price change has occurred. GJL show how
their liquidity measures can be used for a variety of comparative financial
analyses, such as assessing investment strategies based on liquidity orderings
between assets or parallel markets.

The GJL approach relies on nonparametric estimation techniques. More
precisely, a Gaussian kernel function is used to estimate conditional intensity,
density and survivor functions. In this paper, we argue that GJL’s use of
standard kernel methods implies one important drawback, in that it leads to
severely biased estimates of liquidity measures near the open and the close
of the trading day. Adapting alternative estimators for density functions
with bounded support recently proposed by Lejeune and Sarda (1992), Jones

LFor a general critique of these liquidity measures see Grossman and Miller (1988) and
Schwartz (1992).



(1993), Jones and Foster (1996) and Chen (1999a, 1999b) we propose effective
methods to estimate intra day liquidity measures that avoid this drawback.

In the empirical section we illustrate the practical relevance of our alternative
approaches. We focus on estimating intra day liquidity measures of selected
stocks traded at the New York stock exchange (NYSE). It is a well known
stylized fact that trading activity at the NYSE evolves during the regular
trading day (i.e. when the initial batch auction phase is neglected) according
to a U-shaped pattern, i.e. it shows peaks at the opening and the close. When
the auction period is included, the trading process features an asymmetry
in the sense, that trading intensity is increasing and takes on the U-shape
after completion of the batch auction. While the estimators proposed in this
paper are able to detect this idiosyncratic pattern, GJL’s standard methods
fail to do so.

This paper is organized as follows. In Section 2 we summarize the main
statistical properties of GJL’s trading activity model and review nonpara-
metric estimation of the implied liquidity measures. Section 3 addresses the
inherent boundary bias and discusses methods to alleviate this effect. In sec-
tion 4 we present simulation results that investigate the severity of boundary
effects when estimating liquidity measures and compare the performance of
bias reduction methods. The empirical application is presented in section 5.
Section 6 concludes the paper.

2. ESTIMATION OF INTRA-DAILY MARKET ACTIVITY MEASURES

2.1. A statistical model of intra-day market activity

Following GJL, we assume that trade arrivals evolve randomly in time ac-
cording to a time dependent Poisson process with intensity function A(¢) that
depends on the clock time of day. The counting process N(t) gives the num-
ber of trades observed from the beginning of the trading day until ¢. Trades
occur according to the following probability law:

(1) PIN(t +dt) — N(t)

0] = 1—X\{)-dt+o(dt),
(2) PIN(t+dt)— N(t) =1

| = A{t)-dt+ o(dt),

which implies

(3) PIN(t+dt) — N(t) > 1] = o(dt).



Thus, the probability of observing a trade in the interval (¢,¢ + dt) depends
on the length of the interval d¢t and on the intensity function A(¢), which
gives the instantaneous rate of trading per unit of time.

Based on the theory of self-exciting point processes that dates back to Cox
and Lewis (1966), Engle and Russell (1998) define an intensity rate condi-
tional on the complete history of the trading process since the beginning of
the day at #™",

_ PIN(t+dt)— N(t) > 0| F(t)]
(4) At [ F(t)) = lim o :

where F(t) = {N(t),t1,...,tnw}- GJL restrict the conditioning information
set so that it contains only the time of day, F(t) = ¢, which yields?
P[N(t+dt) — N(t) > 0| {]

®) M= i -

The intensity function of the pure trading process is an important liquidity
measure for an investor whose only concern is the ability to trade a unit
share quickly. Since the intensity rate A(t) is proportional to the probability
of trading in the next instant of time, conditional on the time of day, an asset
a can be considered as being more liquid at time ¢ than asset b if and only if
the following relation holds

6 P,N(t+dt)— N(t)=1] > PB[N(t+dt)— N(t) =1]
© 4 M) > M),

Liquidity orderings between one asset at different times or different markets
may also be conducted using estimates of liquidity measures that are based
on the traded volume and value, as we will discuss in Section 2.3..

2.2.  Nonparametric estimation of the trading intensity

Given availability of a financial transactions data set consisting of trading
times and associated trade characteristics for a number of M trading days,
a simple estimate of the intensity function can be obtained by

M
) i) = o - S i
M At
2This rules out any dependency of the intensity rate on quantities other than the time of
day. Engle and Russell (1998) and Hamilton and Jorda (1999) have introduced parametric
models that allow more general intensity rate dynamics.
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where n; ,, counts the number of trades in interval ¢ on day m, and At is the
predetermined interval length (Cox and Lewis, 1966). This estimator has a
number of drawbacks. First, it uses sample information inefficiently, since
only the counts in the fixed interval are taken into account. Second, the fact
that (7) is a step-function is inconsistent with the continuity of the trading
process. Third, the estimator is sensitive toward local variations caused by
random noise contained in the data. However, in the context of this paper
it offers the advantage of being robust against boundary effects. Hence, it
provides a crude, yet unbiased estimate.

