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Abstract 

Institutions, Shared Guilt, and Moral Transgression* 
Dominik Rothenhäusler, Nikolaus Schweizer, and Nora Szech 

We study how institutional design influences moral transgression. People are heterogene-
ous in their feelings of guilt and can share guilt with others. Institutions determine the 
number of supporters necessary for immoral outcomes to occur. With more supporters 
required, every supporter can share guilt more easily. This facilitates becoming a support-
er. Conversely, an institution requiring more supporters must rely on people who have 
higher individual moral standards. We analyze individual thresholds for agreeing to a 
transgression, depending on the available options for sharing guilt by institutional design. 
On the aggregate level, we study how institutions affect the likelihood of immoral out-
comes. 
 
Diese Arbeit untersucht den Einfluss von institutionellem Design auf moralische Über-
tretungen. Menschen unterscheiden sich im Ausmaß ihrer Schuldgefühle und können diese 
in einer Gruppe mit anderen teilen. Von den jeweiligen Institutionen hängt es ab, wie viel 
unterstützende Personen für unmoralisches Verhalten notwendig sind. Je mehr dies sind, 
desto leichter kann jede von ihnen Schuld auf andere abgeben. Dies wiederum erleichtert 
es, zum ‚Unterstützer‘ für Übertretungen zu werden. Umgekehrt muss eine Institution, für 
die mehr Unterstützer nötig sind, auf Personen vertrauen, die höhere individuelle mor-
alische Standards haben. Wir analysieren individuelle Hemmschwellen für die Zustimmung 
zu Übertretungen in Abhängigkeit von den zur Verfügung stehenden Optionen, Schuld 
über das jeweilige institutionelle Design auf andere zu verteilen. Auf aggregierter Ebene 
studieren wir, wie Institutionen die Wahrscheinlichkeit von unmoralischem Verhalten 
beeinflussen. 
 
Keywords: Moral Decision Making, Shared Guilt, Group Absolution, Diffused Responsibility, In-
stitutional Design, Committee Decisions, Moral Transgression 
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1 Introduction

This paper studies the critical role of institutions in affecting moral behav-

ior. Specifically, we aim at understanding how several people acting together

may promote or prevent moral transgression. Many immoral acts require the

support of several people to become implementable. On the one hand, this

may put a natural barrier on moral transgression: If not just the worst people

in a population, but also a considerable fraction of “ordinary people” have to

participate, transgression may lack support and hence be prevented. On the

other hand, for the individual, knowing that he or she is just one out of many

people acting together, may facilitate supporting moral transgression. Acting

together with others allows for sharing guilt, for feeling less responsible for

immoral outcomes, and for lowering the impression of breaking a social norm

(compare Latané and Nida (1981)). Thus, if many have to be supportive for

transgression to happen, transgression may occur exactly because of this ne-

cessity. It is this tension our paper aims to explore. Depending on how many

people have to participate, moral transgression may occur or be prevented.

Morally difficult tasks are often delegated to several people. An example are

executions by shooting, where typically several people act together in a shoot-

ing squad. Similarly, death penalties are often executed by so-called execution

teams who inject lethal doses of toxic drugs together. In his book “On Killing”,

Lieutenant Colonel Dave Grossman (1996) points out: “The individual is not

a killer, but the group is” (p. 149). Yet if sharing guilt with others facilitates

participating in morally difficult activity, the amount of supporters necessary

becomes an important design tool for institutions.

Research in social psychology suggests that people engage in “psychosocial

manoeuvres – often aided by the institutions [...], which absolve them from

moral responsibility for harmful acts” (Haidt and Kesebir, 2010, p. 812). Put

differently, moral behavior is malleable, and institutions play a crucial role

in promoting or limiting such behavior. Even for the most drastic atrocity,

some historians stress the role of institutional design facilitating participation

(compare Browning (2004) on the organization of the Holocaust). This paper

focuses on the role of group absolution and shared guilt, and how institutional

design affects immoral behavior if people share their guilt with others.
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We focus on two measures of immorality: Firstly, moral transgression can

happen on an individual level. If a person would be willing to support trans-

gression in one institution, but not in the other, institutions affect this person’s

moral disposition. We study these institutional effects on individual levels of

immoral activity. Secondly, institutions can affect outcomes. If transgression

requires the collaboration of several people, feelings of guilt are reduced in those

who collaborate. Yet for the transgression to materialize, enough supporters

have to be found. Therefore, we also study the likelihood of transgression to

materialize as a second measure of immorality within a population.

Our game-theoretic model can be understood as an extension of a discrete

public goods game as in Palfrey and Rosenthal (1984). In our model, a group

of agents faces the opportunity to commit a morally problematic act (this is,

ironically, the “public good” in our case). Agents would enjoy the outcome

of the act. Yet committing the act is associated with feelings of guilt for

those who supported it actively. If a sufficiently large group of agents acts

as supporters, moral transgression happens. We assume that the associated

individual feelings of guilt are decreasing in the number of supporters.

We study the effect of institutions on moral transgression varying the degree

to which guilt diffuses. We then analyze how the number of supporters which

is required for the transgression to happen affects immoral outcomes, as well

as the size of the overall population. Varying the number of required sup-

porters could be interpreted as changing the decision rule in an organization,

e.g., from unanimity voting to a simple majority vote, or to looking for a vol-

unteer. Varying group size can be interpreted as shifting responsibility for a

particular decision upwards or downwards in the hierarchy of a larger organi-

zation. Likewise, our results can be understood as a comparison of existing

institutions.

We add to the literature in several ways: Previous applications of discrete pub-

lic goos games to morals and collective action focus mostly on the bystander

effect.1 Our model differs from this line of research in that the “public good”

1The bystander effect describes the phenomenon that helping a person in distress be-
comes less likely the more people are around and could in principle help the victim, see
e.g. Latané and Nida (1981). The game-theoretic literature on the bystander effect includes
Harrington (2001), Osborne (2004) and Crettez and Deloche (2011), see the last paper for
more references.
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is an immoral outcome and not a moral one. Accordingly, we incorporate the

psychological costs of guilt instead of the physical costs of doing a good deed.

Thus, our work is more closely related to Huck and Konrad (2005) who also

consider a trade-off between the costs and benefits of a moral transgression.

The key difference between our model and theirs is the inclusion of diffusion

of costs/guilt as the number of supporters increases. This assumption is very

much in line with findings in social psychology, for an overview see Fischer

(2011), and leads to significant changes in the model’s qualitative behavior.

Moreover, while Huck and Konrad mostly focus on varying the population size

(or, equivalently, the size of the deciding committee), our analysis considers a

broader set of questions: For instance, varying the size of required supporters

has – to our knowledge – only been studied in Palfrey and Rosenthal (1984)

while most of the literature considers the more tractable cases of one required

supporter or unanimity. In addition, our model differs by assuming incom-

plete information over heterogeneous costs instead of the symmetric complete

information case considered by Palfrey and Rosenthal and the subsequent lit-

erature cited above. Finally, on a technical level, our methods for analyzing

the comparative statics prove useful even for models without shared guilt.

We observe an interesting strategic equivalence between models with shared

guilt and models without. This allows to transfer our techniques to the more

standard case without shared guilt.

On a technical level, our model is also related to models of strategic voting

and committee decision making.2 What sets our model apart from this liter-

ature are the costs of voting, as in our study, individual costs of an immoral

“vote” decrease in the number of supporters. Moreover, our study addresses

a different topic: While that literature centers around questions of efficiency

and information aggregation, our main interest lies in characterizing conditions

that promote or prevent immoral dispositions and outcomes.

