
Branger, Nicole; Kraft, Holger; Meinerding, Christoph

Working Paper

What is the impact of stock market contagion on an
investor's portfolio choice?

Working Paper Series: Finance & Accounting, No. 198

Provided in Cooperation with:
Faculty of Economics and Business Administration, Goethe University Frankfurt

Suggested Citation: Branger, Nicole; Kraft, Holger; Meinerding, Christoph (2009) : What is the
impact of stock market contagion on an investor's portfolio choice?, Working Paper Series:
Finance & Accounting, No. 198, Johann Wolfgang Goethe-Universität Frankfurt am Main,
Fachbereich Wirtschaftswissenschaften, Frankfurt a. M.,
https://nbn-resolving.de/urn:nbn:de:hebis:30-62787

This Version is available at:
https://hdl.handle.net/10419/76793

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:hebis:30-62787%0A
https://hdl.handle.net/10419/76793
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 JOHANN WOLFGANG GOETHE-UNIVERSITÄT 
FRANKFURT AM MAIN 

 
FACHBEREICH WIRTSCHAFTSWISSENSCHAFTEN

 

  
 

WORKING PAPER SERIES: FINANCE & ACCOUNTING

 
Nicole Branger / Holger Kraft / Christoph Meinerding 

 
What is the Impact of Stock Market Contagion 

on an Investor's Portfolio Choice? 
 
 

No. 198 
February 2009



 
 

 
 
 
 

 
NICOLE BRANGER

*
 / HOLGER KRAFT

†
 / CHRISTOPH MEINERDING

‡ 

 

 

 

WHAT IS THE IMPACT OF STOCK MARKET CONTAGION 

ON AN INVESTOR'S PORTFOLIO CHOICE? 

 

 
 
 
 
 

No. 198 
February 2009 

 
 
 
 
 

ISSN 1434-3401 
 
 

 

                                                 
* Finance Center Münster, Westfälische Wilhelms-Universität Münster, Universitätsstr. 14-16, D-48143 
Münster, Germany. Email: Nicole.Branger@wiwi.uni-muenster.de. 
† Department of Finance, Goethe-University, D-60054 Frankfurt am Main, Germany, E-mail: 
holgerkraft@finance.uni-frankfurt.de 
‡ Finance Center Münster, Westfälische Wilhelms-Universität Münster, Universitätsstr. 14-16, D-48143 
Münster, Germany. Email: Christoph.Meinerding@wiwi.uni-muenster.de. 
 
The working papers in the series Finance and Accounting are intended to make research findings available to other 
researchers in preliminary form, to encourage discussion and suggestions for revision before final publication. Opinions are 
solely those of the authors 
 
 



 
 
 
 

 

Abstract 

 

Stocks are exposed to the risk of sudden downward jumps. Additionally, a crash in one 
stock (or index) can increase the risk of crashes in other stocks (or indices). Our paper 
explicitly takes this contagion risk into account and studies its impact on the portfolio 
decision of a CRRA investor both in complete and in incomplete market settings. We find 
that the investor significantly adjusts his portfolio when contagion is more likely to occur. 
Capturing the time dimension of contagion, i.e. the time span between jumps in two stocks 
or stock indices, is thus of first-order importance when analyzing portfolio decisions. 
Investors ignoring contagion completely or accounting for contagion while ignoring its 
time dimension suffer large and economically significant utility losses. These losses are 
larger in complete than in incomplete markets, and the investor might be better off  if he 
does not trade derivatives. Furthermore, we emphasize that the risk of contagion has a 
crucial impact on investors' security demands, since it reduces their ability to diversify their 
portfolios. 
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1 Introduction and Motivation

The notion of contagion in financial markets refers to a phenomenon where losses in one

asset, one asset class, or one country increase the risk of subsequent losses in other assets,

other asset classes, or other countries. Contagion may arise due to firm-specific relations,

e.g. dependency on a main customer, due to the exposure to common macroeconomic risk

factors, e.g. interest rates, or due to psychological reasons, e.g. bank runs.1 One example

for an event inducing contagion is the recent subprime crisis that has been threatening

the financial markets all over the world: When real estate prices in the US started to

decrease, homeowners who had borrowed heavily against the equity in their homes were

suddenly realizing that they could no longer afford to keep up their mortgage payments.

An estimate from December 2007 states that “subprime borrowers will probably default

on 220 billion – 450 billion of mortgages”.2 Initially, this threat has had a significant

effect on the markets for structured credit contracts like Collateralized Debt Obligations

(CDOs) leading to huge losses that the banks have started to report. All along the way,

the fear has extended into equity markets:

“Fears about an end to the leveraged buy-out boom triggered heavy selling of

global equities yesterday, leading to the FTSE 100’s worst one-day slide for

more than four years. [. . . ] The FTSE 100 fell more than 200 points, or 3.2%,

to 6.251,2; its biggest drop since March 2003 in the run-up to the Iraq war.

[. . . ] By early afternoon in New York, the Dow Jones Industrial Average was

down more than 300 points, or 2.4%.” (FT, July 27, 2007)

“’In this sort of climate it is all about sentiment, not about the numbers at

all, and sentiment at present is all about fear and nervousness,’ said Kevin

Gardiner, head of global equity strategy at HSBC.” (WSJ, July 27, 2007)

or as catchily summarized:

“The grievous experience of two centuries of financial busts is that when the

banking system is in difficulties the mess spreads.” (Economist, Dec 19, 2007)

These examples show how losses in one part of the economy or in one country can spread

out into other parts of the economy or other countries.

1The relevance of contagion is empirically documented in Bae, Karolyi, and Stulz (2003) and Boyson,
Stahel, and Stulz (2007).

2See Economist, Dec 19 2007.
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Our paper analyzes the optimal portfolio choice of a CRRA investor in a stock market

exposed to contagion risk. The stock prices in our economy follow jump-diffusion processes.

Large losses in the stocks are captured by downward jumps. Additionally, we take the

above-described empirical fact into account that large losses in one asset can increase

the risk of subsequent large losses in the same or other assets. Therefore, in contrast

to papers that model contagion by an increase in the correlation between the diffusion

components, we concentrate on the dependence between these large downward jumps. To

capture this dependence, we build in a Markov chain with two states, a calm state and a

contagion state. In the calm state, the probability of downward jumps is rather low, while

it increases when the economy enters the contagion state. Downward jumps in the calm

state can (but need not) trigger a jump of the economy into the contagion state. On the

other hand, a jump back into the calm state occurs without a jump in stock prices.

Our approach allows us to capture two stylized facts at the same time: Firstly, conta-

gion is not a “one time event” in the sense that it occurs, leads to immediate losses in

several stocks, but has no longer-lasting impact. Usually, the probability for subsequent

crashes remains higher for some time. This time dimension of contagion implies that an

investor can adjust his portfolio when the threat of contagion becomes apparent. Sec-

ondly, contagion is usually triggered by an initial crash in a particular market, i.e. the

jump into the contagion state occurs when some asset prices drop. Put differently, our

approach allows to correlate the jump processes of two stocks where correlation is induced

by jumps themselves. This is not possible if stock dynamics depend on ordinary Poisson

or Cox processes. Note that Cox processes are correlated, but the correlation results from

diffusion processes that drive the corresponding intensities. Therefore, the probabilities

for jumps change only gradually over time. This is in contrast to our approach where the

probabilities for jumps in stock prices can jump themselves.

Our paper is related to the literature on continuous-time portfolio choice starting with

Merton (1969, 1971). There are two approaches to deal with contagion effects in portfolio

problems. One strand of the literature models contagion as joint Poisson jumps. Papers in

this area include Das and Uppal (2004) and Kraft and Steffensen (2008), among others.

Their approaches however disregard the time dimension of contagion. In particular, the

probability of subsequent crashes remains the same after a joint jump has happened.

This is because Poisson processes are memoryless (Markov property). Therefore, in this

framework, one cannot study the investors’ reactions on the advent of contagion. The

second strand of the literature are so-called regime-switching models. Papers in this area

include Ang and Bekaert (2002) and Guidolin and Timmermann (2007, 2008), among

others. Although these models capture the time dimension of contagion, regime shifts are
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triggered by an exogenous process and do not occur as the result of crashes in certain

assets.

Our paper generalizes Kraft and Steffensen (2009) to stock markets and addresses the

following points:3 Firstly, we solve for the optimal stock demands in the calm and in the

contagion state both in a complete and in an incomplete market. We show that there is a

hedging demand for those jumps that trigger the economy to switch the state. The sign

of this hedging demand depends on the investment opportunities in both states and on

the risk aversion of the investor relative to the log investor. Furthermore, we compare the

optimal portfolios in the calm and in the contagion state. It turns out that the investor

revises his portfolio significantly when the economy changes its state. The sizes of these

portfolio revisions depend on the differences between the calm and the contagion state,

while their signs depend on the market prices of risk.

Secondly, we analyze the utility loss an investor suffers from if he ignores contagion or if he

ignores the time dimension of contagion. We show that the utility loss due to model mis-

specification can be significant. This is particularly true when the market is completed by

derivatives. In this case, an investor with a rather low risk aversion of 1.5 might annually

lose more than 20% when he makes his decision based on an incorrect model. If the

calm and contagion state differ significantly, then the utility loss is largest if the investor

ignores contagion completely. For smaller differences, the utility losses are the largest if

he only ignores the time dimension of contagion. Applying the latter model also results in

the largest losses if the market is incomplete. These losses are however smaller than in a

complete market, where the investor does not only suffer from basing his portfolio decision

on an incorrect model, but also from implementing his (seemingly) optimal strategy using

an incorrect pricing model for the derivatives. The utility loss from this second mistake can

become so large that it more than offsets the utility gain from having access to derivatives.

Therefore, the investor might be better off if he does not trade derivatives at all.

The remainder of the paper is structured as follows. In Section 2, we present the model and

the portfolio planning problem. The optimal portfolios both in complete and incomplete

markets are derived in Section 3. In Section 4, we analyze two benchmark models where

the investor either completely ignores contagion or just its time dimension. Section 5

provides some numerical examples, discusses the impact of model mis-specification, and

provides some robustness checks. Section 6 concludes. All proofs can be found in the

Appendix.

3From a theoretical point of view, our paper extensively looks at incomplete markets. From an eco-
nomical point of view, we analyze the economic value of derivatives. Both aspects are not considered by
Kraft and Steffensen (2009).
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2 Model Setup

2.1 The Economy

We consider an economy where uncertainty is described by the complete filtered proba-

bility space (Ω,P ,F , {Ft}t∈[0,T ∗]) and F = FT ∗ . To rule out arbitrage, we assume that an

equivalent martingale measure Q exists under which discounted asset prices are (local)

martingales.4 Our economy is characterized by eight states that will be specified below.

Let Z(t) denote the state at time t ∈ [0, T ∗] and let Z be a right-continuous process with

left limits (RCLL). Then the associated 8-dimensional counting process N = (Nk)k is an

RCLL process, where Nk counts the number of transitions into state k, i.e.

Nk(t) = #{s|s ∈ (0, t], Z(s−) 6= k, Z(s) = k}.