A smooth nonparametric estimator of the intensity function (5) has been pro-
posed by Ramlau-Hansen (1983), extending an earlier contribution by Wat-
son and Leadbetter (1964).> The basic idea is to conduct a kernel smoothing
of the observed occurrence rates % where Y (t,,) is the number of statistical
units that are exposed to the risk of going through a transition at the time
tn:

A R t—t, 1
© w0 =5 38 (5"

h; is a bandwidth parameter and K (-) an appropriate kernel function. ¢; <
ty < ... < ty denotes the sequence of jump times of the underlying count
process. In the context of this paper this refers to the time of day at which
an asset is being traded. Since we restrict our attention to a single asset
we always have Y (t,) = 1. The estimator A(t) is a weighted average of the
observed increments of the count process over the range [t — hy,t + hy], i.e.
only observations in this interval contribute to the sum. This holds true for
all symmetric kernels except the Gaussian, which is usually not bounded, but
gives negligible weights to observations that are more than 4h; away from
t. Gouriéroux, Jasiak, and Le Fol (1999) propose to treat each trading day
in the sample as a distinct, independent realization of the counting process
and thus to estimate the intensity rate as an average of the Ramlau-Hansen
estimators for separate days. Denote the n-th observed trading time on day
m as t,(m). For a total of M trading days the estimator is given by

0 e gl B )]

m=1 n=1

3See also Andersen, Borgan, Gill, and Keiding (1992), ch. IV.2.1.



2.3.  Estimation of liquidity measures based on weighted durations

An extension of the liquidity measure introduced above that takes into ac-
count trading volume involves construction of weighted durations. A volume
duration z(¢,v) is defined as the time required to trade a prespecified volume
v, given the current time of day ¢. Formally,

(10) z(t,v) =inf{z: V(t+z) > V() + v}.

V(t) = ij:(tl) v, denotes the trading volume cumulated over a total of N(¢)
transactions and v,, is the volume of the n-th transaction.* So called trade
durations are obtained by setting v equal to one in equation (10). Volume
durations have the natural appeal to account for the quantity dimension of
liquidity.

Hence, besides the trade intensity, two additional measures were proposed
by Gouriéroux, Jasiak, and Le Fol (1999) in order to characterize intra daily
liquidity. The first is the conditional survivor function S (z|t), which gives the
probability of waiting at least x seconds for the arrival of the next relevant
event (e.g. a cumulative traded volume of v shares), given that the last
observed trade has occurred at time ¢. A kernel based estimator is given by

(11) S 1 ﬁ/f: Nm[( (tn 1(m),v)>x).[([<%)
SRR G

The corresponding conditional density f (x|t) can be estimated by

) 1&g S K, (_tn i(m) )—x) K <_tn—1}5§n>—t>
(12)  f(o hr N tn_1(m)—t ’
= /v S Ky (=t

where I (-) denotes the indicator function, K is the kernel function that
is used to smooth the duration time series, K; the kernel function used to
compute the intensity estimates and hp and h; denote the corresponding
bandwidth parameters.

41t is also possible to consider durations weighted with respect to other observed char-
acteristics of a trade event, such as price, value or the prevailing bid-ask spread.



3. ADDRESSING THE BOUNDARY BIAS PROBLEM

3.1.  Boundary effects in liquidity measure estimation

The boundary bias arises as a consequence of using a fixed bandwidth A
together with a symmetric kernel function K(-) to estimate densities and
related quantities, such as the intensity function, with compact support. For
example, the widely used Epanechnikov kernel is defined as

(13) Kp(u) =075+ (1 —u®) - I (Ju] <1).

This kernel assigns positive weights to any value of u = (%) that is
smaller than one in absolute value, while all |u| > 1 receive a weight of
zero. Since the trading times always lie in a closed interval [t™" M%) the
Epanechnikov kernel implicitly gives weight to values of u outside the admis-
sible range in a neighborhood of the bounds. Because there are no observa-
tions outside the range, observations in the neighborhood of the bounds will
receive weights that are too small. Hence, the amount of smoothing will be
systematically higher than during the rest of the day. As a consequence, esti-
mates of the intensity function based on equation (9) will be biased towards
zero in any of the boundary regions [t™" ™" + h;] and [t™% — hp, ™). As
shown in Marron and Ruppert (1994), the expected value of a standard kernel
density estimate at the lower boundary of support f (#™") is approximately
equal to % - f (#™™) with a similar bias at the upper boundary.