Our results can be summarized as follows: We find that if transgression requires

unanimity within the population, sufficiently large groups either end up in a

moral or in an immoral state, depending on the distribution of individual levels

of guilt within the population and depending on how easily guilt diffuses among

many. While, individually, people find it easier to participate in transgression

2For seminal contributions to that literature, see, e.g., Austen-Smith and Banks (1996)
or Feddersen and Pesendorfer (1997). Li and Suen (2009) provide a recent survey.
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within a large population, transgression may be completely prevented if there

are enough people having substantial moral concerns. Furthermore, we find

that the probability for transgression to happen is U -shaped in the population

size for many common distributions of individual levels of guilt. The initial

decrease is driven by the same effect which drives the transgression probability

to zero in a model without sharing of guilt: In a larger group, more have to

agree and thus the probability that someone will object is high. As the group

gets even larger, this effect is overruled by another one. If very many have to

agree guilt is shared so effectively that it becomes negligible.

We then move away from unanimity and study the effects of varying the num-

ber of required supporters on individual and outcome-based immorality. In-

dividual willingness to support transgression increases monotonically in the

number of required supporters since guilt can be shared. Yet the probabil-

ity that transgression materializes first decreases in the number of required

supporters, but increases in this number if the overall number of required sup-

porters is large. Thus transgression can best be prevented if an intermediate

number of supporters is necessary. In such a situation, people with higher

moral concerns would have to collaborate. Yet such people have an incentive

to free-ride on others: They prefer to enjoy the fruits of an action without hav-

ing to do the dirty work themselves. Put differently, simple majority voting

tends to be more successful at preventing transgression than both unanimity

voting and looking for a volunteer.

Additionally, we study effects of population size if the number of supporters

required is fixed. We observe an effect of “immoral overshooting”: As the

population grows large, many people find it easy to support transgression even

though their support is not required at all.

In a recent study, Falk and Szech (2013a) find that deciding individually about

some immoral act prevents immoral behavior compared to two people deciding

together. People decide between saving the life of a mouse and foregoing some

monetary amount versus agreeing to kill a mouse and receiving money. In

the bilateral situation, people find it much easier not to save the life of a

mouse than in the individual decision context. Knowing that another person

has to support the killing, people care less about the mouse life and opt for

the money, too. This happens even though people know they remain fully
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pivotal for the death of the mouse. (Another difference between the individual

and the bilateral context was that the bilateral context used a market frame.

People negotiated in the roles of “seller” and “buyer”. While the study cannot

disentangle what drove immoral activity exactly, it is a strong indication that

sharing guilt lowers moral costs.)

Sobel (2010) addresses the effects of diffused pivotality in markets in a theoret-

ical study. Market participant act less pro-socially, knowing that their effect

is small in a group of many traders. In an experimental study, Falk and Szech

(2013b) show that the diffusion of pivotality can indeed drive people to support

immoral acts. Other mechanisms leading to “unfair” or less social outcomes

are delegation or moral “wiggle rooms”. These are discussed, e.g., in Bartling

and Fischbacher (2012), Hamman, Loewenstein and Weber (2010) and Dana,

Weber and Kuang (2007).

The paper is organized as follows: In Section 2, we set up our model and prove

existence and uniqueness of equilibrium. We also define the individual and

the outcome-based measures of morality used throughout. Section 3 focuses

on effects of different levels of diffusion of guilt. In Section 4, we analyze

the effects of institutions on individual moral thresholds and aggregate moral

outcomes. Section 4.1 focuses on effects of the number of supporters necessary

for transgression to happen, while Section 4.2 analyzes the effects of population

size. Section 5 compares our model to a model without sharing of guilt. Section

6 concludes.

2 Framework

This section introduces our model. We show existence and uniqueness of

equilibrium. Furthermore, we introduce our measures of morality: Individ-

ual thresholds characterize at which personal level of moral concerns people

get tempted by institutions to agree to transgression. The transgression prob-

ability P , instead, focuses on outcomes. It describes the likelihood with which

moral transgression materializes within a population.
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2.1 The Model

We consider a group of n ≥ 1 agents who face the decision to take an action.

We assume that taking the action is morally difficult. We thus also refer to it as

the moral transgression. If transgression happens, each agent receives V > 0,

otherwise each agent receives 0. Transgression is associated with costs of feeling

guilty afterwards, or with some general “moral costs”, which are modeled as

follows: Each agent has a private type xi. Types are drawn independently

from a commonly-known, continuous distribution function F with F (0) =

0 whose density function f is strictly positive over the support (0, a), a ∈
(0,∞] of F . If agent i supported the transgression and the transgression

indeed takes place, his or her moral costs are xi divided by s(y) where y is the

number of agents who supported the transgression. The division by s captures

sharing, or diffusion, of guilt. For example, s(y) ≡ 1 corresponds to a standard

public goods game without sharing of guilt. s(y) = y captures a proportional

diffusion of guilt. We assume that s is weakly increasing and that s(1) = 1. If

transgression does not materialize, we assume that agents do not feel guilty.

Agents who did not support the transgression do not feel guilty either.

The collective decision process is modeled as a voting-type game. Agents

simultaneously “vote” either “Yes” or “No”. If at least k agents vote “Yes”,

transgression happens. k ∈ {1, . . . , n} is commonly known. This game can be

interpreted as the result of a decision rule that was prescribed or agreed upon

beforehand. Alternatively, it can be thought of as a game of volunteering to

participate in an immoral action, and k as the minimum number of volunteers

needed to carry it out.

To sum up, the realized utility of agent i from opting for “Yes” is given by(
V − xi

s(1 + Y−i)

)
1{Y−i≥k−1} (1)

where Y−i denote the number of agents other than i who voted “Yes”. Realized

utility from voting “No” is given by

V 1{Y−i≥k}. (2)
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2.2 Equilibrium Analysis

The solution concept we employ is Bayesian Nash equilibrium. We focus on

equilibria which are symmetric in the sense that agents with the same type

cast the same vote. For k > 1 there exists a pooling equilibrium where all

agents vote “No” regardless of their type and where all agents have a utility

of 0. As is common, e.g., in the voting-games and matching literatures, we

ignore this equilibrium in the following and focus on the Pareto-superior equi-

libria where the immoral action is taken with positive probability.3 Our first

main result shows that there always exists exactly one equilibrium of this type.

Proposition 1. There exists a unique symmetric Bayesian equilibrium in

which transgression happens with positive probability. In this equilibrium, agent

i votes “Yes” if xi ≤ θk,n and “No” if xi > θk,n. θk,n is the unique solution of

V b(n− 1, k − 1, F (θk,n)) =
n−1∑
j=k−1

θk,n
s(1 + j)

b(n− 1, j, F (θk,n)), (3)

where

b(n, j, p) =

(
n

j

)
pj(1− p)n−j.

If k < n, θk,n lies in the interior of the support of F , F (θk,n) ∈ (0, 1) and thus

the equilibrium is a separating equilibrium.

Equation (3) has a straightforward interpretation in terms of the costs and

benefits of a marginal agent: On the left hand side we have the gains in utility

if the agent is indeed marginal, i.e., if exactly k − 1 other agents are willing

to take action. On the right hand side we find the expected costs of an agent

with type θk,n.

Obviously, uniqueness only holds up to the decision of agents with type θk,n

which are indifferent between “Yes” and “No”. We ignore this technicality

in the following, since it only concerns zero-probability events. For k = n,

(3) becomes θn,n = s(n)V . Thus, for F with finite support, the equilibrium

3Since agents can guarantee themselves a non-negative payoff by voting “No”, all agents
earn a non-negative payoff in any equilibrium. Any agent strictly preferring “Yes” in an
equilibrium where the immoral action is taken with positive probability must earn a strictly
positive expected payoff.
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degenerates to a pooling equilibrium where all agents opt for “Yes” if n or V

are sufficiently large.

2.3 Measures of Moral Transgression

We focus on two different measures of moral transgression: θk,n captures in-

dividual levels of immorality. Pk,n refers to immoral outcomes within the

population.