Investors can borrow and lend using a money market account with dynamics

dM(t) = M(t)rdt, M(0) = 1,

where, for simplicity, the interest rate r is assumed to be constant.5 Besides, there are

two stocks A and B with jump-diffusion dynamics (i ∈ {A,B})

dSi(t)

Si(t)
= µ

Z(t)
i dt+ σ

Z(t)
i dWi(t)−

∑
k 6=Z(t)

L
Z(t),k
i dNk(t),

where WA and WB denote correlated Brownian motions. Their correlation is given by ρZ ,

i.e. we allow for a state dependent correlation of diffusive risk. The Brownian motions

capture normal stock price movements. Additionally, there can be sudden large losses

upon transition from one state into another state of economy. For instance, Lj,ki denotes

the loss of stock i if the economy jumps from state j into state k. It is assumed that for

fixed i, j, and k the loss sizes are constant, but this assumption can be relaxed.6

We interpret the states of the economy as calm and contagion states. In our model,

these states mainly differ with respect to the jump intensities. While the jump intensi-

ties are low in a calm state, they increase when the economy enters a contagion state.

Formally, contagion is modeled using a Markov chain that jumps from state j into state

4See Harrison and Kreps (1979) and Delbaen and Schachermayer (1994) for the essential equivalence
of the existence of such a measure and the absence of arbitrage.

5Our analysis can easily be generalized to stochastic interest rates along the lines of Korn and Kraft
(2001) and Munk and Soerensen (2004), among others.

6Note that in our notation Lj,k
i > 0 corresponds to a loss.
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k with intensity λj,k, j 6= k. As mentioned above, we use a Markov chain with eight

states {contA1, contA2, contB1, contB2, calmA1, calmA2, calmB1, calmB2} that is illustrated

in Figure 1. The first subscript of the state indicates the stock that has exhibited the most

recent downward jump. The second subscript comes from the fact that we also wish to

model stock price jumps not leading to regime shifts. For instance, if stock A jumps with-

out leaving the calm state, then the Markov chain jumps from state calmA1 to calmsA2,

or vice versa.

The intensity of a jump in stock i that does not trigger contagion is λcalm,calmi , and the

corresponding loss in stock i is Lcalm,calmi (the loss in the other stock is zero). The intensity

of a jump in stock i that does trigger contagion is λcalm,conti and the loss of stock i for

such a jump is Lcalm,conti . If the economy is in a contagion state, the intensity for a loss in

stock i is λcont,conti , and the corresponding loss size is Lcont,conti . After spending some time

in the contagion state, the economy will eventually jump back into the calm state. The

intensity for this to happen is λcont,calm, and it is assumed that this event does not induce

any losses in stocks, i.e. Lcont,calmi ≡ 0, i ∈ {A,B}. The intensities for all other jumps are

equal to zero.

To summarize, the Markov chain has four contagion states and four calm states. We

assume that the model parameters coincide in all calm states and in all contagion states.

This implies that all calm states and all contagion states are identical in the sense that

optimal portfolios and indirect utilities are the same. As explained above, the use of four

contagion and four calm states is for technical reasons only.

Finally, we specify the drift and the risk premia of the stocks. The drift of stock i is equal

to

µ
Z(t)
i = r + φ

Z(t)
i +

∑
k 6=Z(t)

L
Z(t),k
i λZ(t),k

where the last term is the compensator of the jump processes. The risk premium of the

stock is thus given by

φ
Z(t)
i = σ

Z(t)
i η

Z(t)
i +

∑
k 6=Z(t)

L
Z(t),k
i λZ(t),kηZ(t),k

where ηji is the premium for diffusive risk Wi when the economy is in state j, and ηj,k is

the premium for jumps from j into k. The intensity for a jump from j into k under the

risk neutral measure is thus (1 + ηj,k) times the intensity under the physical measure.

With our definition of the Markov chain, the risk premium only depends on whether the

economy is in one of the calm or in one of the contagion states. Consequently, the risk
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premia of stock i can be rewritten as

φcalmi = σcalmi ηcalmi + Lcalm,calmi λcalm,calmi ηcalm,calmi + Lcalm,conti λcalm,conti ηcalm,conti

φconti = σconti ηconti + Lcont,conti λcont,conti ηcont,conti .

Apart from stocks and the money market account, the investor might also have access to

derivatives. We assume that there are either no derivatives at all, or enough derivatives to

complete the market. The exposure of the derivatives to the risk factors can be calculated

using Ito’s lemma.

2.2 The Investor

We consider an investor with CRRA-utility u(c) = c1−γ

1−γ , where γ > 0 denotes his relative

risk aversion. The investor’s planning horizon is denoted by T < T ∗, and it is assumed

that he maximizes expected utility from terminal wealth XT only. Therefore, his time-t

indirect utility in state j is defined as

Gj(t,Xt) = max
π∈Aj(t,Xt)

{E [u(XT )|Z(t) = j]} ,

where Aj(t,Xt) denotes the set of all trading strategies π for a current wealth level of Xt

that are admissible at time t in state j.

3 Asset Allocation

3.1 Complete Market

In a complete market, the investor can separate his decision upon the optimal exposures to

the risk factors from finding the strategy that implements these exposures. Generalizing

an idea of Liu and Pan (2003) to our Markov chain framework, the investor’s budget

restriction reads

dX(t)

X(t)
= rdt+ θ

Z(t)
A (t)

[
dWA(t) + η

Z(t)
A dt

]
+ θ

Z(t)
B (t)

[
dWB(t) + η

Z(t)
B dt

]
(1)

+
∑

k 6=Z(t),λZ(t),k 6=0

θZ(t),k(t)
[
dNk(t)− λZ(t),kdt− ηZ(t),kλZ(t),kdt

]
,

where θji denotes the investor’s state-j exposure to diffusive risk Wi and θj,k is his exposure

to a jump from state j into state k. In a calm state, we have to choose the four exposures
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to jumps in stock A and stock B that (do not) induce contagion, and we denote these

exposures by θcalm,conti (θcalm,calmi ). In the contagion state, we have to choose the three

exposures to jumps in stock A, jumps in stock B, and jumps back from the contagion

into the calm state. These exposures are denoted by θcont,conti and θcont,calm. The portfolio

planning problem of the investor is given by

Gj(t,Xt) = max
{θjA(s),θjB(s),θj,k(s),t≤s<T}

E [u(XT )|Z(t) = j]

subject to the budget restriction (1).

The following proposition shows how the optimal exposures to diffusion risk, θiA/B, and

to jump risk, θi,jA/B, are linked to the model parameters.

Proposition 3.1 (Contagion, Complete Market) In an economy with contagion, the

optimal exposures to the risk factors are

θjA =
ηjA − ρjη

j
B

γ(1− (ρj)2)
θjB =

ηjB − ρjη
j
A

γ(1− (ρj)2)

θcalm,calmA = (1 + ηcalm,calmA )−
1
γ − 1 θcalm,calmB = (1 + ηcalm,calmB )−

1
γ − 1

θcalm,contA = (1 + ηcalm,contA )−
1
γ
f cont

f calm
− 1 θcalm,contB = (1 + ηcalm,contB )−

1
γ
f cont

f calm
− 1

θcont,contA = (1 + ηcont,contA )−
1
γ − 1 θcont,contB = (1 + ηcont,contB )−

1
γ − 1

θcont,calm = (1 + ηcont,calm)−
1
γ
f calm

f cont
− 1.

The indirect utility function of the investor is

Gj(t, x) =
x1−γ

1− γ
(
f j(t)

)γ
(2)

where (
f calm(t)

f cont(t)

)
= exp

{(
Ccalm,calm Ccalm,cont

Ccont,calm Ccont,cont

)
(T − t)

}(
1

1

)
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with

Ccalm,calm =
1− γ
γ

[
r +

(ηcalmA )2 + (ηcalmB )2 − 2ρcalmηcalmA ηcalmB

2γ(1− (ρcalm)2)

+

(
1 + ηcalm,calmA − 1

1− γ

)
λcalm,calmA +

(
1 + ηcalm,calmB − 1

1− γ

)
λcalm,calmB

+

(
1 + ηcalm,contA − 1

1− γ

)
λcalm,contA +

(
1 + ηcalm,contB − 1

1− γ

)
λcalm,contB

]
+
(

1 + ηcalm,calmA

)1− 1
γ
λcalm,calmA +

(
1 + ηcalm,calmB

)1− 1
γ
λcalm,calmB

Ccalm,cont =
(

1 + ηcalm,contA

)1− 1
γ
λcalm,contA +

(
1 + ηcalm,contB

)1− 1
γ
λcalm,contB

Ccont,cont =
1− γ
γ

[
r +

(ηcontA )2 + (ηcontB )2 − 2ρcontηcontA ηcontB

2γ(1− (ρcont)2)

+

(
1 + ηcont,contA − 1

1− γ

)
λcont,contA +

(
1 + ηcont,contB − 1

1− γ

)
λcont,contB

+

(
1 + ηcont,calm − 1

1− γ

)
λcont,calm

]
+
(
1 + ηcont,contA

)1− 1
γ λcont,contA +

(
1 + ηcont,contB

)1− 1
γ λcont,contB

Ccont,calm =
(
1 + ηcont,calm

)1− 1
γ λcont,calm.

The proof is given in Appendix A.1.

Following Merton (1971), the optimal exposures can be decomposed into a speculative

demand and a hedging demand. The demand for diffusive risk is purely speculative, since

diffusive risk does not have any impact on the investment opportunity set. It depends on

the risk premia (and the correlations) only. The optimal exposure to jump risk is more

involved. The speculative demand for a jump from state old to state new (where the two

states might coincide) is given by

(1 + ηold,new)−
1
γ − 1.

If the market price of jump risk ηold,new is positive, jumps are more likely under the risk-

neutral measure than under the true measure, and the optimal exposure to this kind of

jumps is negative. In line with intuition, it increases in absolute terms in the risk premium,

and it decreases in absolute terms in risk aversion. The second part of the demand for

jump risk is the hedging demand, which is given by

(1 + ηold,new)−
1
γ

(
fnew

f old
− 1

)
.
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It differs from zero only if the old and the new state are not equal, i.e. if the economy

changes from calm to contagion or vice versa. In this case, the investor takes changes in

the investment opportunity set into account, where his reaction to these changes depends

on whether he is more or less risk-averse than the log-investor, as explained in Kim and

Omberg (1996), Liu and Pan (2003) or Liu, Longstaff, and Pan (2003), among others. For

fnew > f old, the induced hedging demand is positive. If γ > 1, fnew > f old implies that

investment opportunities are worse in the new state than in the old state (see Equation

(2)). The investor is more risk-averse than the log investor, he cares about hedging, and

he wants to have more wealth in those states of the world where investment opportunities

are bad. This results in a positive hedging demand. If γ < 1, fnew > f old implies that

investment opportunities are better in the new state than in the old state. The investor

is less risk-averse than the log investor and he speculates on changes in the investment

opportunity set. He thus wants to have more wealth in the good new state, and the

induced ’hedging demand’ is positive.

To assess how good the investment opportunities in state j are, we rely on the certainty

equivalent return (CER). It is defined by

Gj(t, x) =

(
xeCER

j(t,x)(T−t)
)1−γ

1− γ
.

The CER gives the deterministic return on wealth that would result in the same indirect

utility as the optimal investment in the risky assets.

When the economy changes from the calm state to the contagion state (or vice versa),

the indirect utility of the investor changes due to two reasons. First, his wealth changes

where the loss or gain depends on his exposure towards the jump. Second, the investment

opportunity set and thus the CER changes. Consider, e.g., the case where the optimal

exposure to a jump from the calm into the contagion state is negative. If the investment

opportunities are worse in the contagion state, then the investor will be worse off after the

jump has occurred. If, on the other hand, the investment opportunities are better in the

contagion state, then the overall impact on the indirect utility depends on the trade-off

between the lower wealth and the higher CER.