To illustrate the significance of the boundary bias problem we replicate the
simulation design used by GJL and generate a sequence of 600 equally spaced
trading times.® The simulation mimics a 6.5 hour trading day which starts
at 9:30 a.m. and ends at 4:00 p.m. Based on the simulated data, we estimate
the conditional intensity function according to equation (9). Following GJL
we use a Gaussian kernel

(14) Kg(u) = — - exp (—O.5u2) ,

and set the bandwidth parameter equal to 22 minutes. Additionally, we
employ the Epanechnikov and two other standard kernel functions, namely
the uniform Ky (u) and the quartic Kg(u),

(15) Ko(w) = 05-1(lu|<1),
(16) Kolw) = 22 (1—w)* 1(u <1).

5In Section 4 we conduct a simulation study to investigate boundary effects on estimates
of liquidity measures in greater detail.
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FIGURE 1: Estimated intensity rates for 600 equally spaced trading times.

The true intensity function for the simulated data is a straight line with a
value of 0.0257, which is equal to the inverse of the mean duration of 38.94
seconds. As figure 1 shows, all kernel functions do a good job during the
central part of the trading day, regardless of the choice of kernel. However, a
strong downward bias is clearly visible near the open and close: The trading
intensity is severely underestimated. The Gaussian is clearly the kernel that
is most affected by the boundary bias. This is an expected result, since the
Gaussian is the only kernel with unbounded domain.5

Since the conditional survivor function (11) and density function (12) depend
on the trading intensity it is likely that the use of standard kernel methods
yields estimates that are also affected by boundary bias. An additional source

6We have also employed triangular, triweight and cosinus kernels, but the results were
not qualitatively different. Also, varying the bandwidth does not improve the results. For
all kernels, the region affected by the bias grows with increasing h. All variations of the
bandwidth confirmed Marron and Ruppert’s result in the sense that the intensity estimate
at the upper and lower boundary was approximately equal to one half of the true value.



of boundary effects can be expected for the conditional density (12) because
the support of the duration variable defined in (10) is bounded by zero. The
use of a standard kernel for Kp (-) is therefore also inappropriate.

3.2.  Alternative approaches to boundary bias correction

Previous research on estimation techniques for densities with bounded sup-
port includes the transformation technique introduced by Copas and Fryer
(1980), the reflection technique as proposed by Schuster (1985) and Silverman
(1986). Alternative approaches to the boundary problem in density estima-
tion as well as in the context of regression analysis have been proposed by
Rice (1984), Gasser, Miiller, and Mammitzsch (1985), Miiller (1991), Hall
and Wehrly (1991), Marron and Ruppert (1994), Cowling and Hall (1996)
and Cheng, Fan, and Marron (1997) among others [see also Silverman (1986),
pp. 29-33 and Jones (1993)].

The probably most obvious remedy for the boundary bias is to transform the
data according to y = h (), where the function h (.) is such that the support
of the transformed data y is given by the whole real line. One proceeds to
estimate the density of the transformed data using standard kernel estima-
tors, and then re-transforms the density estimates back, employing the well
known relation

rin) =8 F .

This transformation technique has been used by Copas and Fryer (1980)
in the context of density estimation for nonnegative random variables.
They proposed to use the logarithmic transformation, yielding the estimator
fr(z) = %f(log x). If the support of the density is a finite interval [a, 0]
Silverman (1986) proposes to use the transformation

r—a
=H !
y=t (52,

where H ! is the inverse function of any strictly increasing cumulative dis-
tribution defined on the real line.

In general, using this technique leads to an estimator of the density, that will
be less smooth near the boundary than in the interior of the support. In the
example of nonnegative random variables this effect is caused by the presence
of the multiplier % that goes to infinity as x approaches zero, resulting in
extremely unstable behaviour of the estimate near zero. In cases, where



the density is restricted to a finite interval, this unstable behaviour may
well carry over to a substantial proportion of the support, depending on the
chosen value of the bandwidth parameter.

The reflection technique introduced in Schuster (1985) consists of augmenting
the sample by adding reflections of the observed data points around the
boundaries of the support. In the case of a random variable distributed on
the interval [a, b] this yields a data set of size 3n given by

{ry—a,z0 —a,..., x5 —a, 01,29, ..., Tp, 01 + b, 29 + b, ... 2, + b},

where n is the original sample size. An estimate for the density is then
obtained by first computing a kernel estimate f from the augmented data
set of size 3n, and then taking

(17) fute) = { §1 kel

as the estimate of the density based on the original data. If felt necessary,
the technique may be further refined, by augmenting the original data with
k additional reflections {z; — ka,z; — (k — 1) a,...,2; + (k — 1) b, z; + kb},
j =1,...,n, thus yielding a sample of size (2k + 1)n.

