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1 Introduction

How much should a government invest in public infrastructure or in basic research? And

how much should society invest in greenhouse gas mitigation? These decision problems

exhibit two important common characteristics: a classical public good problem and an

intergenerational equity trade-off. The public good problem requires governmental in-

tervention to restore efficiency. However, doing so inevitably involves a distributional

choice between current and future generations. Most models address the distributional

component using an infinitely-lived agent (ILA) framework where the utility of the ILA

is interpreted as a utilitarian social welfare function. The current literature offers two

distinct answers how to specify the parameter values of this welfare function. The “pos-

itive” approach suggests a calibration-based procedure that attempts to avoid explicit

normative assumptions. By contrast, the normative approach takes the standpoint that

only ethical considerations are valid to address the intergenerational trade-off. These

two approaches generally lead to significantly different results that can be traced back

to the difference in the implied social discount rate.

Barro (1974) shows that, under appropriate assumptions on altruism implying opera-

tional bequests, finitely lived generations can be aggregated into a representative ILA.

Recent empirical studies, however, indicate that the altruistic bequest motive is rather

weak.1 These findings suggest that an overlapping generations (OLG) model without

altruistic bequests would better fit reality. If so, is it appropriate to use an ILA specifi-

cation to discuss intergenerational equity trade-offs?

In this paper, we answer these questions by examining the relationship between an OLG

model in continuous time and the standard ILA economy (i.e., Ramsey-Cass-Koopmans

economy). We point out various short-comings of the ILA assumption and discuss posi-

tive and normative aspects of the distributional problem by disentangling the life plans of

finitely-lived individuals from the long-run plans of a social planner. First, we construct

an unregulated decentralized OLG economy of finitely-lived agents in continuous time.

We determine the conditions for which a decentralized OLG economy is observationally

equivalent to, i.e., exhibits the same macroeconomic observables as, an ILA economy. In

particular, we explain why and how the preference parameters of the individual house-

holds in the decentralized OLG economy differ from those in the observationally equiva-

lent ILA economy. Second, we introduce a social planner who maximizes the discounted

1 See, e.g., Hurd (1987, 1989), Kopczuk and Lupton (2007), Laitner and Juster (1996), Laitner and
Ohlsson (2001), Wilhelm (1996).
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life time utilities of the OLG as, e.g., Calvo and Obstfeld (1988) or Burton (1993). We

show that this utilitarian OLG economy is observationally equivalent to an appropriately

chosen ILA economy. However, the distribution of consumption between old and young

at any given point in time differs substantially from that of the decentralized economy if

the rate of time preference (or generational discount rate) of the social planner is lower

than that of the individual households. In this case the utilitarian OLG model implies a

trade-off between equality among the generations living at the same time and equality

of lifetime utilities between present and future generations. Third, we find that in the

OLG context the ability to decentralize the social planner’s solution is limited. In a

constrained setting, in which age-discriminating taxes are not available to governments,

the constrained social planner generally cannot achieve the first-best social optimum.

We apply our results to the recent debate on climate change mitigation. We identify the

implicit normative assumptions in the positive approach to social discounting, as, for

example, advocated by Nordhaus (2007). In particular, we point out that, in general,

the positive approach to specify the social welfare function implicitly assumes that the

time preference rate of the social planner exceeds the one of the individual households.

This contrasts sharply with most of the ethical arguments found in the debate. The

normative approach to social discounting, as followed by Stern (2007), employs an ILA

model with a near zero rate of time preference expressing the desire to treat generations

equally. However, the ILA model does not capture the distribution of consumption among

generations alive at a given point in time. The utilitarian OLG model implies that a more

equal treatment of lifetime utilities between present and future generations can come at

the expense of a more unequal treatment of the generations alive at a given point in

time – at least if individuals possess a positive rate of pure time preference.

There are several other papers that examine the relationship between ILA and OLG

models. Aiyagari (1985) proved that under certain assumptions in discrete time an OLG

model with two-period lived individuals is observationally equivalent to an ILA model.

For the continuous time setting, Calvo and Obstfeld (1988) observed this equivalence for

the social planner solution in an OLG setting with finitely lived agents. While the latter

focus on time inconsistencies in fiscal policy, our focus is on intergenerational trade-offs.