3.2 Incomplete Market

If the investor can only trade in the two stocks and in the money market account, the

market is incomplete. The budget restriction then becomes

dX(t)

X(t)
= π

Z(t)
A (t)

dSA(t)

SA(t)
+ π

Z(t)
B (t)

dSB(t)

SB(t)
+
(

1− πZ(t)
A (t)− πZ(t)

B (t)
)
rdt,
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where πji (t) is the proportion of wealth invested in stock i (i = A,B) at time t and in

state j. The optimal portfolio strategy is given in the following proposition.

Proposition 3.2 (Contagion, Incomplete Market) In an economy with contagion

where only the two stocks and the money market account are traded, the investor’s in-

direct utility in state j ∈ {calm, cont} is

Gj(t, x) =
x1−γ

1− γ
f j(t)

where f j solves the ordinary differential equations

0 = f calmt + (1− γ)
[
r + πcalmA (µcalmA − r) + πcalmB (µcalmB − r)

]
f calm (3)

− 0.5γ(1− γ)
[
(πcalmA σcalmA )2 + (πcalmB σcalmB )2 + 2πcalmA πcalmB σcalmA σcalmB ρcalm

]
f calm

+ λcalm,contA

[
(1− πcalmA LA)1−γf cont − f calm

]
+ λcalm,calmA

[
(1− πcalmA LA)1−γ − 1

]
f calm

+ λcalm,contB

[
(1− πcalmB LB)1−γf cont − f calm

]
+ λcalm,calmB

[
(1− πcalmB LB)1−γ − 1

]
f calm

0 = f contt + (1− γ)
[
r + πcontA (µcontA − r) + πcontB (µcontB − r)

]
f cont (4)

− 0.5γ(1− γ)
[
(πcontA σcontA )2 + (πcontB σcontB )2 + 2πcontA πcontB σcontA σcontB ρcont

]
f cont

+ λcont,contA

[
(1− πcontA LA)1−γ − 1

]
f cont + λcont,contB

[
(1− πcontB LB)1−γ − 1

]
f cont

+ λcont,calm(f calm − f cont).

and where the optimal portfolio weights solve

µcalmA − r − γ(σcalmA )2πcalmA − γπcalmB σcalmA σcalmB ρcalm

−LAλcalm,contA (1− πcalmA LA)−γ
f cont

f calm
− LAλcalm,calmA (1− πcalmA LA)−γ = 0 (5)

µcalmB − r − γ(σcalmB )2πcalmB − γπcalmA σcalmA σcalmB ρcalm

−LBλcalm,contB (1− πcalmB LB)−γ
f cont

f calm
− LBλcalm,calmB (1− πcalmB LB)−γ = 0 (6)

µcontA − r − γ(σcontA )2πcontA − γπcontB σcontA σcontB ρcont − LAλcont,contA (1− πcontA LA)−γ = 0 (7)

µcontB − r − γ(σcontB )2πcontB − γπcontA σcontA σcontB ρcont − LBλcont,contB (1− πcontB LB)−γ = 0. (8)

The proof is given in Appendix A.2.

Equations (3), (4), (5), and (6) form a system of so-called differential-algebraic equations

which can only be solved numerically.

As compared to the complete market, the investor can in general no longer achieve the

optimal exposures, since he is restricted to the package of exposures offered by the two

stocks, as e.g. pointed out in Liu and Pan (2003). As we will show in some numerical
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examples in Section 5, his exposure to some risk factors will thus be too high, while the

exposure to some other risk factors will be too low compared to the complete market case.

The exposure to jumps from the contagion to the calm state plays a special role. Since the

exposure of both stocks to this jump is assumed to be zero, the investor has no exposure

to this jump at all, and he cannot even approximately implement his hedging demand.

4 Simpler Models: Benchmark Cases

We consider two benchmark cases. In the first case (’no contagion’), the investor ignores

contagion completely. The stocks jump independently of each other, and the jump in-

tensities are constant over time. In the second case (’joint jumps’), studied e.g. by Das

and Uppal (2004), the investor takes contagion into account by assuming that stock price

jumps can only happen simultaneously.

Our model is in between these extreme cases in two respects. First, we assume that some

jumps do not trigger contagion, while other jumps induce contagion. Second, we allow

for a time dimension of contagion. If the economy enters into the contagion state, then

the investor can adjust his portfolio and take a smaller (or larger) position in the risky

assets. In the benchmark model with joint jumps, the jumps happen simultaneously, and

the investor cannot react to the event of contagion any more.

4.1 No Contagion: Independent Downward Jumps

In the first benchmark case, there is no contagion at all, and downward jumps in the

stocks happen independently of each other. The dynamics of stock i are

dSi(t)

Si(t−)
=
[
r + φi + Liλi︸ ︷︷ ︸

µi

]
dt+ σidWi(t)− LidNi(t).

The Wiener processes WA and WB are correlated with correlation ρ. Ni is a Poisson

process with intensity λi. The risk premium on the stock is

φi = σiη
diff
i + Liλiη

jump
i

where ηdiffi is the premium for diffusion risk and ηjumpi is the premium for jumps. In a

complete market, the investor can again choose the exposures to the risk factors. The
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budget restriction becomes

dX(t)

X(t)
= rdt+ θdiffA (t)

[
dWA(t) + ηdiffA dt

]
+ θdiffB (t)

[
dWB(t) + ηdiffB dt

]
+ θjumpA (t)

[
dNA(t)− λAdt− ηjumpA λAdt

]
+ θjumpB (t)

[
dNB(t)− λBdt− ηjumpB λBdt

]
where θdiffi is the exposure to diffusive risk Wi, and θjumpi is the exposure to jumps in

stock i. The optimal portfolio exposures are given in the following proposition.

Proposition 4.1 (No Contagion, Complete Market) If there are no contagion ef-

fects in the market, the optimal exposures to the risk factors are

θdiffA =
ηdiffA − ρηdiffB

γ(1− ρ2)
θdiffB =

ηdiffB − ρηdiffA

γ(1− ρ2)

θjumpA = (1 + ηjumpA )−
1
γ − 1 θjumpB = (1 + ηjumpB )−

1
γ − 1.

The indirect utility function of the investor is

G(t, x) =
x1−γ

1− γ
exp {γ Cnc,c · (T − t)} ,

where

Cnc,c =
1− γ
γ

[
r +

(ηdiffA )2 + (ηdiffB )2 − 2ρηdiffA ηdiffB

2γ(1− ρ2)

+
(
1 + ηjumpA

)
λA +

(
1 + ηjumpB

)
λB −

1

1− γ
(λA + λB)

]
+
(
1 + ηjumpA

)1− 1
γ λA +

(
1 + ηjumpB

)1− 1
γ λB.

The proof is given in Appendix B.1.

The investment opportunity set is constant. There is thus speculative demand only. Both

for diffusion risk and for jump risk, this speculative demand has the same structure as

in the contagion model discussed in Section 3 and is driven by the risk premia (and the

diffusion correlation) only.

The certainty equivalent return is given by γ
1−γ C

nc,c. It captures how good the investment

opportunities are. In a complete market, it does not depend on asset specific parameters

like stock price volatilities and loss sizes, but only on economy-wide variables like the risk

premia and the jump intensities. Obviously, the certainty equivalent return is increasing

in the risk premia. Furthermore, it is increasing in the jump intensities λA and λB, which
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is formally shown in Appendix B.2. To get the intuition, notice that the risk premium

the investor earns on his optimal portfolio is increasing in the optimal exposure to jumps

(i.e. the loss in case of a jump), the market prices of jump risk, and the jump intensities

(i.e. the overall amount of jump risk in the market). The CER is thus increasing in these

three variables, too.

In the incomplete market, the investor chooses the optimal weights of the two stocks,

which are given in the next proposition.

Proposition 4.2 (No Contagion, Incomplete Market) If there are no contagion ef-

fects in the market and only the money market account and the two stocks are traded, then

the indirect utility of the investor is given by

G(t, x) =
x1−γ

1− γ
exp(Cnc,ic · (T − t)),

where

Cnc,ic = (1− γ)
[
r + πA(µA − r) + πB(µB − r)−

γ

2
(π2

Aσ
2
A + π2

Bσ
2
B + 2πAπBσAσBρ)

]
+λA

[
(1− πALA)1−γ − 1

]
+ λB

[
(1− πBLB)1−γ − 1

]
.

The optimal portfolio weights are given as the unique solution of

µA − r − γσ2
AπA − γπBσAσBρ− LAλA(1− πALA)−γ = 0

µB − r − γσ2
BπB − γπAσBσAρ− LBλB(1− πBLB)−γ = 0.

The proof is given in Appendix B.3.

4.2 Joint Downward Jumps

In the second benchmark case, the investor takes contagion into account by assuming that

stock price jumps happen simultaneously. The dynamics for stock i are

dSi(t)

Si(t−)
=
[
r + φi + Liλjoint︸ ︷︷ ︸

µi

]
dt+ σidWi(t)− LidNjoint(t).

The risk premium on the stock is

φi = σiη
diff
i + Liλjointη

jump
joint .

We want the behavior of the individual stocks to be the same in both benchmark cases,

so that only the joint behavior differs. Consequently, we assume that the parameters for
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the individual stocks are the same as in Section 4.1, and we set λjoint = λA = λB and

ηjumpjoint = ηjumpA = ηjumpB .

In the complete market, the solution to the portfolio planning problem is given in the

next proposition.

Proposition 4.3 (Joint Downward Jumps, Complete Market) If there are joint

downward jumps, the optimal exposures to the risk factors are

θdiffA =
ηdiffA − ρηdiffB

γ(1− ρ2)
, θdiffB =

ηdiffB − ρηdiffA

γ(1− ρ2)
,

θjumpjoint = (1 + ηjumpjoint )−
1
γ − 1.

The indirect utility function of the investor is

G(t, x) =
x1−γ

1− γ
exp

{
γ Cjj,c · (T − t)

}
,

where

Cjj,c =
1− γ
γ

[
r +

(ηdiffA )2 + (ηdiffB )2 − 2ρηdiffA ηdiffB

2γ(1− ρ2)

+
(
1 + ηjumpjoint

)
λjoint −

1

1− γ
λjoint

]
+
(
1 + ηjumpjoint

)1− 1
γ λjoint.

The optimal exposures depend on the market prices of risk (and on the correlation) only.

With identical parameters for the behavior of the individual stocks, they are thus the

same as in the case of independent jumps. If a jump happens, the investor loses exactly

the same amount of money, no matter whether he assumes independent jumps or joint

jumps. What differs, however, is the optimal portfolio held by the investor. If there are

joint jumps, the portfolio that is optimal with independent jumps would have a jump risk

exposure that is twice as high as optimal. With joint jumps, the investor is thus more

conservative.

The CER is lower with joint jumps than with independent jumps. To get the intuition,

note that the market prices of risk are identical, while the average number of jumps is

twice as large in the case of independent jumps as in the case of joint jumps. Since the

CER increases in the jump intensity and thus in the average number of jumps, it is indeed

smaller with joint jumps.