The reflection method has the drawback, that the resulting estimator will
always have zero derivative at the boundaries, provided that a symmetric and
differentiable kernel function has been used for implementation. A related
technique, called negative reflection by Silverman (1986) consists of giving
reflected points weight equal to —1 instead of the usual % in the calculation
of the estimate, thus forcing the density itself, rather than its derivative, to
be equal to zero at the boundary points. This estimator has the additional
drawback, that it will not integrate to 1. For these reasons, both estimators
do not seem to qualify as serious competitors for the beta kernel estimator,
which may reproduce arbitrary features of the density near the boundaries
and yields a density estimate that will always integrate to unity. Improved
variants of the reflection method are discussed in Hall and Wehrly (1991)
and in Cowling and Hall (1996).

Marron and Ruppert (1994) proposed a three-step estimation technique, that
constitutes a combination of transformation and reflection techniques. In
the first step, a transformation y = h(x) is applied to the sample. The
transformation h (.) is selected from a parametric family, so that the density
of the transformed data y has first derivative of (approximately) zero at the
boundaries of its support. In the second stage a standard kernel estimator is

10



applied to the reflected data set. The last step involves retransformation of
the estimates of f (y) according to the formula introduced earlier.

The method involves two estimation problems. First an appropriate transfor-
mation function A (.) must be found, so that the first derivative condition is
met (otherwise the reflection technique yields biased estimates). Estimation
of the density of y is then performed conditional on the first step estimate.
In general, an optimal transformation function is given by the cumulative
density function of the original data F' (z). In this case, they show, that the
asymptotic bias of f (x) will be of the same order in the boundary region and
in the interior of its support, thus effectively removing any boundary effects
from the resulting estimates.

Since the quantity F' (x) is not known in practice, Marron and Ruppert (1994)
develop four different algorithms for the estimation of the transformation
function from a predetermined family of functions.” Optimal choice of the
algorithm depends on some features of the true density, e.g. whether it
has poles at the boundaries or multiple modes in the interior. Although by
using their estimators h (.) one can achieve the same effect as by using the
optimal transformation F' (x), the dependence of the proposed algorithms on
the shape of the true density as well as the complexity of implementation
make this approach unfavorable in practice.

3.3. Local linear estimators for liquidity measures

The local linear estimator is an advanced method to avoid boundary effects,
that has been developed in Lejeune and Sarda (1992) and Jones (1993) for
densities with nonnegative support. Local linear density estimation involves
repeated evaluation of the function ag (¢, h), which is defined as

min(w,1)

G (1) = / WK (u) du,

-1

7On the topic of transformation function choice see also Wand, Marron, and Ruppert
(1991).

11



where w = £ and K (-) is any standard kernel function with support in [—1, 1]
when the support of ¢ is nonnegative (Jones (1993)) and

min(w,1)
[ 'K (u)du if te€0,1—h]

as (t, h) = 1 )
Ik wK (u)du if te€(1—h,1]

max(wfi,fl)

when ¢ has support in [0, 1], see Chen (1999a).® A local linear version of the
intensity estimator is given by

(18) MUEESY [hil S K, (t, hy. %)] |

with boundary adapted kernel function K7, (¢, h,y) equal to

as (t,h) —ay (t,h) -y
ag (t,h) - as (t,h) — a2 (t, h)

(19) K, (ta hay) = : K(y),

In the context of our paper the domain of the trading times is given by the
interval [t™", M%), We can account for this by replacing ¢, (m) on the right

hand side of (18) by standardized trading times z,(m) = M and ¢ by
zZ= t_g”", where A = ¢m3® — ¢min_ This leads to the following estimator
M N
. 1 1 = z — zy (M)
(20) AL (t) = M'mz:l [E;KL (Z,hz,T>] )
where h, = hA—I.

A drawback of the estimators (18) and (20) is that they may produce negative
intensity estimates. This is caused by the appearance of the two differences
in (19). In order to circumvent this problem, Jones and Foster (1996) pro-
posed a straightforward modification that ensures nonnegativity in density
estimation. Their method is easily transferred to the context of intensity
estimation. A nonnegative local linear estimator of the intensity is obtained
by applying the following transformation to A, (t),

(21) S (1) = #(t})”) e [AL (t)x- Z; (t,h) 1] |

8Note that the expressions for the limits of the integral appearing in the definition of
as (t, h) given in Chen (1999a) are erroneous.

12



where )\ is the standard kernel estimator of equation(9).

Local linear estimators of the conditional survivor function and the condi-

tional density function are obtained by replacing K %

tions (11) and (12) by K (z,hz,z_zhﬂ), and Kp (W) by

z

in equa-

K, (:E, hp, W) Nonnegative versions can be obtained by straight-

forward modifications of equation (21).