Immorality can increase on an individual level, in the sense that an individual

with given moral standards may get tempted by possibilities to share guilt via

institutional design. We measure this institutional effect on the individual level

by the quantity θk,n, i.e., by the marginal type who supports the transgression.

For an individual decision-maker, we have θ1,1 = V , i.e., the decision-maker

agrees whenever the benefits V are larger than his or her individual guilt x.

In general, θk,n may be both, smaller or larger than V . In some cases, agents

who would have supported the transgression individually, opt against it in a

different institution, hoping that others will step in. Thus, a free-riding-type

effect may dominate. In other cases, agents who would not have supported

the transgression individually may opt in its favor in a different institutional

context, relying on the sharing of guilt.

In addition, as an outcome-based measure of morality, we consider the equi-

librium probability Pk,n with which transgression occurs within a population

Pk,n =
n∑
j=k

b(n, j, F (θk,n)).

For an individual decision-maker, we have P1,1 = F (V ), i.e., the transgression

probability equals the proportion of individual supporters in the population.

As we will see in the following, the dependence of Pk,n on k and n is rather

intricate. For instance, Pn,n, the transgression probability under unanimous

decisions converges either to 0 or to 1, depending on the interplay of the

distribution F and the sharing rule s.
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3 Diffusion of Guilt

In this section, we study transgression probabilities in decisions made under

unanimity. This allows to focus on the interplay between the distribution of

moral standards within a population and the degree to which guilt can be

shared. We show that except for knife-edge cases the transgression probability

Pn,n converges either to 0 or 1 and give explicit conditions for both cases. We

also show that for several common distribution functions, Pn,n is U -shaped in

n.

We assume that for moral transgression to materialize, it has to be unani-

mously supported among the agents, i.e., k = n. Hence agents have no in-

centive to free-ride on each other. We assume that the sharing function is of

the form s(y) = yα with α > 0. α captures the degree to which guilt can be

shared.4 We focus on the interplay between diffusion of guilt α, population

size n and distribution of moral concerns F .

If guilt diffuses easily, i.e., if α is large, it is easier to bear the burden of agreeing

to the transgression. Accordingly, both of our measures of immorality increase

in α.

Lemma 1.

θn,n = nαV and Pn,n = F (nαV )n (4)

are increasing in α.

From the lemma, we see that θn,n increases also in n. The dependence of Pn,n on

n is less obvious in general. We begin by stating what can be seen immediately:

Corollary 1.

(i) If α = 0 and F (V ) < 1, Pn,n converges exponentially quickly to 0 in n.

(ii) If α > 0 and F has finite support, Pn,n = 1 for sufficiently large n.

Thus, for α = 0, i.e. without sharing of guilt, Pn,n vanishes exponentially

quickly in n, whenever some types reject the moral transgression on an indi-

4With some technical effort, the results can be extended to functions s which behave like
yα for large y.

10



vidual level, F (V ) < 1.5 In contrast, under sharing of guilt Pn,n will take the

value 1 for sufficiently large n if the support of F is finite.

A finite support means that there exists a commonly-known maximum-possible

level of individual guilt. If such a maximum-possible level of guilt is unknown

or infinite, the support of F is infinite. Proposition 2 and 3 characterize the

behavior of Pn,n in this more general case. We show that while Pn,n → 0 is the

rule without sharing of guilt, it only arises for very heavy-tailed distributions F

if guilt can be shared well. Thus, under sharing of guilt, in a large population

moral transgression happens very likely.

Proposition 3 shows that there is a sharp dichotomy between heavy-tailed dis-

tributions F for which Pn,n converges to 0, and light-tailed distributions for

which Pn,n converges to 1. The intuition for this finding is as follows: As the

population becomes larger, sharing guilt becomes easier. Yet the person with

the strongest feelings of guilt out of the population is going to be a stricter and

stricter moralist. If F has a sufficiently heavy tail, the latter effect dominates.

In a first step, we characterize the boundary case of distributions for which

Pn,n is constant, i.e., distributions for which the transgression probability is

independent of population size n.

Proposition 2. Assume α > 0 and let F (x) = exp(−βx− 1
α ) where β =

−V 1
α log(q) for some q ∈ (0, 1). Then Pn,n = q for all n.

The distribution F in the proposition is the so-called Fréchet distribution6

whose density is given by

f(x) =
β

α
exp(−βx−

1
α ) x−

1+α
α .

For large x, the behavior of this density function is dominated by the power

decay x−
1+α
α . Proposition 3 shows that power decay of order 1+α

α
marks indeed

the boundary between distributions for which the transgression happens or

does not happen in large populations.

5If F (V ) = 1, it seems safe to assert that we are not speaking of a moral transgression.
6The Fréchet distribution is best-known as a stable limiting distribution of rescaled first

order statistics in extreme value theory, see, e.g., Chapter 22 of Johnson, Kotz and Balakr-
ishnan (1994). Thus it is not surprising that this class of distributions arises here: Pn,n ≡ q
can be understood as a stability property of first order statistics.
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Proposition 3.

(i) If limx→∞ x
1+α
α f(x) = 0, then limn→∞ Pn,n = 1

(ii) If limx→∞ x
1+α
α f(x) =∞, then limn→∞ Pn,n = 0.

The boundary case is thus a certain power decay and the critical power in-

creases in the degree α to which guilt can be shared. If the tail of F is lighter

than x−
1+α
α , we are in case (i) of the proposition, if it is heavier we are in case

(ii). If guilt is shared proportionally, α = 1, the critical power is given by
1+α
α

= 2. Since distributions with heavier tails than x−2 are rarely observed

in applications7, we can expect to be in case (i) of the proposition for realistic

choices of F . In contrast, if we consider intermediate levels of guilt-sharing

such as α = 0.2, we find a critical power of 1+α
α

= 6 and, accordingly, there

are realistic classes of distributions F for which either Pn,n → 1 or Pn,n → 0.

We close this section by showing that for many common distribution func-

tion, exponential distributions and power distributions, the sequence Pn,n is

U -shaped: Under unanimity voting and proportional sharing of guilt α = 1,

the smallest transgression probability occurs at some intermediate population

size.

Proposition 4. Assume that α = 1 and that F is either an exponential

or a power distribution, i.e., F (x) = 1 − e−cx for some c > 0 with density

f(x) = ce−cx, or, F (x) = 1 − bγ

(x+b)γ
for some b, c > 0, γ > 1 with density

f(x) = γbγ

(x+b)γ+1 . Then, for sufficiently small V , Pn,n is decreasing up to some

unique and finite n0 > 1 and increasing from there on.

The (fairly technical) proof contains an explicit criterion which allows to check

the result for further distribution functions. Using a transformation of the

type G(nV ) = F (nαV ), the result can be extended to α 6= 1. The intuition

for this result is as follows: The initial decrease is driven by the same effect

which drives the transgression probability to zero in the case without sharing,

α = 0. As the group grows larger, more agents have to agree and thus the

probability that someone will object is high. As n becomes even larger, this

effect is overruled by the mechanisms of shared guilt. In a very large group,

guilt can be shared so easily that its effect becomes negligible.

7See Clauset, Shalizi and Newman (2009) who also give many empirical examples of
power decays with an exponent between 2 and 3.
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4 Institutions and Immoral Outcomes

In this section we compare various institutions: In Section 4.1 we analyze the

influence of the number of required supporters for a transgression, k, within a

population of fixed size. Section 4.2 focuses on effects of populations size n on

immoral behavior and moral transgression.

Throughout Section 4, we assume a proportional sharing of guilt, s(y) = y.

As seen in the previous section, in this case sharing of guilt can be expected

to play a significant role for most natural distribution functions F .

As outlined in the introduction, we suggest to interpret these comparative

statics results as an analysis of how the decision process within an institution

affects moral outcomes.