In the incomplete market, the investor is again restricted to the package of exposures

offered by the stocks. The optimal portfolio is given in the next proposition.
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Proposition 4.4 (Joint Downward Jumps, Incomplete Market) If there are joint

downward jumps and only the money market account and the two stocks are traded, then

the indirect utility of the investor is given by

G(t, x) =
x1−γ

1− γ
exp{Cjj,ic · (T − t)},

where

Cjj,ic = (1− γ)
[
r + πA(µA − r) + πB(µB − r)−

γ

2
(π2

Aσ
2
A + π2

Bσ
2
B + 2πAπBσAσBρ)

]
+λjoint

[
(1− πALA − πBLB)1−γ − 1

]
.

The optimal portfolio weights are given as the unique solutions of

µA − r − γσ2
AπA − γπBσAσBρ− LAλjoint(1− πALA − πBLB)−γ = 0

µB − r − γσ2
BπB − γπAσBσAρ− LBλjoint(1− πALA − πBLB)−γ = 0.

Just as in the model setup without contagion, the investment opportunity set is constant

and the investor does not have a hedging demand in the incomplete market, either.

5 Numerical Results

5.1 Parameter Choice and Model Calibration

We consider a CRRA-investor with a relative risk aversion of γ = 3 and a planning horizon

of 20 years. The interest rate is set to r = 0.01. The two stocks are assumed to follow

identical processes. We rely on the parameter estimates of Eraker, Johannes, and Polson

(2003) and Broadie, Chernov, and Johannes (2007). Since we want to focus on the impact

of contagion, which is reflected in the difference between the jump intensities in the calm

and in the contagion state, all other parameters are assumed to be equal in both states.7

The diffusion volatility σ is set to 0.15, and the Wiener processes driving the stock price

dynamics are correlated with ρ = 0.5. The jump intensity in the benchmark models is set

to 1.5, and we calibrate the jump intensities in our contagion model such that the average

long-run jump intensity is equal to 1.5, too. More details on this step of the calibration

will be given below. The loss in case of a jump in one of the stocks is assumed to be

7We also assume a constant riskless rate here although recent experience of the US subprime crisis
suggests something different. To keep the numerical results clear and simple, however, we mainly focus
on the impact of jump risk and do not consider market liquidity or related issues.
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constant and set equal to 0.05, which is slightly higher than the estimate provided in

models that also include stochastic volatility. Remember that the loss for a jump back

from the contagion into the calm state equals zero.

The market price of diffusion risk is assumed to equal 0.35 in both states. Jumps from

the contagion state back into the calm state are not priced. For the other market prices

of jump risk, we consider two extreme cases. In the first case (parametrization 1), we

assume that they are identical in all states. This implies a rather high stock price drift in

the contagion state. In the second case (parametrization 2), we assume that the expected

excess stock returns are equal in both states, which results in larger market prices of risk

in the calm state and lower ones in the contagion state. We calibrate the market prices

of jump risk such that the average expected excess return of the stocks is equal to 8.25%

for both parametrizations, which is in line with Broadie, Chernov, and Johannes (2007).

The two benchmark models without contagion and with joint jumps are calibrated such

that the stock price behavior in the benchmark models is as similar as possible to the

behavior in our model. Therefore, we set the local moments in the benchmark models equal

to the long run averages of the local moments in our model. Details of the calibration can

be found in appendix C.

The different jump intensities in our model are chosen such that the average number of

jumps per year, which follows from Equation (15), is equal to the benchmark value of 1.5.

Since we want to focus on contagion, we explicitly control for its severeness and thus for

the wedge driven between the two states. The difference between the jump intensities in

the calm and contagion state is captured by ξ ≥ 1:

λcont,conti = ξi

(
λcalm,calmi + λcalm,conti

)
i ∈ {A,B}.

The conditional probability that a loss in a stock actually triggers contagion is given by

the parameter α:

λcalm,conti = αi

(
λcalm,calmi + λcalm,conti

)
i ∈ {A,B},

and the average time the economy stays in the contagion state depends on ψ:

λcont,calm = ψ
(
λcont,contA + λcont,contB

)
.

Given ξ, α, and ψ and the average jump intensity of 1.5, all other jump intensities can be

calculated. In the base case calibration, we set ξ = 4, α = 0.5 and ψ = 0.25. The resulting

parameters are given in Table 1. Table 2 shows the resulting conditional equity risk premia

and variances of stock returns for both parameterizations and in the benchmark models

16



as well as their decomposition into diffusion and jump components. Table 3 gives some

other combinations of parameters used in robustness checks, where we choose ξ ∈ [1, 10],

α ∈ [0.2, 0.5] and ψ ∈ [0.2, 2/3].

5.2 Optimal Exposures and Optimal Portfolios

Table 4 gives the solution to the portfolio planning problem for the base-case parameters

from Table 1 both for the complete and the incomplete market. We discuss the case of

complete markets first, where the investor can achieve any desired payoff profile.

The demand for diffusion risk is driven by the speculative component only. It is identical

in the calm and in the contagion state and for both parametrizations, because the market

prices of diffusion risk are identical by assumption.

The demand for jump risk can be decomposed into a speculative component and – for

those jumps that change the state – a hedging component. The speculative demand is an

increasing function of the market prices of jump risk ηi,jA/B. If the market prices of risk are

identical in all states (parametrization 1), the speculative demand does not depend on the

state and coincides with the speculative demand in the two benchmark models. If equity

risk premia are constant (parametrization 2), on the other hand, the market price of risk

is lower in the contagion state than in the calm state, and consequently, the speculative

demand is lower in absolute terms in the contagion state, too. Since jumps from the

contagion state back to the calm state are not priced by assumption, this speculative

demand is zero.

The sign of the hedging demand depends on which of the two states is the better one.

The right panel of Figure 2 shows the certainty equivalent returns in both states. If the

market prices of risk are constant (parametrization 1), the investment opportunity set

is better in the contagion state where jumps happen more often than in the calm state.

Given that γ > 1, the hedging demand for jumps from the calm to the (better) contagion

state is negative, which implies that the investor takes a more aggressive position in jump

risk in the calm state. In the contagion state, on the other hand, his optimal exposure

to jumps back to the (worse) calm state is positive. If the expected returns are equal

(parametrization 2), the calm state is better than the contagion state which switches the

sign of the hedging demands.

The optimal exposures are different in the calm and in the contagion state, and the investor

will adjust his portfolio when the state of the economy changes. He thus profits from the

time dimension of contagion captured in our model. His trading desire due to contagion is
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much more pronounced for the case of equal equity risk premia (parametrization 2), where

trading is induced by changes in the market prices of risk and in the hedging demand,

than for the case of identical market prices of risk, where trading is induced by changes

in the hedging demand only.

If the market is incomplete, the investor cannot implement the overall optimal exposures.

As can be seen in Table 4, the realized exposures will be somewhere in between the optimal

exposures from the complete case. The position in risky assets is larger in the state in

which investment opportunities are better, that is in the calm state in case of equal equity

risk premia and in the contagion state in case of equal market prices of risk.

In the benchmark models, the investor does not distinguish between calm and contagion

states. If he ignores contagion completely, the optimal position in stocks is somewhere

in between the optimal positions in the calm and in the contagion state. If the investor

assumes that there are joint jumps, he is more conservative and reduces his optimal

position in stocks significantly.

The certainty equivalent returns in our model and in the two benchmark models are shown

in the left panel of Figure 2. As expected, the utility loss due to market incompleteness is

largest in our contagion model since the investor fails to implement the optimal myopic

demand as well as the intertemporal hedging demand, whereas a hedging demand does

not exist in both benchmark models. In absolute numbers, the joint jumps model gives the

lowest utility both in an incomplete and in a complete market, since the average number

of jumps is cut in half compared to the other models.

Robustness checks show that the results do not change qualitatively when we vary ξ, α

and ψ, i.e. the overall size of contagion, the risk of entering the contagion state, and the

(reciprocal of the) average duration of the contagion state. In line with intuition, a larger

difference between the calm and contagion state, i.e. a larger value of ξ, leads to larger

trading incentives due to changes of the state and to larger utility losses due to market

incompleteness. The probability α of entering the contagion state does not have much

impact on the results. On the other hand, the smaller ψ, i.e. the longer the economy

stays in the contagion state once it has entered this state, the more extreme the portfolio

weights, exposures and utility functions.

5.3 Model Mis-Specification

If the investor relies on a benchmark model instead of the true model from Section 2.1, he

will not hold the optimal portfolio. In this section, we analyze the utility loss he suffers

from due to this suboptimal behavior.
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5.3.1 Incomplete Market

In the incomplete market, the investor can only invest into the two stocks and into the

money market account. In case of model mis-specification, he (incorrectly) uses one of the

benchmark models to determine the optimal portfolio. For both these models, the optimal

portfolio weights are constant over time. The indirect utility derived from this strategy is

given in the next proposition.

Proposition 5.1 (Model Mis-Specification, Incomplete Market) In an economy with

contagion where only the two stocks and the money market account are traded and for an

investor who uses the portfolio weights π̂A, π̂B, the indirect utility in state j ∈ {calm, cont}
is

Gj(t, x) =
x1−γ

1− γ
f̂ j(t)

where f̂ j is given by(
f̂ calm(t)

f̂ cont(t)

)
= exp

{(
Ĉcalm,calm Ĉcalm,cont

Ĉcont,calm Ĉcont,cont

)
(T − t)

}(
1

1

)

where

Ĉcalm,calm = (1− γ)
[
r + π̂A(µcalmA − r) + π̂B(µcalmB − r)

]
− 0.5γ(1− γ)

[
(π̂Aσ

calm
A )2 + (π̂Bσ

calm
B )2 + 2π̂Aπ̂Bσ

calm
A σcalmB ρcalm

]
− λcalm,contA + λcalm,calmA

[
(1− π̂ALA)1−γ − 1

]
− λcalm,contB + λcalm,calmB

[
(1− π̂BLB)1−γ − 1

]
Ĉcalm,cont = λcalm,contA (1− π̂ALA)1−γ + λcalm,contB (1− π̂BLB)1−γ

Ĉcont,calm = λcont,calm

Ĉcont,cont = (1− γ)
[
r + π̂A(µcontA − r) + π̂B(µcontB − r)

]
− 0.5γ(1− γ)

[
(π̂Aσ

cont
A )2 + (π̂Bσ

cont
B )2 + 2π̂Aπ̂Bσ

cont
A σcalmB ρcont

]
− λcont,calm + λcont,contA

[
(1− π̂ALA)1−γ − 1

]
+ λcont,contB

[
(1− π̂BLB)1−γ − 1

]
.

The proof is given in Appendix D.1.

The upper panels of Figure 3 and 4 show the certainty equivalent returns in case of

model mis-specification for equal market prices of risk and equal equity risk premia,

respectively. For the base case parametrization, the investor loses up to 20 basis points

a year if he relies on an incorrect model. The losses are larger for equal market prices

of risk (parametrization 1) than for equal equity risk premia (parametrization 2), since
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the differences in the optimal portfolios between the states which the investor fails to

pick up are larger in the first case. Surprisingly, the investor is (slightly) worse off if he

assumes joint jumps and thus only ignores the time dimension of contagion than if he

ignores contagion completely. And again, the results, i.e. the utility losses, increase in the

difference between the calm and contagion state as measured by ξ.

5.3.2 Complete Market

Next, we analyze the impact of model mis-specification if the market is complete. To

determine whether enough derivatives are traded for market completeness, the investor

relies on the benchmark model. In the case of independent jumps, four risky assets are

needed, while in the case of joint jumps, three risky assets are enough. We assume that the

investor uses the two stocks, an ATM-call on stock A with a time to maturity of 3 months,

and – if needed – an identical ATM-call on stock B. These short-term ATM-options are

usually among the most liquid contracts. Note however that the choice of contracts will

have an impact on the utility loss due to model mis-specification.