Nonnegative local linear estimators of density functions and related quanti-
ties have the virtue to eliminate boundary effects in the sense that they lead
to estimates with asymptotic bias of the same order in the boundary region
as in the interior of the support. The estimators proposed above are easy to
implement provided that a kernel function is employed for which analytical
expressions of its integral are available so that the function a (¢, h) can eas-
ily be evaluated. We follow Jones and Foster (1996) and Chen (1999a) and
employ the quartic kernel of equation (16).

3.4. Variable kernel estimators for liquidity measures

Alternative estimators for liquidity measures designed to reduce boundary
effects can be derived from wvariable kernel methods. The basic idea is the
use of a kernel function with varying shape that, unlike standard fixed kernels,
naturally accommodates to the support of the data. Chen (1999a) proposed
to employ the beta p.d.f. as a suitable kernel function for densities with
bounded support and Chen (1999b) recommended the gamma p.d.f. for
densities with nonnegative support. In the following we will adapt both
approaches for the estimation of intraday liquidity measures.

Using Chen’s beta type-I kernel yields the following estimator for the condi-
tional intensity function:

M N

“ 1 1
(22) )\Bl(t) :MZ NmA .z;therl’lhzZJrl (Zn(m)) s

m=1

where B, ,(z) denotes the p.d.f. of a standard beta random variable z € (0, 1)
with parameters p and ¢

(23) By y(2) =

I'(p+aq)
I'(p)-T(q)
' (-) denotes the Gamma function. Standardized trading times z, (m) and
the bandwidth parameter h, are defined as in the previous section. Chen

(1 - z)q*1 )

13



(1999a) also proposes a second version of the beta kernel density estimator
(referred to as beta type II) that is designed to reduce bias in finite samples.
Applied to intensity estimation, we get

. 1 M 1 N,
(24 (0= 57+ 3 | 5y 2 B ).

where B, (.) is a modified beta kernel defined as

B,y ie  if za(m) €[0,2h,)

(25) B}, (2) = BEI}L;z %f Zn(m) € [2h,,1 — 2h,]
B,fj,pB(l—Z,hz) if zn(m) € (1 — th, 1]

and

(26) pp(z, h,) =25+ 2hz — \/2.25 +4ht 4+ 6h2 — 22 — hi

Beta kernels can be used for estimation of the conditional survivor function by
replacing K7 (-) in equation (11) by B iz, (-) or B}, (-), respectively.

In order to obtain estimates of the conditional density function f (z|t) we pro-
pose to combine beta and gamma kernels. The gamma kernel is an adequate
choice for duration data which are nonnegative by definition, see equation
(10). In the context of conventional density estimation Chen (1999b) has
proposed two versions of the gamma kernel. The first version is given by

(27) Ka, (x,h, 2(th1(m),v)) = G in (2(tn1(m), ),
where G, (z) denotes the gamma p.d.f.
P~ - exp <—§)

q"- T (p)

An improved performance in terms of the asymptotic mean squared error
(AMISE) can be achieved by using Chen’s type II gamma kernel, given by

(28) Gp,q(m) =

(29) KGII ({L“, h, x(tnfl(m)ﬂ U)) = GPG(SL‘,h),h (x(tnfl(m)v U)) )
where the function pg (x, h) is given by

B it x>2h

(30) a (@, h) = { ?%)2 +1 if x€[0,2h)
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A variable kernel estimator of the conditional density function is obtained
by replacing Kp (-) in equation (12) by either (27) or (29), and substituting
a beta kernel for K7 (-), as described above.

Variable kernel methods offer a number of advantages. The resulting esti-
mates are always nonnegative’ and the kernels match the support of the data
by construction. The effective sample size used in the estimation is equal to
the total sample, which leads to a lower finite sample variance. Because of
the flexible shape of the kernels, the amount of smoothing is automatically
altered as the trading times approach one of the boundary regions without
explicitly altering the value of the bandwidth parameter. Asymptotic reason-
ing and Monte Carlo evidence reveal that for both beta and gamma kernel

the type II versions are preferable since they offer smaller bias and variance
(Chen (1999b), Chen (1999a) and Bouezmarni and Rolin (2001)).

3.5.  Bandwidth choice

When selecting the value of the bandwidth parameter in the estimators dis-
cussed in the previous section two aspects have to be considered. First,
as shown in Chen (1999b) and Chen (1999a), the optimal value (in terms
of AMISE) of the bandwidth parameter for variable kernel estimators is of

order O (N%) instead of O (N*%) for standard kernels, where N is the

sample size. Second, since we want to compare the performance of GJL’s
estimators, which are based on the Gaussian kernel, with the quartic kernel
based local linear estimators we have to ensure bandwidth comparability.