4.1 Number of Required Supporters

In this subsection, we study how the number of supporters necessary for trans-

gression to happen, k, affects moral outcomes. We find that individual thresh-

olds θk,n increase in k. This is intuitive as sharing guilt becomes easier the

more supporters are needed. In contrast, the aggregate transgression proba-

bility Pk,n is decreasing in k for small k but increasing in k for large k: With

very small k just the worst people in the population have to participate for

the transgression to happen. Yet as k increases, people with substantial moral

concerns are needed as supporters. But these people have an incentive to free-

ride on others. This makes transgression less likely overall. In contrast, for

large k effects of shared guilt dominate. In consequence, the smallest values of

Pk,n typically occur for intermediate values of k.

Let us start with a slightly more tractable form of the equilibrium condition (3).

Lemma 2. For s(y) = y, (3) is equivalent to

kV

θk,n
b(n, k, F (θk,n)) =

n∑
j=k

b(n, j, F (θk,n)). (5)

We see that there is a simple relation between the equilibrium probability of

a transgression, the right hand side of (5), and the equilibrium probability
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Figure 1: θk,n as function of k for n = 25, V = 1 and the exponential distri-
bution F (x) = 1− exp(−x). θ25,25 = 25 missed the picture.

of a transgression which is supported by the minimal number of k agents,

b(n, k, F (θk,n)), on the left hand side.

We now turn to the impact of k for fixed n. Figures 1 and 2 display the be-

havior of θk,n and Pk,n for F being the exponential distribution and V = 1. As

expected, the individual transgression thresholds θk,n are increasing in k: If k

is small, agents can free-ride, hoping that others with less scruples are around.

For large k, the moral costs of supporting the transgression are small due to

sharing of guilt. Accordingly, most types support the decision. In particular,

θk,n is smaller than V for small k and larger than V for large k: For small

k, agents who would support transgression if they were alone vote against the

transgression. For large k, agents who would not behave immorally in an in-

dividual decision now decide to support it. This monotonicity behavior of θk,n

can easily be verified for general distribution functions:8

Proposition 5. The sequence θk,n is strictly increasing in k.

8A similar but slightly more involved proof generalizes this result to all weakly increasing
sharing rules s.
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Figure 2: Pk,25 as function of k for n = 25, V = 1 and the exponential
distribution F (x) = 1− exp(−x).

We next consider the influence of k on the probability that the action is taken.

In the example of Figure 2, we observe that the transgression probabilities Pk,n

form a U -shape. The transgression probability is minimal at some interme-

diate value of k and larger if very few or very many agents have to support

the transgression. The intuition for this U -shape is as follows. For small k,

there will always be a small group of agents who really do not care about the

moral dimension of the problem. For large k, it is certain that the action will

not be taken unless guilt can be shared among many – resulting in small risk

associated with saying “Yes”. For intermediate values of k neither of these

two mechanisms helps agents as much to overcome their moral concerns and,

accordingly, the action is taken with smaller probability. Thus, our model pre-

dicts that due to a “herd behavior”-like effect, a simple majority vote k = n/2

is more likely to preserve moral standards than a vote made under unanimity,

k = n.

The following proposition confirms that the basic logic behind this reasoning

– a decrease at the left end and an increase at the right end – carries over to

a large, non-parametric class of distributions, distributions with a decreasing

density and a finite support.
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Proposition 6.

(i) If the density function f of F is bounded and weakly decreasing over an

interval [0, ε], ε > 0, then P1,n > P2,n for sufficiently large n.

(ii) If the support of F is finite, we have Pn−1,n < Pn,n for sufficiently large n.

While an inspection of the proof of Proposition 6 (i) suggests that such a

generalization may be hard to prove, we conjecture that the probabilities Pk,n

are fully U -shaped for decreasing densities which are not too heavy-tailed.9

4.2 Population Size

In this section, we study the influence of population size on moral transgres-

sion. We find that while individual transgression thresholds converge to 0 in

n, the expected number of supporters becomes arbitrarily large as n increases.

This is a strong overshooting effect: In the limit, instead of the required k, in-

finitely many people support moral transgression. This holds even if just one

single supporter is required: Instead of one, infinitely many people become

supporters. We furthermore study the behavior of the aggregate transgression

as the population grows large. In the limit, transgression will happen indepen-

dently of the number of supporters required. Yet this transgression probability

is typically not monotone in n. This is due to the interplay between competing

effects of free-riding and sharing guilt.

We start with the behavior of the individual transgression threshold θk,n:

Proposition 7.

(i) limn→∞ θk,n = 0.

(ii) limn→∞ nF (θk,n) =∞.

The first part of the proposition shows that, not surprisingly, the individual

willingness to participate vanishes as n grows large. The second part of the

proposition provides an upper bound on the rate of this decrease. Moreover, it

shows that the expected number of agents who support the decision, nF (θk,n),

9Backed by numerical investigations, we further conjecture the following: If f has a single
peak, there still tend to be two maxima in the sequence (Pk,n)k, one at k = n and another
for some small k ≥ 1. If f has multiple peaks, the behavior of Pk,n can be more complex.
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Figure 3: P15,n as function of n for V = 1 and the exponential distribution
F (x) = 1− exp(−x).

gets arbitrarily large for large n – even though the necessary number of sup-

porters k remains fixed.

Finally, we show that Pk,n converges to 1 as n gets large. With many agents,

a sufficiently large group of supporters with sufficiently small moral concerns

will most likely take immoral action.

Proposition 8. limn→∞ Pk,n = 1.

This result complements our findings on the (similar) limit behavior of Pn,n

in Section 3. Interestingly, the convergence in Proposition 8 is typically not

monotonic for k < n. To see this, note that for sufficiently large k and F with

finite support, Pk,k = 1, Pk,n < 1 for n > k and limn→∞ Pk,n = 1. Figure 3

displays the effect for F being the exponential distribution. If we think of Pk,n

as U -shaped in k for fixed n, the effect stems from the fact that for k = n

we are at the right end of such a U -shape, for n ≈ 2k we are somewhere in

the middle of the U -shape for that n. For large n, we are at the left end of a

U -shape.
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5 No Sharing Of Guilt

In this section, we discuss how our model with proportional sharing of guilt,

s(y) = y, differs from the more standard model without any sharing of guilt,

s(y) ≡ 1. If the number of supporters necessary, k, is fixed, the model without

sharing is equivalent to the model with sharing if the gain out of transgression

is adjusted from V to V/(k − 1). This illustrates that sharing guilt makes

transgression much more likely, causing the participation of people who in-

dividually would never like to become responsible for the immoral action to

happen.

Furthermore, the models’ behavior in k differs drastically. While we observed

a U -shape in the aggregate transgression probabilities under sharing, these

probabilities tend to decrease in k if diffusion of guilt is ruled out. In the case

of unanimity, i.e. k = n, the aggregate transgression probability decreases very

quickly to 0 if guilt is not divisible. This is the result from Corollary 1 (i).

For a more detailed comparison of the models with and without sharing of

guilt, let us denote by ρk,n and Qk,n the thresholds and transgression proba-

bilities for the model without sharing, s(y) ≡ 1. The corresponding quantities

under s(y) = y we continue to denote by θk,n and Pk,n. Sometimes, we need to

emphasize the dependence on V and write ρk,n(V ) etc. We begin by inspect-

ing the case in which only one supporter is needed for moral transgression to

happen, i.e. k = 1, for the model without sharing.

Proposition 9. ρ1,n monotonically converges to 0 in n. Moreover, Q1,n → 1

as n→∞.

We have seen in Corollary 1 that Qn,n → 0 while Pn,n → 1 for most distribution

functions F . Accordingly, instead of the U -shape of the sequence (Pk,n)k, we

find that without sharing, the transgression probability Qk,n tends to decrease

as more agents become necessary for transgression to take place.