The analysis of model mis-specification is more complicated than in case of an incomplete

market. In the first step, the investor determines the seemingly optimal exposures in the

benchmark model. In the second step, he uses the risky assets and their risk exposure

to implement these seemingly optimal exposures, where he (incorrectly) determines the

sensitivities of the derivatives in the benchmark model. Given the seemingly optimal

portfolio, we (but not the investor) can then use the sensitivities from the true model

to determine the realized exposure. Given these realized exposures θ̂, which are again

constant over time, we can then finally calculate the realized indirect utility.

Proposition 5.2 (Model Mis-Specification, Complete Market) In a complete mar-

ket with contagion effects, the utility obtained by an investor who uses the incorrect risk

factor exposures θ̂ is given by

Ĝj(t, x) =
x1−γ

1− γ
f̂ j(t)

where j ∈ {calm, cont} and(
f̂ calm(t)

f̂ cont(t)

)
= exp

{(
Ĉcalm,calm Ĉcalm,cont

Ĉcont,calm Ĉcont,cont

)
(T − t)

}(
1

1

)
.
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with

Ĉcalm,calm = (1− γ)
[
r + θ̂calmA ηcalmA + θ̂calmB ηcalmB

− θ̂calm,calmA λcalm,calmA (1 + ηcalm,calmA )− θ̂calm,contA λcalm,contA (1 + ηcalm,contA )

−θ̂calm,calmB λcalm,calmB (1 + ηcalm,calmB )− θ̂calm,contB λcalm,contB (1 + ηcalm,contB )
]

− 0.5γ(1− γ)
[
(θ̂calmA )2 + (θ̂calmB )2 + 2ρcalmθ̂calmA θ̂calmB

]
+ λcalm,calmA

[
(1 + θ̂calm,calmA )1−γ − 1

]
+ λcalm,calmB

[
(1 + θ̂calm,calmB )1−γ − 1

]
− λcalm,contA − λcalm,contB

Ĉcalm,cont = λcalm,contA (1 + θ̂calm,contA )1−γ + λcalm,contB (1 + θ̂calm,contB )1−γ

Ĉcont,calm = λcont,calm(1 + θ̂cont,calm)1−γ

Ĉcont,cont = (1− γ)
[
r + θ̂contA ηcontA + θ̂contB ηcontB

− θ̂cont,contA λcont,contA (1 + ηcont,contA )− θ̂cont,contB λcont,contB (1 + ηcont,contB )

−θ̂cont,calmλcont,calm(1 + ηcont,calm)
]

− 0.5γ(1− γ)
[
(θ̂contA )2 + (θ̂contB )2 + 2ρcontθ̂contA θ̂contB

]
+ λcont,contA

[
(1 + θ̂cont,contA )1−γ − 1

]
+ λcont,contB

[
(1 + θ̂cont,contB )1−γ − 1

]
− λcont,calm

The proof is given in Appendix D.2.

The lower panels of Figure 3 and 4 show the certainty equivalent returns when the correct

model is used and when one of the benchmark models is used to determine the (seemingly)

optimal portfolio. The CER losses are highly economically significant, and they are much

higher than in the incomplete market, since the investor now makes an additional mistake.

To set up the optimal portfolio, he has to convert the optimal exposures into portfolio

weights. While the exposures of the stocks are model independent, the exposures of the

derivatives depend on the model, and an investor using an incorrect model for portfolio

planning will use the same incorrect model for pricing derivatives, too. As can be seen

from the figures, the mistakes in calculating the exposures and in pricing the derivatives

do not cancel each other, but rather add up.

Figure 5 compares the utility losses for different values of ξ, where we assume equal equity

risk premia in both states. The results for equal market prices of risk (not shown here)

are qualitatively similar. As can be seen from the graphs, the difference between the calm

and contagion state has a very large impact on the utility losses. They are already far

from negligible for a rather low value of ξ = 2, and increase to around 10%-15% a year
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for ξ = 10. For this high level of ξ, the CER can even become negative, and the investor

would be better off if he just invested his wealth at the risk-free rate only, ignoring all

risky assets.

Different from the incomplete market, it now depends on ξ, i.e. on the severeness of

contagion, which of the two benchmark models leads to the smaller utility loss. For low

values of ξ, the investor is still better off if he ignores contagion completely. For higher

values of ξ, however, he is significantly better off if he just ignores the time dimension of

contagion. In a model with joint jumps, the investor holds less derivatives which lowers

his utility loss due to derivatives mispricing, but increases his utility loss due to a too

conservative portfolio strategy. The exact trade-off between these two arguments depends

on ξ.

An investor who relies on the correct model is obviously better off in the complete market.

In case of model mis-specification, this may no longer be true, as can be seen in Figure 3

and 4. While an investor who incorrectly bases his decisions on a model with joint jumps

is still better off in the complete market, an investor ignoring any contagion might be

better off in the incomplete market. In this case, the utility gain from having access to

derivatives (and thus more payoff patterns) is more than offset by the utility loss from

using the incorrect sensitivities and implementing the seemingly optimal strategy in the

wrong way.

We also did a robustness check with respect to α and ψ, which govern the risk of entering

the contagion state and the average time the economy stays in the contagion state. As

already seen above, the impact of the exact size of these two parameters is rather small,

and the qualitative results do not change.

5.4 Robustness Checks

In the preceding sections, we have shown that contagion has a substantial effect on optimal

exposures, optimal portfolio weights, and the investor’s expected utility. Furthermore, an

investor who uses an incorrect model might suffer large utility losses in particular in a

complete market where he also uses derivatives. While we have already discussed the

sensitivity of our results with respect to the severeness of contagion, we now do some

additional robustness checks with respect to the risk aversion, the size of the losses, and

the diffusion correlation between the stocks.
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5.4.1 Relative Risk Aversion

The results up to now have been based on a relative risk aversion of γ = 3. We have

redone the analysis for values of γ between 1.5 and 10. In line with intuition, the results

become less extreme the higher the risk aversion and the less the investor therefore invests

in risky assets. The qualitative results, however, do not change.

While the utility losses due to model mis-specification decrease in γ, they are still highly

economically significant even for a high risk aversion of γ = 10. The investor is much

more conservative in this case. Nevertheless, the loss in CER can well exceed 8% in the

complete market and is thus far from negligible.

5.4.2 Loss Size

In a second step, we have changed the loss size from L = 0.05 to the more moderate

value of L = 0.03. This has no impact on the results in the complete market, which

are independent of the exact losses in the stocks, but depend only on the intensity of

jumps and their market prices of risk. In the incomplete market, however, the smaller loss

size decreases the utility of the investor, since the package offered by stocks now fits the

optimal exposure even worse. Consequently, the utility loss due to market incompleteness

increases.

The impact of the loss size on the losses due to model mis-specification is mixed. While the

utility loss in the incomplete market and in case the joint jumps model is used decreases

with the lower loss size, the opposite is true in a complete market and in case the investor

relies on a model with no contagion at all. Overall, however, the results do not change

qualitatively when we change the loss size.

5.4.3 Diffusion Correlation

As an additional robustness check, we consider different values for the diffusion correlation

parameter ρ, which was set to ρ = 0.5 in our base case. We redo the analysis for ρ = 0

and ρ = −0.5.

The utility loss due to market incompleteness is smallest for ρ = −0.5 in our contagion

model. This can be explained by the fact that the package offered by the stocks is closest

to the overall optimal exposure in this case. The result is specific to the parameters used

and will not hold in general.
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Concerning our model mis-specification analysis, it depends on ρ whether the investor

is better off if he ignores contagion completely or if he just ignores the time dimension

of contagion. To get the intuition, remember that the model with joint jumps leads to a

portfolio that is too conservative, but reduces the impact of calculating the incorrect sen-

sitivities. For ρ = −0.5, the optimal portfolio includes only a small position in derivatives,

so that the model with joint jumps performs worse than the model with no contagion at

all. For ρ = 0.5, on the other hand, the investor is better off if he uses the model with joint

jumps, since the position in derivatives is now significantly larger. Again, the utility loss

due to model mis-specification may exceed the utility gain due to market completeness

if the differences between the calm and the contagion state are large enough. This again

suggests that the investor may be better off if he does not use derivatives at all instead

of using them in the wrong way.

6 Conclusion

The paper analyzes the optimal portfolio in case of contagion risk. Instead of capturing

contagion by joint jumps in the stocks, we assume that some large loss in stocks can

increase the jump intensities significantly. This adds a time dimension to contagion. The

investor is thus able to adjust his portfolio when the economy switches its state, and

our results document that he indeed uses this possibility. The direction of the portfolio

adjustment depends on his relative risk aversion and on the market prices of risk.

If the investor incorrectly uses a simpler model, then he suffers a utility loss: Surprisingly,

in an incomplete market the investor’s utility loss is larger if he assumes joint jumps (and

thus ignores only the time dimension of contagion) than if he ignores contagion completely.

On the other hand, if the investor has also access to derivatives, then his utility loss is

larger if he disregards all aspects of contagion and if the calm and contagion state are

rather distinct. Furthermore, an investor worrying about model mis-specification might

be better off if he does not use derivatives at all, since the utility gain from having access

to derivatives can be more than offset by the utility loss due to using an incorrect model.

There are several directions for future research. First, one can drop the assumption that

the investor can observe the true state of the economy. In this case, he needs to learn about

the current state by observing stock prices over time. He will use a filtering approach to

continuously update the probabilities of being in the two states. Second, we have shown

that the assumptions about the market prices of risk have a significant impact on the

optimal portfolios. It would thus be interesting to consider a general equilibrium setup in
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which market prices of risk are determined endogenously. This would allow us to analyze

how investors price contagion risk.
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A Contagion

A.1 Complete Market - Proof

We solve the portfolio problem in a complete market for a general Markov chain with states

k ∈ {1, . . . , K}. The indirect utility function in state j at time t and for a current wealth

level of x is denoted by Gj(t, x). The functions G must solve the system of Hamilton-

Jacobi-Bellman equations, where we have one equation for each state j:

0 = max

{
Gj
t +Gj

xx

[
r + θjA(t)ηjA + θjB(t)ηjB −

∑
k 6=j

θj,k(t)λj,k
(
1 + ηj,k

) ]
+ 0.5Gj

xxx
2
[
θjA(t)2 + θjB(t)2 + 2ρjθjA(t)θjB(t)

]
+
∑
k 6=j

[
Gk(t, x(1 + θj,k(t)))−Gj(t, x)

]
λj,k

}
.

Subscripts of G denote partial derivatives. We assume constant relative risk aversion, and

rely on the usual guess for the indirect utility function

Gj(t, x) =
x1−γ

1− γ
(
f j(t)

)γ
.

The partial derivatives are

Gj
t(t, x) =

x1−γ

1− γ
γ
(
f j(t)

)γ−1
f jt (t)

Gj
x(t, x) = x−γ

(
f j(t)

)γ
Gj
xx(t, x) = −γx−γ−1

(
f j(t)

)γ
,

and the change in the indirect utility due to a jump is

Gk(t, x(1 + θj,k(t)))−Gj(t, x) =
x1−γ

1− γ
[(
fk(t)

)γ
(1 + θj,k(t))1−γ −

(
f j(t)

)γ]
.