With regard to bandwidth choice we use modified versions of Silverman’s
rule of thumb. This familiar plug-in selector is derived assuming that the
true density function belongs to the family of normal distributions and the
kernel used for estimation is the Gaussian. The optimal bandwidth A,y is
selected by

(31) Popt =0.9- A- N5,

where A is the minimum of the sample estimates of the standard deviation
and the interquartile range divided by 1.34 (Silverman (1986)). To account
for the different orders of h,, for fixed and variable kernels we adapt this
bandwidth selector accordingly. The bandwidth choices for the Gaussian

9This is an advantage over the class of boundary kernel functions considered by Miiller
(1991).
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kernel are 10

(32) hr = 096, -N75,
(33) hp = 09:6, N3,

where ; denotes the sample standard deviation of the trading times ¢,(m)
and &, the corresponding estimate for durations z(¢,v). We follow the ap-
proach in Chen (1999a,b) and use the same bandwidth selector for variable
kernels that we used for standard kernels, except for the replacement of the

exponent of the sample size N from —% to —%.

In order to choose the appropriate bandwidth for local linear estimators,
we adopt the concept of canonical kernels, developed by Marron and Nolan
(1989). This allows to transform a bandwidth value h; derived for a specific
kernel K; (.) into a value h; that will produce an equivalent estimate using
kernel K (.) instead.! The approach involves translation of the bandwidth
h; according to

>

di
where ¢; and J; are kernel specific constants which are given in Marron and
Nolan (1989) for commonly used kernel functions. We therefore use relation
(34) to translate the optimal Gaussian bandwidths (33) and (33) into values
that are appropriate for the quartic kernel. This comes down to multiply
Gaussian bandwidths with the constant % = 2.6226. The following

simulation study will show that these adaptations of Silverman’s rule for
local linear and variable kernel estimation yield quite satisfactory results.

4. SIMULATION STUDY

In order to compare the performance of the estimators discussed in the previ-
ous sections, we simulate a time-dependent Poisson process that mimics the
typical U-shaped intraday activity pattern documented in recent studies (e.g.
Engle and Russell (1998), Engle (2000)).'? We assume that the conditional

10We will use only the standard deviation instead of Ain equation (31), since it turns
out to be the smaller quantity in all of our applications.

" Equivalence means that both kernel estimates will have the same AMISE.

12U-shaped patterns have also been found for volume, volatility and the bid-ask spread
in numerous studies based on NYSE transaction data. For a summary of these findings
see Goodhart and O’Hara (1997).
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intensity A(¢) is given by the harmonic oscillation

(35) At) = a+b- cos (Lf”)

where a > b is a shift parameter that ensures nonnegativity, b is the ampli-
tude, c is the period of the cycle, and ¢™" is the time (measured in seconds
after midnight) at which trading begins. Setting a = 0.035, b = 0.025,
¢ = 23400, and t™" = 34200, we obtain a U-shaped time of day pattern with
a period that is chosen to equal the length ¢™ — ¢™" = 23400 (= 6.5 hours)
of the NYSE trading day. Local maxima of A(t) are located at the beginning
and the end of the trading day (A(¢) = 0.06) and the minimum is achieved
at the middle (A(¢) = 0.01). The intensity pattern is depicted in Figure 2.
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0.06 | B

0.05 } B

0.04 B

0.03 } B

Intensity

0.02 F E

0.01 B

! | ! | ! ! | ! ! | ! !
10:00 11:00 12:00 13:00 14:00 15:00 16:00

0.00

Time of day

FIGURE 2: True time of day intensity function.

A random sample of trading times is constructed in the following manner:
Starting at ¢t = #™" we determine the value of the assumed time of day
function A(#™"). We then draw a random number z; from an exponential
distribution with p.d.f. given by A (#™")-exp (= (#™") - x) and obtain ¢; =

17



t™in 4 1, as the time of the first trade. In order to determine the time of
the next trade, another exponential random number x,, with distribution
parameter now set to A(¢;), is drawn. For simplicity, we assume that the
trading volume is equal to one unit for each trade. This procedure is repeated
until we reach the end of the first trading day. To generate a sample of M
independent trading days, the algorithm is then started again at time ¢ = ¢™"
for each of the remaining M —1 days. This simulation setup has the advantage
that the true conditional density and survivor function of the durations = are
readily given by f (z|t) = A (t)-exp (=A(¢) - ) and S (x|t) = exp (=A (¢) - z),
when the prespecified trading volume v in equation (10) is equal to one.'3
We generated a sample consisting of M = 50 trading days. Figure 3 depicts
the resulting sample of N = 40800 trade durations, sorted by time of day.
Note that, as expected, long durations tend to be clustered around 12:45
a.m. and short durations are concentrated at the open and close.