If k > 1, there is a surprising strategic equivalence10 between the models with

and without sharing:

10This is not a strategic equivalence in the strictest sense, since the number of players
between the games differs.
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Proposition 10. For k > 1 and n > 1, we have

ρk,n(V ) = θk−1,n−1

(
V

k − 1

)
.

Thus, up to small adjustments of k and n, thresholds are identical in a model

without sharing and a model with sharing if the individual gain out of trans-

gression is divided by k−1. Hence this gain has to be very small for the model

without sharing compared to the model with sharing. In consequence, the

results of Section 4.2 can easily be transferred to the model without sharing.

As n gets large while k remains fixed, thresholds vanish, the expected num-

ber of supporters gets large, and the transgression probability converges to 1.

Note that while limit behavior becomes similar, quantitative result should be

very different for fixed k and n as illustrated by the drastic adaption of the

individual gain out of transgression to make the models comparable.

Proposition 11. For k > 1 and n→∞, we have

(i) ρk,n → 0.

(ii) nF (ρk,n)→∞.

(iii) Qk,n → 1.

To sum up, in the free-riding regime of small, fixed k in a population that grows

large, differences between the models are quantitative rather than qualitative

– and they should be substantial. For large k in a population of limited size, in

addition to extreme quantitative differences, we observe qualitative differences

as well.

6 Conclusion

We have studied the role of institutions in affecting individual moral behavior

and moral outcomes within smaller and larger populations. In particular,

we have analyzed the effects of diffused guilt when institutions require the

support of several people for moral transgression to happen. Our study follows

a standard game-theoretic approach, but incorporates evidence from social

psychology that people acting together with others tend to feel less individual

guilt, less responsibility, and have lower impressions of breaking social norms.11

11See Fischer (2011). For an overview of related work in economics, see Bowles (1998).
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Comparing our results to a model without diffused guilt, we observe that

moral transgression becomes considerably more likely when people react to

the number of supporters necessary for transgression. In particular, it often

becomes possible to convince many people to support a transgression if insti-

tutions require this collaboration. By this requirement, barriers of individual

moral concerns can be substantially lowered. Simply speaking, if a sufficiently

large group of people is put in charge, moral transgression takes place – unless

there is a substantial fraction of people with extremely high moral standards

counteracting the effects of guilt diffusion. Looking through human history, it

becomes plausible that institutions asking for the collaboration of many peo-

ple facilitate moral transgression, especially if individual moral standards are

comparatively low anyway. Some historians even point out that most drastic

atrocity was facilitated by institutional design.12

It is hence important to understand institutional influences on moral behavior

– ultimately, of course, to prevent moral transgression from taking place.

A Proofs

Proof of Proposition 1. We first show that all equilibria, symmetric or not, in

which the action is taken with positive probability must be equilibria in thresh-

old strategies: For each agent there is a threshold θk,n,i ∈ [0,∞] such that i

votes “Yes” if xi < θk,n,i and “No”, if xi > θk,n,i. To see this, fix the strategies

of i’s opponents. In an equilibrium where the action is taken with positive

probability, at least k− 1 of the opponents vote “Yes” with positive probabil-

ity. Assume agent i weakly prefers voting “Yes” over “No” at some value xi.

Comparing the expectations of (1) and (2) over the opponents’ strategies im-

plies that this preference must be strict for types with smaller costs. Likewise,

if agent i weakly prefers voting “No” over “Yes” at some value of xi, this pref-

erence must be strict at all types with higher costs. Thus, all best-responses

to the opponents’ strategies are threshold strategies. Therefore, all equilibria

where the action is taken with positive probability are equilibria in threshold

12Compare Browning’s (2004) view on what made the Holocaust possible. For a discussion
and conflicting views, compare Goldhagen, Browning and Wieseltier (1996).
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strategies.13

Thus, for k < n it remains to show that there exists a unique threshold θk,n > 0

with the property that if all agents play a threshold strategy with θk,n, an agent

with type θk,n is indifferent between voting “Yes” and “No”. We treat the case

k = n separately at the end. Consider an agent with type x and assume

his opponents play a threshold strategy with θk,n > 0. Expected payoff from

voting “Yes” is then given by

n−1∑
j=k−1

b(n− 1, j, F (θk,n))

(
V − x

s(1 + j)

)
(6)

where the Binomial distribution arises since opponents vote “Yes” indepen-

dently with probability F (θk,n). Expected payoff from voting “No” is given

by
n−1∑
j=k

b(n− 1, j, F (θk,n))V. (7)

Equilibria are characterized by values of θk,n for which the two expressions

coincide for x = θk,n. Equating (6) and (7) for x = θk,n yields the condition

b(n− 1, k − 1, F (θk,n))V = θk,n

n−1∑
j=k−1

b(n− 1, j, F (θk,n))
1

s(1 + j)
. (8)

which is (3). It remains to show existence of a unique solution. To this end,

we write (8) as

V

θk,n
=

∑n−1
j=k−1 b(n− 1, j, F (θk,n)) 1

s(1+j)

b(n− 1, k − 1, F (θk,n))
. (9)

The left hand side of (9) is strictly decreasing in θk,n, diverging to ∞ at 0.

Writing the right hand side as

n−1∑
j=k−1

1

s(1 + j)

(
n−1
j

)(
n−1
k−1

) ( F (θk,n)

1− F (θk,n)

)j−k+1

13Since the equilibrium where all agents always vote “No” is also in threshold strategies,
it follows that in fact all symmetric equilibria are in threshold strategies.

21



we see that it increases strictly from s(k)−1 to ∞ as θk,n moves through the

support of F . This shows the existence of a unique solution θk,n in the interior

of the support. It remains to consider k = n. As in the case k < n, an interior

separating equilibrium must be characterized by (9) which becomes

V

θn,n
=

1

s(n)
. (10)

In the case where (10) does not possess an interior solution (and only then),

all agents voting “Yes” regardless of their type is an equilibrium: This holds

whenever V ≥ x
s(n)

for all x in the support of F .

Proof of Proposition 2. We have to solve the condition Pn,n = F (nαV )n =

q for F . Taking logarithms yields n log(F (nαV )) = log(q). The monotone

transformation x = nαV , i.e., n = x1/αV −1/α yields

log(F (x)) = x−
1
αV

1
α log(q) = −x−

1
αβ.

Taking the exponential of both sides of the equation gives the desired ex-

pression for F . Since the resulting F is a Fréchet-distribution, we know in

particular that it is indeed a distribution function on R+.

Proof of Proposition 3. We prove (i) and (ii) in two steps: We first show that

x
1+α
α f(x) → 0 and x

1+α
α f(x) → ∞ imply, respectively, n(1 − F (nαV )) → 0

and n(1 − F (nαV )) → ∞. We then derive Pn,n → 1 and Pn,n → 0 from

these conditions (which can in fact be shown to be equivalent). Fix ε > 0 and

assume x
1+α
α f(x)→ 0. Then for sufficiently large n we have x

1+α
α f(x) ≤ ε for

all x ≥ nαV . It follows that

n(1− F (nαV )) = n

∫ ∞
nαV

f(x)dx ≤ εn

∫ ∞
nαV

x−
1+α
α dx = εαV −

1
α .