Plugging these expressions into the HJB-equations and simplifying gives

0 = max

{
γ
f jt
f j

+ (1− γ)

[
r + θjA(t)ηjA + θjB(t)ηjB −

∑
k 6=j

θj,k(t)λj,k
(
1 + ηj,k

)]
− 0.5γ(1− γ)

[
θjA(t)2 + θjB(t)2 + 2ρj θjA(t)θjB(t)

]
+
∑
k 6=j

[(
fk

f j

)γ
(1 + θj,k(t))1−γ − 1

]
λj,k

}
.
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Solving the first order conditions for the optimal exposures gives

θjA =
ηjA − ρjη

j
B

γ(1− (ρj)2)
θj,k = (1 + ηj,k)−

1
γ
fk

f j
− 1

θjB =
ηjB − ρjη

j
A

γ(1− (ρj)2)
.

We then plug the optimal exposures back into the HJB-equations to get

0 = γ
f jt
f j

+ (1− γ)

[
r +

(ηjA)2 + (ηjB)2 − 2ρjηjAη
j
B

γ(1− (ρj)2)

]

− (1− γ)
∑
k 6=j

[(
1 + ηj,k

)1− 1
γ λj,k

fk

f j
− λj,k

(
1 + ηj,k

)]

− 0.5(1− γ)
(ηjA)2 + (ηjB)2 − 2ρjηjAη

j
B

γ(1− (ρj)2)

+
∑
k 6=j

[
fk

f j
(
1 + ηj,k

)1− 1
γ − 1

]
λj,k.

The resulting linear system of homogeneous ordinary differential equations for f j(t) (j =

0, 1, 2) with boundary condition f j(T ) = 1 is

0 = f jt +
1− γ
γ

[
r +

(ηjA)2 + (ηjB)2 − 2ρjηjAη
j
B

2γ(1− (ρj)2)

]
f j

+
1− γ
γ

∑
k 6=j

[(
1 + ηj,k

)
− 1

1− γ

]
λj,kf j +

∑
k 6=j

(
1 + ηj,k

)1− 1
γ λj,kfk.

This is equivalent to

0 = f jt + C(j,j)f j +
∑
k 6=j

C(j,k)fk

where the coefficients C depend on the parameters only

C(j,j) =
1− γ
γ

[
r +

(ηjA)2 + (ηjB)2 − 2ρjηjAη
j
B

2γ(1− (ρj)2)

]
+

1− γ
γ

∑
k 6=j

[(
1 + ηj,k

)
− 1

1− γ

]
λj,k

C(j,k) =
(
1 + ηj,k

)1− 1
γ λj,k.

The system of ordinary differential equations can thus be written as

 f 1

...

fK


t

= −


C1,1 C1,2 · · · C1,K

C2,1 C2,2 · · · C2,K

...
...

. . .
...

CK,1 CK,2 · · · CK,K


 f 1

...

fK

 ,
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and its solution is  f 1

...

fK

 = eC·(T−t)

 1
...

1

 .

Proposition 3.1 then follows by applying this result to our Markov chain and further

aggregating the formally eight states to the two economic states ’calm’ and ’contagion’ as

described in section 2.1.

A.2 Incomplete Market - Proof

In the incomplete market, the investor decides on the portfolio weights πcalmA and πcalmB of

the two stocks. The HJB-equation in the calm state is

0 = max
πcalmA ,πcalmB

{Gcalm
t + x(r + πcalmA (µcalmA − r) + πcalmB (µcalmB − r))Gcalm

x

+ 0.5x2
[
(πcalmA σcalmA )2 + (πcalmB σcalmB )2 + 2πcalmA πcalmB σcalmA σcalmB ρcalm

]
Gcalm
xx

+ λcalm,contA [Gcont(t, x(1− πcalmA LA))−Gcalm(t, x)]

+ λcalm,contB [Gcont(t, x(1− πcalmB LB))−Gcalm(t, x)]

+ λcalm,calmA [Gcalm(t, x(1− πcalmA LA))−Gcalm(t, x)]

+ λcalm,calmB [Gcalm(t, x(1− πcalmB LB))−Gcalm(t, x)]}

and the HJB-equation in the contagion state is

0 = max
πcontA ,πcontB

{Gcont
t + x(r + πcontA (µcontA − r) + πcontB (µcontB − r))Gcont

x

+ 0.5x2
[
(πcontA σcontA )2 + (πcontB σcontB )2 + 2πcontA πcontB σcontA σcontB ρcont

]
Gcont
xx

+ λcont,contA [Gcont(t, x(1− πcontA LA))−Gcont(t, x)]

+ λcont,contB [Gcont(t, x(1− πcontB LB))−Gcont(t, x)]

+ λcont,calm[Gcalm(t, x)−Gcont(t, x)]}.

With the guess Gj(t, x) = x1−γ

1−γ f
j(t), the HJB-equation in the calm state becomes

0 = max
πcalmA ,πcalmB

{f calmt + (1− γ)
(
r + πcalmA (µcalmA − r) + πcalmB (µcalmB − r)

)
f calm

− 0.5γ(1− γ)
(
(πcalmA σcalmA )2 + (πcalmB σcalmB )2 + 2πcalmA πcalmB σcalmA σcalmB ρcalm

)
f calm

+ λcalm,contA

(
(1− πcalmA LA)1−γf cont − f calm

)
+ λcalm,contB

(
(1− πcalmB LB)1−γf cont − f calm

)
+ λcalm,calmA

(
(1− πcalmA LA)1−γf calm − f calm

)
+ λcalm,calmB

(
(1− πcalmB LB)1−γf calm − f calm

)
}
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and the HJB-equation in the contagion state becomes

0 = max
πcalmA ,πcalmB

{f contt + (1− γ)
(
r + πcontA (µcontA − r) + πcontB (µcontB − r)

)
f cont

−0.5γ(1− γ)
(
(πcontA σcontA )2 + (πcontB σcontB )2 + 2πcontA πcontB σcontA σcontB ρcont

)
f cont

+ λcont,contA

(
(1− πcontA LA)1−γ − 1

)
f cont

+ λcont,contB

(
(1− πcontB LB)1−γ − 1

)
f cont

+ λcont,calm(f calm − f cont)}.

The first order conditions for the portfolio weights are

µcalmA − r − γ(σcalmA )2πcalmA − γπcalmB σcalmA σcalmB ρcalm

−LAλcalm,contA (1− πcalmA LA)−γ
f cont

f calm
− LAλcalm,calmA (1− πcalmA LA)−γ = 0 (9)

µcalmB − r − γ(σcalmB )2πcalmB − γπcalmA σcalmA σcalmB ρcalm

−LBλcalm,contB (1− πcalmB LB)−γ
f cont

f calm
− LBλcalm,calmB (1− πcalmB LB)−γ = 0 (10)

µcontA − r − γ(σcontA )2πcontA − γπcontB σcontA σcontB ρcont − LAλcont,contA (1− πcontA LA)−γ = 0 (11)

µcontB − r − γ(σcontB )2πcontB − γπcontA σcontA σcontB ρcont − LBλcont,contB (1− πcontB LB)−γ = 0.(12)

With the optimal portfolio weights, the differential equations become

0 = f calmt + (1− γ)
(
r + πcalmA (µcalmA − r) + πcalmB (µcalmB − r)

)
f calm (13)

− 0.5γ(1− γ)
(
(πcalmA σcalmA )2 + (πcalmB σcalmB )2 + 2πcalmA πcalmB σcalmA σcalmB ρcalm

)
f calm

+ λcalm,contA

(
(1− πcalmA LA)1−γf cont − f calm

)
+ λcalm,contB

(
(1− πcalmB LB)1−γf cont − f calm

)
+ λcalm,calmA

(
(1− πcalmA LA)1−γ − 1

)
f calm

+ λcalm,calmB

(
(1− πcalmB LB)1−γ − 1

)
f calm

0 = f contt + (1− γ)
(
r + πcontA (µcontA − r) + πcontB (µcontB − r)

)
f cont (14)

− 0.5γ(1− γ)
(
(πcontA σcontA )2 + (πcontB σcontB )2 + 2πcontA πcontB σcontA σcontB ρcont

)
f cont

+ λcont,contA

(
(1− πcontA LA)1−γ − 1

)
f cont + λcont,contB

(
(1− πcontB LB)1−γ − 1

)
f cont

+ λcont,calm(f calm − f cont).

Conditions (11) and (12) can be solved numerically for the optimal portfolio weights

in the contagion state. Conditions (13),(14),(9) and (10) form a so-called differential-

algebraic system for the functions f calm, f cont, πcalmA and πcalmB . This system can be solved

numerically using a Runge-Kutta method of order 3, namely the implicit Radau form of

order 3, which is for example studied in Hairer, Lubich, and Roche (1989).
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B Benchmark Models: Independent Jumps

B.1 Complete Market - Proof

The model with independent jumps can be interpreted as a special case of the model with

contagion where the parameters are identical in all states. The indirect utility function is

then no longer state dependent. The optimal exposures are

θdiffA =
ηdiffA − ρηdiffB

γ(1− ρ2)
θjumpA = (1 + ηjumpA )−

1
γ − 1

θdiffB =
ηdiffB − ρηdiffA

γ(1− ρ2)
θjumpB = (1 + ηjumpB )−

1
γ − 1.

The ordinary differential equation for f becomes

0 = ft + Cnc,cf

where

Cnc,c =
1− γ
γ

[
r +

(ηdiffA )2 + (ηdiffB )2 − 2ρηdiffA ηdiffB

2γ(1− ρ2)

+
(
1 + ηjumpA

)
λA +

(
1 + ηjumpB

)
λB − 1

1− γ
(λA + λB)

]
+
(
1 + ηjumpA

)1− 1
γ λA +

(
1 + ηjumpB

)1− 1
γ λB.

The function f can be solved for in closed form:

f(t) = exp {Cnc,c · (T − t)} .

The indirect utility is

G(t, x) =
x1−γ

1− γ
exp {γ Cnc,c · (T − t)} .

B.2 Complete Market: Impact of Jump Intensity

Lemma B.1 (Independent Jumps, Complete Market: Impact of Jump Intensity)

If there are no contagion effects and if the market is complete, the indirect utility is in-

creasing in λA and λB.
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Proof: The partial derivative of G w.r.t. λi is

∂G

∂λi
=

w1−γ

1− γ
γeγ C

nc,c·(T−t)
[
(1 + ηjumpi )1− 1

γ − 1−
(

1− 1

γ

)
ηjumpi

]
(T − t).

The term in square brackets is positive (negative) if (1 + ηjumpi )1− 1
γ is a convex (concave)

function of ηjumpi , i.e. if γ < 1 (γ > 1), since 1+
(

1− 1
γ

)
ηjumpi is just the first-order Taylor

expansion of (1 + ηjumpi )1− 1
γ around 0. The other terms are positive (negative) if γ < 1

(γ > 1). Put together, the partial derivative of the indirect utility function with respect

to λi is positive, and the indirect utility is increasing in the jump intensity λi.

B.3 Incomplete Market - Proof

Again, the model can be interpreted as a special case of the model with contagion. The

guess for the indirect utility function is

G(t, x) =
x1−γ

1− γ
f(t)

where G does not depend on the state any more. The optimal portfolio weights πA and

πB satisfy

µA − r − γσ2
AπA − γπBσAσBρ− LAλA(1− πALA)−γ = 0

µB − r − γσ2
BπB − γπAσBσAρ− LBλB(1− πBLB)−γ = 0

which can be solved numerically. The HJB-equation simplifies dramatically, and with the

optimal portfolio weights, the differential equation for f is

ft = −Cnc,icf

with boundary condition f(T ) = 1 and

Cnc,ic = (1− γ)
[
r + πA(µA − r) + πB(µB − r)− 0.5γ(π2

Aσ
2
A + π2

Bσ
2
B + 2πAπBσAσBρ)

]
+λA

[
(1− πALA)1−γ − 1

]
+ λB

[
(1− πBLB)1−γ − 1

]
.