We have estimated transaction intensities based on the simulated data using
GJL’s Gaussian as well as the nonnegative local linear (NL) and the beta
type II estimators. Bandwidths were chosen as outlined in section 3.5.. The
resulting estimates are depicted in Figure 4. While all estimators do a good
job during the central part of the trading day, the poor performance of the
Gaussian estimator within the half hour intervals after the open and before
the close is striking. The intensity estimates at the boundaries are approxi-
mately half of the true value, which is consistent with the theoretical result
of Marron and Ruppert (1994).1* On the other hand, both the NL and the
beta kernel estimators are quite successful in recovering the true time of day
activity pattern without any visible boundary effect. Compared to the beta
kernel, the NL estimator offers a slightly smaller variance at the bounds.

We obtain a similar result for the estimates of the conditional density function
for trade durations. We compute GJL’s Gaussian, the NL and the variable
kernel estimator, which combines beta type II and gamma type II kernels.
Figure 5 depicts the corresponding conditional density estimates at four ar-
bitrarily chosen time points during the trading day. Bandwidth selection has
been carried out as discussed in Section 3.5..

Irrespective of the time of day at which the density estimate is evaluated
GJL’s Gaussian estimator is strongly biased downwards for small durations,

13In the general case, where the volume of each trade is a random variable and the
prespecified trading volume v is greater than one unit, f(z|t) and S (z|t) would also
depend on the distribution of the volume.

MVarying the bandwidth and using any other standard kernel function did not remove
the boundary effects.
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FIGURE 3: Simulated trade durations by time of day.

while the NL and the variable kernel estimators produce conditional densi-
ties which are extremely close to the true (exponential) distribution. As an
additional illustration, Figure 6 depicts the joint density function of trading
times and trade durations and the corresponding Gaussian, NL and variable
kernel estimates. It is clearly visible that the boundary effect of the Gaus-
sian estimate is present throughout the trading day. The NL estimates are
slightly less noisy than the variable kernel estimates, an effect that becomes
more pronounced as we move closer towards the middle of the trading day.

Figure 7 shows that the performance of the three estimators of the conditional
survivor function is comparable and quite satisfactory. The small differences
between the Gaussian estimate on one side, and the variable kernel and LN
on the other, lead us to the conclusion that the boundary effects visible in the
conditional density function estimate are mainly caused by the inappropriate
use of the Gaussian kernel for the nonnegative duration data.
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5. EMPIRICAL RESULTS

We use transactions data for a selection of four NYSE traded stocks, Disney,
IBM, Exxon and Boeing, from the Trades And Quotes (TAQ) data set.'> The
TAQ data set contains information about the timing of the trades, transac-
tion prices and volumes as well as every revision of best bid and ask prices
and corresponding volumes. We extract all trades during the regular trading
hours (9:30 a.m. until 4:00 p.m.) between 6/3/96 and 12/31/96, exclud-
ing observations on the 7/5/96 and the 11/29/96 because of the afternoon
closure of the NYSE on these two days. Follwing Engle and Russell (1998),
consecutive trades that were recorded with trade durations equal to zero were
aggregated. Sample descriptive statistics are reported in Table 1.

We decided to include the batch auction period which takes place during the
first minutes of each trading day in the data sets used for estimation. During
the opening auction, the designated market maker sets a price in order to
maximize the transaction volume. After the price is fixed and orders are
executed, transactions are recorded. Once this is done, continuous trading
begins. Because of a delay of the open that may occur from time to time,
the first recorded transaction duration can be relatively long. Hence, we
expect an initially low intensity at the open that increases quickly before the
U-shape pattern is assumed.

We first present estimates of transaction intensities for our sample of four
stocks using GJL’s Gaussian, the nonnegative local linear and the beta type
IT estimator. The bandwidths were chosen as outlined in Section 3.5. and
reported in Table I. The resulting estimates for the IBM stock, including,
as a reference, the simple intensity estimator of equation (7), are depicted
in Figure 8. For the latter, we used a fixed interval length of five minutes.
Estimates for the three other stocks are collected in Figure 9. We find that
all estimates are generally compatible with the idiosyncratic feature of the
NYSE open. On the other hand, while simple, NL. and variable kernel esti-
mators predict a sharp increase of the trading intensity towards the close, the
Gaussian estimator predicts a sharp decrease of the trading intensity during
the half hour before the end of the trading day. This is clearly a result of the
boundary effect.