Since ε was arbitrary, this proves n(1− F (nαV ))→ 0. Fix κ > 0 and assume

x
1+α
α f(x) → ∞. Then for sufficiently large n, we have x

1+α
α f(x) ≥ κ for all

x ≥ nαV . Arguing similarly to before, we have n(1 − F (nαV )) ≥ καV −
1
α .

n(1 − F (nαV )) → ∞ and the first step of the proof is complete. For the

second step, write

F (nαV )n =

(
1 +

n(F (nαV )− 1)

n

)n
(11)
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Assume n(1 − F (nαV )) → 0 and fix ε > 0. Then for sufficiently large n we

have n(F (nαV )− 1) ≥ −ε. Thus by (11)

F (nαV )n ≥
(

1− ε

n

)n
→ exp(−ε)

Since we also have F (nαV )n ≤ 1 this implies F (nαV )n → 1. Now, assume

n(1 − F (nαV )) → ∞ and fix κ > 0. For sufficiently large n, we have

n(F (nαV )− 1) ≤ −κ. This yields

F (nαV )n ≤
(

1− κ

n

)n
→ exp(−κ).

Since we can choose κ arbitrarily large and since we also have F (nαV )n ≥ 0,

it follows that F (nαV )n → 0 and the proof is complete.

Proof of Proposition 4. We first prove a criterion on F which ensures that

the result holds. Then we prove that exponential distributions and power

distributions satisfy this criterion. The criterion runs as follows: Let F :

[0,∞) → [0,∞) be twice continuously differentiable with f(x) > 0 for x ≥ 0

and F (xV )x → 1 for x→∞. Furthermore, let there be exactly one x0 ∈ (0,∞)

such that

2 = x0V

(
F ′(x0V )

F (x0V )
− F ′′(x0V )

F ′(x0V )

)
(12)

Then F (xV )x has exactly one minimum on (0,∞). In particular, for suffi-

ciently small V and α = 1, the sequence Pn,n decreases up to some n0 > 1 and

increases from n0 + 1 on. We first prove the criterion. We begin by showing

that

lim
x→0

F (xV )x = 1 (13)

As F (x) is differentiable in 0 with F ′(0) > 0, there exists a γ > 0 such that

for all x small enough,

F (xV ) ≥ xγ (14)

That means, for all x small enough,

1 ≥ F (xV )x ≥ (γx)x (15)

For x→ 0, x > 0 the right term tends to 1 as xx → 1.
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Now let us turn to the central part of the proof:

(F (xV )x)′ = (ex logF (xV ))′ = ex logF (xV )

(
logF (xV ) + x

V F ′(xV )

F (xV )

)
(16)

We now show that there exists exactly one x0 ∈ (0,∞) such that this terms

vanishes. Note that the whole term vanishes exactly when logF (xV )+xV F
′(xV )

F (xV )

vanishes.

We first show that the derivative of logF (xV ) + xV F
′(xV )

F (xV )
is 0 exactly once in

(0,∞).

(
logF (xV ) + x

V F ′(xV )

F (xV )

)′
=
V F ′(xV )

F (xV )
+
V F ′(xV )

F (xV )
+x

V 2F ′′(xV )

F (xV )
−xV

2F ′(xV )2

F (xV )2

(17)

which is 0 exactly when

2 = xV

(
F ′(xV )

F (xV )
− F ′′(xV )

F ′(xV )

)
(18)

We have assumed that this term is 0 exactly once.

The mean value theorem tells us now that the term g(x) := logF (xV ) +

xV F
′(xV )

F (xV )
vanishes at most two times. We will now show that g(x) vanishes

exactly once.

As F (xV )x → 1 for x→ 0 and F (xV )x → 1 for x→∞ and by equation (16),

g(x) is < 0 for small x and > 0 for large x. Let us assume that g(x) has two

different roots x0 and x1, wlog x0 < x1. As we have shown above these are the

only roots of this function. Thus, g(t) < 0 for t < x0 and g(t) > 0 for t > x1.

As we assume that the derivative of g has exactly one root the mean value

theorem tells us that this has to happen for a t0 ∈ (x0, x1). If g(t0) = 0, we

have a contradiction as the derivative of g vanishes at least two times (mean

value theorem). This implies g(t0) 6= 0. Assume wlog that g(t0) > 0. We have

t0 < x1, g(t0) > g(x1) and g(t) > g(x1) for t > x1, therefore the function g

attains a local minimum in (t0, x1]. Therefore, the derivative of g vanishes at
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least two times. Contradiction.

Therefore we proved that there exists at most one x0 ∈ (0,∞) such that

g(x0) = 0. As g(x) is continuous, negative near 0 and positive for high x,

there exists exactly one x0 with this property. Therefore, F (xV )x has exactly

on minimum in [0,∞). This shows, that our criterion is valid.

We now turn to the exponential distribution F (x) = 1− e−cx for a c > 0. By

Proposition 3, F (nV )n → 1 for n→∞, n ∈ N. We have

1 ≥ F (xV )x ≥
(
F ([x]V )[x]

)x/[x]
(19)

and hence also F (xV )x → 1 for x→∞, x ∈ R.

Hence we only have to show that the equation (12) has exactly one solution:

2 = xV

(
ce−cxV

1− e−cxV
+ c

)
= xcV

(
1

1− e−cxV

)
(20)

Wlog let us assume c = V = 1. As the derivative of e−x at 0 is −1, for x→ 0

the right hand side of the equation converges to 1:

lim
x→0

e−x − 1

x
= −1 (21)

As the right hand side diverges to ∞ for x → ∞ it suffices to show that the

right hand side is increasing in x: We have(
x

1− e−x

)′
=

(1− e−x)− xe−x

(1− e−x)2
(22)

and, as ex > 1 + x for x > 0, 1 − e−x − xe−x > 0. This proves the result for

the exponential distribution.

We next turn to F (x) = 1 − ( b
x+b

)γ for b > 0, γ > 1. By Proposition 3 and

(19), F (xV )x → 1 for x→∞. Hence we only have to show that equation (12)

has exactly one solution:

2 = V x

(
γ bγ

(V x+b)γ+1

1− bγ

(V x+b)γ

+
(γ + 1)

V x+ b

)
=

V x

V x+ b

(
γ

bγ

(V x+b)γ

1− bγ

(V x+b)γ

+ (γ + 1)

)
(23)
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Wlog let us assume V = 1. The right hand side of the equation converges to

γ + 1 > 2 as x → ∞. For x → 0 one can prove analogously to equation (20)

that the right hand side converges to 1; note that the derivative of 1− bγ

(x+b)γ

is γ bγ

(x+b)γ+1 . We show now that the right hand side is strictly increasing in x:

r.h.s. =
x

x+ b
γ

(
1

1− bγ

(x+b)γ

+
1

γ

)
(24)

It obviously suffices to show that

x+ b

x
(1− bγ

(x+ b)γ
) (25)

is weakly decreasing in x.

x+ b

x

(
1− bγ

(x+ b)γ

)
=
x+ b

x

(
1− b

x+ b
+

b

x+ b
− bγ

(x+ b)γ

)
(26)

= 1 +
x+ b

x

(
b

x+ b
− bγ

(x+ b)γ

)
= 1 +

b

x

(
1− bγ−1

(x+ b)γ−1

)
(27)

Now note that γ > 1 implies that x 7→ 1 − bγ−1

(x+b)γ−1 is a concave function on

[0,∞). We now use the following fact: Let g be a concave function on R,

x > x0. Then

g(x)− g(x0)

x− x0

(28)

is weakly decreasing in x.

This fact for x0 = 0 shows that (27) is weakly decreasing in x. We have shown

that the right hand side of (23) converges to 1 for x→ 0, is strictly increasing

and converges to a γ + 1 > 2 for x→∞. Therefore this equation has exactly

one solution in (0,∞).