The solution is given by f(t) = exp{Cnc,ic · (T − t)}.

C Benchmark Models: Calibration

The stationary probability of the calm and contagion state is

pcalm = λcont,calm

λcont,calm+λcalm,contA +λcalm,contB

pcont =
λcalm,contA +λcalm,contB

λcont,calm+λcalm,contA +λcalm,contB

,
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and we know from the ergodic theorem for Markov chains8 that

lim
t→∞

1

t

∫ t

0

g(Z(s))ds = g(calm)pcalm + g(cont)pcont

where g is some state-dependent function.

Firstly, we want the stocks to have the same risk in the contagion model and in the

benchmark models. We thus equate the variance of the stock, which gives

(σi)
2 + L2

iλi = pcalm
[(
σcalmi

)2
+
(
Lcalm,calmi

)2

λcalm,calmi +
(
Lcalm,conti

)2

λcalm,conti

]
+ pcont

[(
σconti

)2
+
(
Lcont,conti

)2
λcont,conti

]
+ pcalmpcont

[
σcalmi ηcalmi + Lcalm,calmi λcalm,calmi ηcalm,calmi

+ Lcalm,conti λcalm,conti ηcalm,conti

− σconti ηconti − Lcont,conti λcont,conti ηcont,conti

]2
.

We also equate the jump intensity (for those jumps that result in a loss) and the average

jump size

λi = pcalm
(
λcalm,calmi + λcalm,conti

)
+ pcontλcont,conti (15)

Li = pcalm

[
λcalm,calmi

λcalm,calmi + λcalm,conti

· Lcalm,calmi +
λcalm,conti

λcalm,calmi + λcalm,conti

· Lcalm,conti

]
+ pcont · Lcont,conti

Secondly, we want the stocks to have the same expected excess returns. Since the investor

might deal differently with jump and diffusion risk, we also equate the risk premia earned

on stock diffusion risk and stock jump risk. This gives two additional restrictions

σiη
diff
i = pcalmσcalmi ηcalmi + pcontσconti ηconti

Liλiη
jump
i = pcalm

(
Lcalm,calmi λcalm,calmi ηcalm,calmi + Lcalm,conti λcalm,conti ηcalm,conti

)
+ pcontLcont,conti λcont,conti ηcont,conti .

D Model Mis-Specification

D.1 Incomplete Market - Model Mis-Specification

In case of model mis-specification, the optimal portfolios are determined in the benchmark

model. With independent jumps, the weights of the stocks are constant over time. The

8See, e.g., Brémaud (2001).
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indirect utility functions in the two states are then given by

Ĝj(t, x) = Et

[
X1−γ
T

1− γ
∣∣ Xt = x

]
subject to the budget restriction

dX(t)

X(t)
= π̂A(t)

dSA(t)

SA(t)
+ π̂B(t)

dSB(t)

SB(t)
+ (1− π̂A(t)− π̂B(t)) rdt

where π̂A and π̂B denote the seemingly optimal portfolio weights. Since the indirect utility

Ĝ is a martingale, it holds that

0 = Ĝcalm
t + x(r + π̂A(µcalmA − r) + π̂B(µcalmB − r))Ĝcalm

x

+ 0.5x2
[
(π̂Aσ

calm
A )2 + (π̂Bσ

calm
B )2 + 2π̂Aπ̂Bσ

calm
A σcalmB ρcalm

]
Ĝcalm
xx

+ λcalm,contA [Ĝcont(t, x(1− π̂ALA))− Ĝcalm(t, x)]

+ λcalm,contB [Ĝcont(t, x(1− π̂BLB))− Ĝcalm(t, x)]

+ λcalm,calmA [Ĝcalm(t, x(1− π̂ALA))− Ĝcalm(t, x)]

+ λcalm,calmB [Ĝcalm(t, x(1− π̂BLB))− Ĝcalm(t, x)]

and

0 = Ĝcont
t + x(r + π̂A(µcontA − r) + π̂B(µcontB − r))Ĝcont

x

+ 0.5x2
[
(π̂Aσ

cont
A )2 + (π̂Bσ

cont
B )2 + 2π̂Aπ̂Bσ

cont
A σcontB ρcont

]
Ĝcont
xx

+ λcont,calm[Ĝcalm(t, x)− Ĝcont(t, x)]

+ λcont,contA [Ĝcont(t, x(1− π̂ALA))− Ĝcont(t, x)]

+ λcont,contB [Ĝcont(t, x(1− π̂BLB))− Ĝcont(t, x)].

Since the investor has constant relative risk aversion, we can use a separation approach

and set

Ĝj(t, x) =
x1−γ

1− γ
f̂ j(t).

Plugging in and simplifying gives

0 = f̂ calmt + (1− γ)
(
r + π̂A(µcalmA − r) + π̂B(µcalmB − r)

)
f̂ calm

− 0.5γ(1− γ)
(
(π̂Aσ

calm
A )2 + (π̂Bσ

calm
B )2 + 2π̂Aπ̂Bσ

calm
A σcalmB ρcalm

)
f̂ calm

+ λcalm,contA

(
(1− π̂ALA)1−γ f̂ cont − f̂ calm

)
+ λcalm,contB

(
(1− π̂BLB)1−γ f̂ cont − f̂ calm

)
+ λcalm,calmA

(
(1− π̂ALA)1−γ f̂ calm − f̂ calm

)
+ λcalm,calmB

(
(1− π̂BLB)1−γ f̂ calm − f̂ calm

)
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and

0 = f̂ contt + (1− γ)
(
r + π̂A(µcontA − r) + π̂B(µcontB − r)

)
f̂ cont

− 0.5γ(1− γ)
(
(π̂Aσ

cont
A )2 + (π̂Bσ

cont
B )2 + 2π̂Aπ̂Bσ

cont
A σcalmB ρcont

)
f̂ cont

+ λcont,calm
(
f̂ calm − f̂ cont

)
+ λcont,contA

(
(1− π̂ALA)1−γ f̂ cont − f̂ cont

)
+ λcont,contB

(
(1− π̂BLB)1−γ f̂ cont − f̂ cont

)
.

This results in a system of two linear ordinary differential equations(
f̂ calmt

f̂ contt

)
= −

(
Ĉ1,1 Ĉ1,2

Ĉ2,1 Ĉ2,2

)(
f̂ calm

f̂ cont

)

where

Ĉ1,1 = (1− γ)
(
r + π̂A(µcalmA − r) + π̂B(µcalmB − r)

)
− 0.5γ(1− γ)

(
(π̂Aσ

calm
A )2 + (π̂Bσ

calm
B )2 + 2π̂Aπ̂Bσ

calm
A σcalmB ρcalm

)
− λcalm,contA − λcalm,contB

+ λcalm,calmA

(
(1− π̂ALA)1−γ − 1

)
+ λcalm,calmB

(
(1− π̂BLB)1−γ − 1

)
Ĉ1,2 λcalm,contA (1− π̂ALA)1−γ + λcalm,contB (1− π̂BLB)1−γ

Ĉ2,1 = λcont,calm

Ĉ2,2 = (1− γ)
(
r + π̂A(µcontA − r) + π̂B(µcontB − r)

)
− 0.5γ(1− γ)

(
(π̂Aσ

cont
A )2 + (π̂Bσ

cont
B )2 + 2π̂Aπ̂Bσ

cont
A σcalmB ρcont

)
− λcont,calm

+ λcont,contA

(
(1− π̂ALA)1−γ − 1

)
+ λcont,contB

(
(1− π̂BLB)1−γ − 1

)
.

The solution for f̂ is(
f̂ calm(t)

f̂ cont(t)

)
= exp

{(
Ĉ1,1 Ĉ1,2

Ĉ2,1 Ĉ2,2

)
(T − t)

}(
1

1

)
.

D.2 Complete Market - Model Mis-Specification

In case of model mis-specification in a complete market setup, the investor does not

implement his optimal risk factor exposures θ(t), but sub-optimal exposures θ̂ which are

constant over time. As in A.1, we solve for the indirect utility function for a general
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Markov chain with states k ∈ {1, . . . , K}. The indirect utility functions in the K states

are then given by

Ĝj(t, x) = Et

[
X1−γ
T

1− γ
∣∣ Xt = x

]
subject to the budget restriction

dX(t)

X(t)
= rdt+ θ̂

Z(t)
A

[
dWA(t) + η

Z(t)
A dt

]
+ θ̂

Z(t)
B

[
dWB(t) + η

Z(t)
B dt

]
+

∑
k 6=Z(t),λZ(t),k 6=0

θ̂Z(t),k
[
dNk(t)− λZ(t),kdt− ηZ(t),kλZ(t),kdt

]
.

Since the indirect utility Ĝ is a martingale, it holds that

0 = Ĝj
t + Ĝj

xx

[
r + θ̂jAη

j
A + θ̂jBη

j
B −

∑
k 6=j

θ̂j,kλj,k
(
1 + ηj,k

) ]
+ 0.5Gj

xxx
2
[
(θ̂jA)2 + (θ̂jB)2 + 2ρj θ̂jAθ̂

j
B

]
+
∑
k 6=j

[
Gk(t, x(1 + θ̂j,k))−Gj(t, x)

]
λj,k.

Since the investor has constant relative risk aversion, we can use a separation approach

and set

Ĝj(t, x) =
x1−γ

1− γ
f̂ j(t).

Plugging in and simplifying gives a system of linear ordinary differential equations

0 = f̂ jt + (1− γ)

[
r + θ̂jAη

j
A + θ̂B

j
ηjB −

∑
k 6=j

θ̂j,kλj,k
(
1 + ηj,k

) ]
f̂ j

− 0.5γ(1− γ)
[
(θ̂jA)2 + (θ̂jB)2 + 2ρj θ̂jAθ̂

j
B

]
f̂ j

+
∑
k 6=j

[
f̂k(1 + θ̂j,k)1−γ − f̂ j

]
λj,k

}

whose solution with respect to the boundary conditions f j(T ) = 1 becomes in our case(
f̂ calm(t)

f̂ cont(t)

)
= exp

{(
Ĉcalm,calm Ĉcalm,cont

Ĉcont,calm Ĉcont,cont

)
(T − t)

}(
1

1

)
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with

Ĉcalm,calm = (1− γ)
[
r + θ̂calmA ηcalmA + θ̂calmB ηcalmB

− θ̂calm,calmA λcalm,calmA (1 + ηcalm,calmA )− θ̂calm,contA λcalm,contA (1 + ηcalm,contA )

−θ̂calm,calmB λcalm,calmB (1 + ηcalm,calmB )− θ̂calm,contB λcalm,contB (1 + ηcalm,contB )
]

− 0.5γ(1− γ)
[
(θ̂calmA )2 + (θ̂calmB )2 + 2ρcalmθ̂calmA θ̂calmB

]
+ λcalm,calmA

[
(1 + θ̂calm,calmA )1−γ − 1

]
+ λcalm,calmB

[
(1 + θ̂calm,calmB )1−γ − 1

]
− λcalm,contA − λcalm,contB

Ĉcalm,cont = λcalm,contA (1 + θ̂calm,contA )1−γ + λcalm,contB (1 + θ̂calm,contB )1−γ