Taking into account the quantity aspect of liquidity, we finally estimate con-
ditional densities of volume weighted IBM durations, where the cumulated

15This selection of stocks was also used in the papers by Bauwens et al. (2000) and
Grammig and Maurer (2000).
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TABLE I: Sample descriptives and bandwidths

Boeing Disney Exxon IBM
Trade events 56717 74972 63178 133505
Trading times
Mean 45311.07 45458.14 45455.30 45512.73
Standard error 7279.43  7279.52 7303.59 7502.78
Skewness 0.13 0.11 0.11 0.09
Excess kurtosis -1.36 -1.36 -1.38 -1.43
Minimum 34229.00 34224.00 34228.00 34219.00
1st Quartile 38559.00 38756.00 38654.00 38375.00
Median 44656.00 44820.50 44821.00 44993.00
3rd Quartile 52077.00 52274.00 52355.50 52735.75
Maximum 57599.00 57599.00 57599.00 57599.00
Trade durations
Mean 57.36 43.38 51.38 24.42
Standard error 75.15 55.96 66.49 35.63
Skewness 3.18 3.18 3.33 4.73
Excess kurtosis 15.64 16.53 20.54 40.53
Minimum 1.00 1.00 1.00 1.00
1st Quartile 11.00 8.00 10.00 6.00
Median 31.00 24.00 28.00 12.00
3rd Quartile 72.00 56.00 65.00 29.00
Maximum 1021.00 929.00  1597.00 967.00
Traded volume
Mean 2.38 1.98 2.58 2.56
Standard error 6.46 4.82 5.80 5.69
Skewness 24.02 10.12 16.98 29.79
Excess kurtosis 1413.21 187.10 694.00 2723.12
Minimum 0.10 0.10 0.10 0.10
1st Quartile 0.20 0.20 0.30 0.50
Median 0.90 0.50 1.00 1.00
3rd Quartile 2.00 2.00 3.00 2.60
Maximum 569.90 209.70 400.00 711.80
Bandwidths for intensity estimation
Variable kernel 82.20 67.40 67.40 60.15
Gaussian kernel 733.83 694.01 720.55 637.33
Local linear 1924.56 1820.12 1889.73 1671.47

Trading times are measured in seconds since midnight, trade durations in

seconds and traded volume in 1000 shares.
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trading volume v in equation (10) is set to 30000 (being roughly equal to
the average IBM trading volume in 15 minutes) and 5000 shares for compar-
ison. Applying the bandwidth selection rules of Section 3.5. to the volume
weighted durations using v = 5000 (v = 30000) yields a bandwidth for the
Gaussian estimate equal to 11.42 (32.01), for the local linear estimate equal
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to 29.95 (83.95), and for the gamma kernel equal to 1.09 (3.06). See Table 1
for the bandwidth w.r.t the trading times. In order to avoid effects of right
censoring (i.e. weighted durations that are not completed until the end of the
trading day), we restrict our attention to trading times until 3.30 p.m. Figure
10 shows that for v = 30000 the variable kernel, nonnegative local linear and
the standard Gaussian estimates do not differ to a great extend. The three
conditional density estimates are clearly hump shaped. The similarities can
be explained by the fact that weighted durations setting v = 30000 contain
only a small number of durations close to zero. Hence, the boundary effects
affecting the Gaussian estimate are reduced. Differences between the three
estimates are more pronounced when setting v = 5000. In this case a larger
number of small durations (closer to the lower bound) are found in the data.

Whilst all estimators produce humped shaped densities, the variable kernel
density estimate at small durations is the steepest. The hump of the density
close to origin is least pronounced in case of the LN estimate. Similarly,
as can be seen in figures 8 and 9, the variable kernel intensity estimator
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seems to capture the highly nonlinear curvature of the intensity function
during the first five minutes of the trading day better than the local linear
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estimator. This can be seen by comparing the estimates with the crude,
yet robust simple estimator. These results let us conclude that the variable
kernel estimate is preferable in case of highly nonlinear shapes of intensity
and density functions near the boundary.
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6. CONCLUSIONS

A meaningful measure of liquidity provides an important input for an in-
vestor’s asset allocation and trading strategies. Yet there is no operational,
generally accepted definition that indicates how to measure the degree of an
asset’s liquidity. Recognizing that liquidity can be interpreted as the abil-
ity to trade an asset quickly in large quantities without causing large price
jumps, Gouriéroux, Jasiak, and Le Fol (1999) have introduced a new class
of intra-day market activity measures that are designed to account for these
three components of liquidity simultaneously.

In this paper we have argued that the standard nonparametric estimators
that have been employed in GJL’s seminal paper suffer from a serious defi-
ciency. We have shown in a simulation study and using NYSE trade data that
these standard methods produce estimates of the intra-day liquidity measures
that are severely affected by a boundary bias. We have proposed straightfor-
ward adaptions of variable kernel and local linear estimation methods that
alleviate this problem.

In an empirical application we have found that the boundary bias works like
a disguise, hiding intriguing features of the trading process near the opening
and close: First, the non monotonic shape of the intensity function at the
opening is not an artefact caused by the boundary bias, but an economically
plausible effect attributable to the opening auction. Second, the apparent
decrease of trading activity before the close suggested by standard kernel
estimators is solely due to the boundary bias: The alternative estimators
discussed in this paper clearly indicate an unambiguous increase of trading
activity near the close. This asymmetry of the NYSE trading process between
the open and the close is not detectable by standard methods.
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