Proof of Lemma 2. Since we have θk,n > 0 and s(y) = y, we can rewrite the
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sum on the right hand side of (8) as follows:

n−1∑
j=k−1

b(n− 1, j, F (θk,n))
1

1 + j

=
n−1∑
j=k−1

(
n− 1

j

)
F (θk,n)j(1− F (θk,n))n−j−1 1

1 + j

=
1

n

n−1∑
j=k−1

(
n

j + 1

)
F (θk,n)j(1− F (θk,n))n−j−1

=
1

n

n∑
l=k

(
n

l

)
F (θk,n)l−1(1− F (θk,n))n−l

=
1

nF (θk,n)

n∑
l=k

b(n, l, F (θk,n))

Inserting b(n− 1, k− 1, F (θk,n)) = k
nF (θk,n)

b(n, k, F (θk,n)) on the left hand side

of (8) and multiplying by nF (θk,n) we obtain

k b(n, k, F (θk,n))V = θk,n

n∑
j=k

b(n, j, F (θk,n)) (29)

which is (5).

Proof of Proposition 5. The equilibrium condition (5) can be written as

kV

θk,n
=

∑n
j=k b(n, j, F (θk,n))

b(n, k, F (θk,n))
. (30)

To see the result, we insert θk+1,n into the left hand and right hand sides of

(30) for k:

kV

θk+1,n

<
(k + 1)V

θk+1,n

=

∑n
j=k+1 b(n, j, F (θk+1,n))

b(n, k + 1, F (θk+1,n))

≤
∑n

j=k b(n, j, F (θk+1,n))

b(n, k, F (θk+1,n))
. (31)

The final inequality relies on the fact that the expression at hand is the recip-

rocal of the failure rate of the Binomial distribution which is increasing in k,
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see Johnson, Kotz and Kemp (1992), Chapter 3. The left hand side and right

hand side of (9) cross only once in θ for fixed k with the left hand side being

larger to the left of the intersection. We thus conclude from (31) that θk+1,n

lies to the right of the intersection, θk+1,n > θk,n.

Proof of Proposition 6. 14 Part (ii) of the proposition follows from the obser-

vations that Pn−1,n ∈ (0, 1) while Pn,n = 1 for sufficiently large n if the support

of F is finite. It remains to prove (i). By the definitions of θ1,n and θ2,n, we

know that

P1,n = V n
F (θ1,n)

θ1,n

(1− F (θ1,n))n−1 = 1− (1− F (θ1,n))n (32)

and

P2,n = 1− (1− F (θ2,n))n − nF (θ2,n)(1− F (θ2,n))n−1

= V n(n− 1)
F (θ2,n)2

θ2,n

(1− F (θ2,n))n−2. (33)

Let an = (1 − F (θ1,n))n−1 and bn = (1 − F (θ2,n))n−2. Then, by inserting this

into the equations above:

an =
1

V nF (θ1,n)

θ1,n
+ (1− F (θ1,n))

(34)

and

bn =
1

V n(n− 1)F (θ2,n)2

θ2,n
+ (1− F (θ2,n))2 + nF (θ2,n)(1− F (θ2,n))

. (35)

It follows that

P2,n = V n(n− 1)
F (θ2,n)2

θ2,n

(1− F (θ2,n))n−2 = V n(n− 1)
F (θ2,n)2

θ2,n

bn (36)

=
1

1 + (1−F (θ2,n))2θ2,n
V n(n−1)F (θ2,n)2

+ (1−F (θ2,n))θ2,n
V (n−1)F (θ2,n)

(37)

14While we present the results in an order guided by economic considerations, the logical
contingencies are slightly different: The proof of Proposition 6 depends on the results of
Section 4.2 in addition to the results stated earlier.
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and

P1,n = V n
F (θ1,n)

θ1,n

an =
1

1 + θ1,n
F (θ1,n)

1−F (θ1,n)

V n

. (38)

Therefore, P1,n > P2,n iff

θ1,n

F (θ1,n)

1− F (θ1,n)

V n
<

(1− F (θ2,n))2θ2,n

V n(n− 1)F (θ2,n)2
+

(1− F (θ2,n))θ2,n

V (n− 1)F (θ2,n)
(39)

i.e., iff

θ1,n

F (θ1,n)
(1− F (θ1,n)) <

θ2,n

F (θ2,n)

(
(1− F (θ2,n))2

(n− 1)F (θ2,n)
+
n(1− F (θ2,n))

(n− 1)

)
. (40)

Note that for any concave function F and x < y < z,

F (z)− F (x)

z − x
≤ F (y)− F (x)

y − x
(41)

By our assumptions and by Propositions 5 and 7, we know that θ2,n → 0,

F (0) = 0, θ1,n < θ2,n and that F is indeed concave (weakly decreasing density)

near 0. Hence, for sufficiently large n we have

F (θ2,n)

θ2,n

=
F (θ2,n)− F (0)

θ2,n − 0
≤ F (θ1,n)− F (0)

θ1,n − 0
=
F (θ1,n)

θ1,n

. (42)

Thus, it suffices to show that for large n:

1− F (θ1,n) <
(1− F (θ2,n))2

(n− 1)F (θ2,n)
+
n(1− F (θ2,n))

(n− 1)
. (43)

As preliminary observations, note that P1,n = V nF (θ1,n)

θ1,n
(1 − F (θ1,n))n−1 → 1

by Proposition 8, and that

F (θ1,n)

θ1,n

=
F (θ1,n)− F (0)

θ1,n − 0
→ f(0) > 0 (44)

for n→∞ as θ1,n → 0. Thus, both F (θ1,n)

θ1,n
and n(1− F (θ1,n))n−1 are bounded

from above and from below by strictly positive numbers.

In inequality (43), we now take both sides to the power of n− 1 and multiply

them by n. We have just seen that the left hand term is bounded. Thus, if we
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show that

n

(
(1− F (θ2,n))2

(n− 1)F (θ2,n)
+
n(1− F (θ2,n))

(n− 1)

)n−1

→∞ (45)

the proof is complete. We have the lower bound

n

(
(1− F (θ2,n))2

(n− 1)F (θ2,n)
+
n(1− F (θ2,n))

(n− 1)

)n−1

= n(1−F (θ2,n))n−1

(
1 +

1

F (θ2,n)(n− 1)

)n−1

≥ n

F (θ2,n)
(1−F (θ2,n))n−1. (46)

In the last inequality we have used that by binomial expansion,(
1 +

1

F (θ2,n)(n− 1)

)n−1

> (n− 1)
1

(n− 1)F (θ2,n)
=

1

F (θ2,n)
.

As P2,n → 1 and θ2,n → 0, we deduce from (33) that

(1− F (θ2,n))n−1 ∼ (1− F (θ2,n))n−2 ∼ θ2,n

V n(n− 1)F (θ2,n)2
. (47)

Arguing as in (44), we see that θ2,n
F (θ2,n)

is bounded from below by a strictly

positive number. Combining (46) and (47), it thus remains to show that

(n− 1)F (θ2,n)2 → 0. (48)

To this end, let nj be a subsequence such that (nj − 1)F (θ2,nj)
2 ≥ κ > 0 for a

κ > 0. Then, as F (θ2,n)

θ2,n
≤ C for a C > 0 and F (θ2,nj) ≤ 1,

P2,nj = V nj(nj−1)
F (θ2,nj)

2

θ2,nj

(1−F (θ2,nj))
nj−2 ≤ CV nj(nj−1)

(
1−

√
κ√

nj − 1

)nj−2

.

(49)

As κ > 0, this term converges to 0, which is a contradiction to P2,nj → 1. To

see this convergence to 0, write

(
1−

√
κ√

nj − 1

)nj−2

=

(1−
√
κ√

nj − 1

)√nj−1


nj−2√
nj−1

.
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The inner term converges to exp(−
√
κ) < 1. Therefore, (n − 1)F (θ2,n)2 →

0.