Ĉcont,calm = λcont,calm(1 + θ̂cont,calm)1−γ

Ĉcont,cont = (1− γ)
[
r + θ̂contA ηcontA + θ̂contB ηcontB

− θ̂cont,contA λcont,contA (1 + ηcont,contA )− θ̂cont,contB λcont,contB (1 + ηcont,contB )

−θ̂cont,calmλcont,calm(1 + ηcont,calm)
]

− 0.5γ(1− γ)
[
(θ̂contA )2 + (θ̂contB )2 + 2ρcontθ̂contA θ̂contB

]
+ λcont,contA

[
(1 + θ̂cont,contA )1−γ − 1

]
+ λcont,contB

[
(1 + θ̂cont,contB )1−γ − 1

]
− λcont,calm.
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Our model Benchmark model
Paramet- Paramet- Paramet- Paramet-
rization 1 rization 2 rization 1 rization 2

Data-generating σcalmA 0.15 σA 0.1515 0.15
process σcontA 0.15

ρcalm 0.50 ρ 0.50 0.50
ρcont 0.50

λcalm,calmA 0.375 λA/λjoint 1.50 1.50

λcalm,contA 0.375
λcont,contA 3.000
λcont,calm 1.500

Lcalm,calmA 0.05 LA 0.05 0.05

Lcalm,contA 0.05
Lcont,contA 0.05

Lcont,calmA 0.00
ξA 4.00
αA 0.50
ψ 0.25

Market prices ηcalmA 0.35 0.35 ηdiffA 0.3466 0.35
of risk ηcontA 0.35 0.35

ηcalm,calmA 0.40 0.80 ηjumpA 0.40 0.40

ηcalm,contA 0.40 0.80
ηcont,contA 0.40 0.20
ηcont,calm 0.00 0.00

Table 1: Parameters

The table gives the parameters for the stocks under the physical measure (upper part)
and the market prices of risk (lower part) for our base case as explained in Section 5.1.
The two stocks are assumed to follow identical processes, so that we only give the param-
eters for stock A. The market prices of risk in our model are chosen such that either the
market prices of jump risk are identical in the calm and the contagion state (parametriza-
tion 1) or such that the expected excess return on the stock is identical in both states
(parametrization 2). The parameters written in bold numbers have been set in line with
recent empirical studies. The jump intensities in our model (written in italic numbers)
have been set in the second step. All other numbers have been calibrated in a third step
such that the average equity risk premium is identical for both parametrizations (market
prices of risk) or such that the benchmark models are as close as possible to our model.

39



our model benchmark
calm contagion

Parametrization 1 Excess Return 0.0675 0.1125 0.0825
(identical market ... from diffusion 0.0525 0.0525 0.0525
prices of risk) ... from jumps 0.0150 0.0600 0.0300

Variance 0.0244 0.0300 0.0267
... from diffusion 0.0225 0.0225 0.0230
... from jumps 0.0019 0.0075 0.0038

Parametrization 2 Excess Return 0.0825 0.0825 0.0825
(identical equity ... from diffusion 0.0525 0.0525 0.0525
risk premium) ... from jumps 0.0300 0.0300 0.0300

Variance 0.0244 0.0300 0.0263
... from diffusion 0.0225 0.0225 0.0225
... from jumps 0.0019 0.0075 0.0038

Table 2: Conditional Moments

The table gives the conditional expected excess returns and the conditional variances of
stock returns in the calm and in the contagion state as well as in the benchmark models
for the parameter set from Table 1. Furthermore, we show the contribution of diffusion
risk and jump risk to the local moments. For parametrization 1, the market prices of risk
are assumed to be equal in the calm and in the contagion state, while for parametrization
2, the expected excess returns are equal across states.
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contagion parameters calibrated jump parameters

λA/λjoint ξA αA ψ λcalm,calmA λcalm,contA λcont,contA λcont,calm

no contagion 1.50 1 0.50 0.25 0.75000 0.75000 1.50 0.75
1.50 2 0.50 0.25 0.50000 0.50000 2.00 1.00

base case 1.50 4 0.50 0.25 0.37500 0.37500 3.00 1.50
1.50 10 0.50 0.25 0.30000 0.30000 6.00 3.00
1.50 4 1/3 1/3 0.62500 0.31250 3.75 2.50
1.50 10 1/3 1/3 0.55000 0.27500 8.25 5.50
1.50 4 0.20 0.20 0.75000 0.18750 3.75 1.50
1.50 10 0.20 0.20 0.66000 0.16500 8.25 3.30
1.50 4 0.50 0.50 0.46875 0.46875 3.75 3.75
1.50 10 0.50 0.50 0.41250 0.41250 8.25 8.25
1.50 4 1/3 2/3 0.75000 0.37500 4.50 6.00
1.50 10 1/3 2/3 0.70000 0.35000 10.50 14.00

Table 3: Selection of calibrated jump parameters

Each line of the table shows one possible combination of contagion and jump parameters
leading to an ’average’ (i.e. benchmark) jump intensity of 1.5. The line marked ’no con-
tagion’ describes a situation where the calm and the contagion state equal (since ξ equals
1). The line marked ’base case’ shows the parameters for our base case parameter set also
described in Table 1.
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our model benchmark models
calm cont no cont joint

Parametrization 1: identical market prices of risk
complete Diff-Exposure 0.0778 0.0778 0.0770 0.0770

Jump-Exposure
no change of state -0.1061 -0.1061 -0.1061 -0.1061
change of state -0.1307 0.0284
hedging demand < 0 > 0 0 0

incomplete πA 0.6388 0.8934 0.7150 0.6396
Diff-Exposure 0.0958 0.1340 0.1083 0.0968
Jump-Exposure

no change of state -0.0319 -0.0447 -0.0358 -0.0640
change of state -0.0319 0

Parametrization 2: identical expected excess returns
complete Diff-Exposure 0.0778 0.0778 0.0778 0.0778

Jump-Exposure
no change of state -0.1779 -0.0590 -0.1061 -0.1061
change of state -0.1601 -0.0212
hedging demand > 0 < 0 0 0

incomplete πA 0.7671 0.6583 0.7277 0.6495
Diff-Exposure 0.1151 0.0988 0.1092 0.0974
Jump-Exposure

no change of state -0.0384 -0.0329 -0.0364 -0.0649
change of state -0.0384 0

Table 4: Optimal Portfolios/Exposures

The table shows the optimal portfolios for our model and for the two benchmark models
in a complete and in an incomplete market for a planning horizon of 20 years and for the
benchmark parameters of Table 1. For the complete market, we give the optimal exposures
to diffusion risk and the optimal exposure to jumps that (do not) induce a change from
calm to contagion or vice versa. For the incomplete market, we give the optimal weight
of stock A, as well as the induced exposures to the risk factors. Since the weights of stock
B and the exposures to risk factors related to stock B coincide with those for stock A, we
only show the results for A.
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Parametrization 1: equal market prices of risk
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Complete Market, Scaled downParametrization 2: equal equity risk premia
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Figure 2: Certainty Equivalent Returns

The figures show the certainty equivalent returns as a function of the planning horizon
for the case of equal market prices of risk (upper row) and equal equity risk premia (lower
row) in the calm and in the contagion state as well as in the benchmark cases. The results
for the incomplete market are given in the left column, the results for the complete one
in the right column. The solid blue lines give the certainty equivalent returns in the calm
state, the dashed red lines the certainty equivalent returns in the contagion state. The
dash-dotted green lines denote the certainty equivalent returns in the benchmark case
with no contagion, the dotted black lines the certainty equivalent returns in the model
with joint jumps. The results are based on the parameters given in Table 1.
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Figure 3: Model Mis-Specifiation: certainty equivalent returns for equal market prices of
risk

The figures show the certainty equivalent returns as a function of the planning horizon
for the incomplete (upper panel) and complete market (lower panel) if the economy is
in the calm state (left column) and in the contagion state (right column), depending on
which model is used for portfolio planning. The solid blue lines and the dashed red lines
give the certainty equivalent returns n the calm and contagion state, respectively, if the
correct model is used. The dash-dotted green lines indicate the CERs if a model with no
contagion is used, the dotted black lines are the CERs if a model with joint jumps is used.
The results are based on parametrization 1 from Table 1 for which the market prices of
risk are equal in both states.
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Figure 4: Model Mis-Specification: certainty equivalent returns for equal equity risk premia

The figures show the certainty equivalent returns as a function of the planning horizon
for the incomplete (upper panel) and complete market (lower panel) if the economy is
in the calm state (left column) and in the contagion state (right column), depending on
which model is used for portfolio planning. The solid blue lines and the dashed red lines
give the certainty equivalent returns in the calm and contagion state, respectively, if the
correct model is used. The dash-dotted green lines indicate the CERs if a model with
no contagion is used, the dotted black lines are the CERs if a model with joint jumps is
used. The results are based on parametrization 2 from Table 1 for which the equity risk
premium is equal in both states.
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ξ = 2
5 10 15 20

0.05

0.06

0.07

0.08

0.09

0.1
Calm State, Incomplete Market, Scaled down

 

 

correct model
wrong model no contagion
wrong model joint jumps

5 10 15 20
0.05

0.06

0.07

0.08

0.09

0.1
Contagion State, Incomplete Market, Scaled down

 

 

correct model
wrong model no contagion
wrong model joint jumps

5 10 15 20

0

0.05

0.1

0.15

Calm State, Complete Market

 

 

correct model
wrong model: no contagion
wrong model: joint jumps

5 10 15 20

0

0.05

0.1

0.15

Contagion State, Complete Market

 

 

correct model
wrong model: no contagion
wrong model: joint jumps

ξ = 4
5 10 15 20

0.05

0.06

0.07

0.08

0.09

0.1
Calm State, Incomplete Market, Scaled down

 

 

correct model
wrong model no contagion
wrong model joint jumps

5 10 15 20
0.05

0.06

0.07

0.08

0.09

0.1
Contagion State, Incomplete Market, Scaled down

 

 

correct model
wrong model no contagion
wrong model joint jumps

5 10 15 20

0

0.05

0.1

0.15

Calm State, Complete Market

5 10 15 20

0

0.05

0.1

0.15

Contagion State, Complete Market

ξ = 10
5 10 15 20

0.05

0.06

0.07

0.08

0.09

0.1
Calm State, Incomplete Market, Scaled down

 

 

correct model
wrong model no contagion
wrong model joint jumps

5 10 15 20
0.05

0.06

0.07

0.08

0.09

0.1
Contagion State, Incomplete Market, Scaled down

 

 

correct model
wrong model no contagion
wrong model joint jumps

5 10 15 20

0

0.05

0.1

0.15

Calm State, Complete Market

5 10 15 20

0

0.05

0.1

0.15

Contagion State, Complete Market

Figure 5: Model Mis-Specification: certainty equivalent returns for different values of ξ

The figures show the certainty equivalent returns for the complete market in case of model
mis-specification as a function of the planning horizon for different values of ξA = ξB = ξ.
The solid blue lines and the dashed red lines give the certainty equivalent returns in the
calm and contagion state, respectively, if the correct model is used. The dash-dotted green
lines indicate the CERs if a model with no contagion is used, the dotted black lines are
the CERs if a model with joint jumps is used. The results are based on parametrization
2 (equal equity risk premia) from Table 1 where we have chosen ξ = 2, 4, 10 and thus
changed the jump intensities according to Table 3.
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