Proof of Proposition 7. We first prove (i). Suppose (i) is violated, i.e., suppose

there exists a subsequence nj of N and ε > 0 such that θk,nj ≥ ε > 0 for all

j ∈ N. Note that the sum

n∑
i=k

(
n

i

)
pi(1− p)n−i (50)

is monotonically increasing in p for p ∈ [0, 1]. Thus,

nj∑
i=k

(
nj
i

)
F (θk,nj)

i(1− F (θk,nj))
nj−i ≥

nj∑
i=k

(
nj
i

)
F (ε)i(1− F (ε))nj−i

= 1−
k−1∑
i=0

(
nj
i

)
F (ε)i(1− F (ε))nj−i. (51)

Since ε > 0 implies F (ε) > 0, the right hand side converges to 1:
(
nj
i

)
grows

polynomially in nj and (1− F (ε))nj−i decays exponentially in nj.

Now we rewrite the equilibrium condition∑nj
i=k

(
nj
i

)
F (θk,nj)

i(1− F (θk,nj))
nj−i(

nj
k

)
F (θk,nj)

k(1− F (θk,nj))
nj−k

=
kV

θk,nj
(52)

to

nj∑
i=k

(
nj
i

)
F (θk,nj)

i(1− F (θk,nj))
nj−i =

kV

θk,nj

(
nj
k

)
F (θk,nj)

k(1− F (θk,nj))
nj−k

(53)

≤ kV

ε

(
nj
k

)
(1− F (ε)))nj−k. (54)

As F (ε) > 0, and as
(
nj
i

)
grows polynomially in nj and (1 − F (ε))nj−i decays

exponentially in nj, this term converges to 0. This is a contradiction, as we

proved in (51) that the left hand side of (53) converges to 1.

Now we turn to (ii) which we prove by contradiction as well: Let nj be a

subsequence such that njF (θk,nj) is bounded from above by κ > 0. Observe
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that

kV

θk,nj

(
nj
k

)
F (θk,nj)

k(1−F (θk,nj))
nj−k =

nj∑
i=k

(
nj
i

)
F (θk,nj)

i
(
1− F (θk,nj)

)nj−i ≤ 1

(55)

Thus, we can conclude that the right hand side of the following inequality is

bounded in j:

1

θk,nj

(
nj
k

)
F (θk,nj)

k(1− F (θk,nj))
nj−k ≥

(
nj
k

)
1

θk,nj
F (θk,nj)

k

(
1− κ

nj

)nj−k
(56)

As (1− κ
nj

)nj−k converges to exp(−κ), it follows from the above inequality that(
nj
k

)
1

θk,nj
F (θk,nj)

k is bounded. Since we have

lim
j→∞

(
nj
k

)
1

nkj
= lim

j→∞

1

k!

k−1∏
i=0

nj − i
nj

=
1

k!
, (57)

we know that nkj
1

θk,nj
F (θk,nj)

k is bounded. As θk,nj → 0, it follows that

F (θk,nj)nj → 0. It remains to show that this leads to a contradiction: We

use the following identity (see, e.g., Chapter 1 of Johnson, Kotz and Kemp

(1992)), which holds for all 1 ≤ k ≤ n, p ∈ [0, 1]:

k−1∑
i=0

pi(1− p)n−i =
n!

(n− k)!(k − 1)!

∫ 1−p

0

un−k(1− u)k−1du. (58)

From this we deduce (for p = 0, both sides are equal to 1) that

n∑
i=k

pi(1− p)n−i =
n!

(n− k)!(k − 1)!

∫ 1

1−p
un−k(1− u)k−1du. (59)

On the right hand side we substitute u 7→ 1− u:

n∑
i=k

pi(1− p)n−i =
n!

(n− k)!(k − 1)!

∫ p

0

(1− u)n−kuk−1du. (60)

We can plug this into (55) to obtain:
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V
1

θk,nj
F (θk,nj)

k(1− F (θk,nj))
nj−k =

∫ F (θk,nj )

0

pk−1(1− p)nj−kdp

=

∫ 1

0

F (θk,nj)
kpk−1(1− pF (θk,nj))

nj−kdp (61)

where in the last equality we substituted p 7→ F (θk,nj)p. For any p ∈ [0, 1],

1 ≥ (1− pF (θk,nj))
nj−k ≥

(
1−

F (θk,nj)nj

nj

)nj−k
→ exp(−0) = 1 (62)

as F (θk,nj)nj → 0. Thus, (1− pF (θk,nj))
nj−k converges uniformly in p ∈ [0, 1]

to e−0 = 1 for j →∞.

This implies that

lim
j→∞

∫ 1

0

pk−1(1− pF (θk,nj))
nj−kdp =

1

k
(63)

and

lim
j→∞

(1− F (θk,nj))
nj−k = 1. (64)

If we now look at (61), the left hand side is ∼ V 1
θk,nj

F (θk,nj)
k by (64), while

by (63) the last term in the equation ∼ 1
k
F (θk,nj)

k for j → ∞. As θk,nj → 0

for j →∞, this is a contradiction.

Proof of Proposition 8. Fix k and V . Let κ > 0 be arbitrary. By Proposition

7, nF (θk,n)→∞. Thus, for n sufficiently large, nF (θk,n) ≥ κ. Since

n∑
i=k

(
n

i

)
pi(1− p)n−i (65)

is increasing in p for p ∈ [0, 1], we have for sufficiently large n,

Pk,n =
n∑
i=k

(
n

i

)
F (θk,n)i(1− F (θk,n))n−i ≥

n∑
i=k

(
n

i

)(κ
n

)i (
1− κ

n

)n−i
(66)
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= 1−
k−1∑
i=0

(
n

i

)(κ
n

)i (
1− κ

n

)n−i
(67)

Arguing as in (57), we also know that for fixed i,

lim
n→∞

(
n

i

)
1

ni
=

1

i!
(68)

Thus, for n→∞, (67) converges to

1−
k−1∑
i=0

κi

i!
e−κ

which converges to 1 as κ→∞.

Proof of Proposition 9. For s(y) ≡ 1 and k = 1 the equilibrium condition (3)

reduces to

ρ1,n = V (1− F (ρ1,n))n−1.

A unique solution ρ1,n exists due to Proposition 1. That ρ1,n decreases in n

follows from the fact that (1−F (ρ))n−1 is decreasing in n and weakly decreasing

in ρ. To see that ρ1,n → 0, suppose otherwise, i.e., there exists κ > 0 and a

subsequence nj such that ρ1,nj ≥ κ for all j. Then

ρ1,nj = V (1− F (ρ1,nj))
nj−1 ≤ V (1− F (κ))nj−1

and the fact that the right hand side converges to 0 in j gives a contradiction.

Moreover, we have

Q1,n = 1− (1− F (ρ1,n))n = 1− (1− F (ρ1,n))
ρ1,n

V
→ 1.

Proof of Proposition 10. For s(y) ≡ 1 and k > 1 the equilibrium condition (3)

becomes

V b(n− 1, k − 1, F (ρk,n)) = ρk,n

n−1∑
j=k−1

b(n− 1, j, F (ρk,n)),
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Substituting n̄ = n− 1, k̄ = k − 1 and V̄ = V/k̄, this becomes

k̄V̄ b(n̄, k̄, F (ρk,n)) = ρk,n

n̄∑
j=k̄

b(n̄, j, F (ρk,n)).

Since this condition is identical to condition (5) satisfied by θk̄,n̄(V̄ ), the result

follows.

Proof of Proposition 11. Define V̄ = V/(k − 1). We know from Proposition

7 that θk−1,n−1(V̄ ) → 0 and (n − 1)F (θk−1,n−1(V̄ )) → ∞. This immediately

yields ρk,n(V ) = θk−1,n−1(V̄ )→ 0 and nF (ρk,n(V )) ≥ (n−1)F (θk−1,n−1(V̄ ))→
∞. This proves (i) and (ii). In general, we have Qk,n(V ) 6= Pk−1,n−1(V̄ ) and

thus the behavior of Q cannot simply be concluded from that of P . However,

arguing exactly as in the proof of Proposition 8 we can conclude (iii) from (i)

and (ii).
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