Formally, our OLG model most closely relates to d’Albis (2007) who examines the in-

fluence of demographic structure on capital accumulation and growth. In contrast to

d’Albis (2007), we allow for exogenous technological change. In contrast to both of the

above continuous time OLG models, we assume deterministic rather than stochastic

life-times. Moreover, we provide an explicit mapping between the two frameworks with
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respect to the rates of time preference and the intertemporal elasticities of substitution.

Our combination of continuous time and deterministic finite life-time also distinguishes

our framework from the most widespread continuous time OLG framework by Blanchard

(1985) and Yaari (1965), which features a constant probability of death and, thus, an in-

finite planning horizon. Several environmental economic applications, including Howarth

(1998), Howarth (2000), Gerlagh and Keyzer (2001), Gerlagh and van der Zwaan (2000),

and Stephan and Müller-Fürstenberger (1997), observed that ILA models can be cali-

brated to yield outcomes similar to OLG models. These papers use numerical simulations

of integrated assessment models, whereas we derive the analytical relation between the

decentralized OLG economy in continuous time and the ILA economy.

The paper is structured as follows. In Section 2, we develop a decentralized OLG model

in continuous time. The ILA economy is introduced in Section 3. We derive conditions

for observational equivalence of the decentralized OLG economy and an ILA model in

Section 4. In Section 5, we examine the relationship between the latter and two social

planner solutions, unconstrained and constrained. We apply our results to the recent

debate on climate change mitigation in Section 6 and conclude in Section 7.

2 An OLG Growth Model in Continuous Time

We introduce an OLG exogenous growth model in continuous time and analyze the long-

run individual and aggregate dynamics of a decentralized economy in market equilibrium.

2.1 Households

Consider a continuum of households, each living the finite time span T . All households ex-

hibit the same intertemporal preferences irrespective of their time of birth s ∈ (−∞,∞).

We assume that if households are altruistic, their altruistic preferences are not suffi-

ciently strong for an operative bequest motive. This allows us to abstract from altruism

in individual preferences. As a consequence, all households maximize their own welfare

U , which is the discounted stream of instantaneous utility derived from consumption

during their lifetime

U(s) ≡

∫ s+T

s

c(t, s)
1− 1

σH

1− 1
σH

exp
[
− ρH(t− s)

]
dt , (1)
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where c(t, s) is the consumption at calender time t of households born at time s, σH is

the constant intertemporal elasticity of substitution and ρH denotes the constant rate

of (pure) time preference of the households. Each household is endowed with one unit

of labor at any time alive, which is supplied inelastically to the labor market at wage

w(t). In addition, households may save and borrow assets b(t, s) at the interest r(t). The

household’s budget constraint is2

ḃ(t, s) = r(t)b(t, s) + w(t)− c(t, s) , t ∈ [s, s+ T ] . (2)

Households are born without assets and are not allowed to be indebted at time of death.

Thus, the following boundary conditions apply for all generations s

b(s, s) = 0 , b(s+ T, s) ≥ 0 . (3)

Because of the non-operative bequest motive, intertemporal welfare U of a household

born at time s always increases in consumption at time s + T . Thus, in the household

optimum, the second boundary condition in equation (3) holds with equality.

Maximizing equation (1) for any given s subject to conditions (2) and (3) yields the well

known Euler equation

ċ(t, s) = σH
[
r(t)− ρH

]
c(t, s) , t ∈ [s, s+ T ] . (4)

The behavior of a household born at time s is characterized by the system of differential

equations (2) and (4) and the boundary conditions for the asset stock (3).

At any time t ∈ (−∞,∞) the size of the population N(t) increases at the constant rate

ν ≥ 0. Normalizing the population at time t = 0 to unity implies the birth rate γ3

N(t) ≡ exp[νt] ⇒ γ =
ν exp[νT ]

exp[νT ]− 1
. (5)

2 Throughout the paper, partial derivatives are denoted by subscripts (e.g., Fk(k, l) = ∂F (k, l)/∂k),
derivatives with respect to calendar time t are denoted by dots and derivatives of functions depending
on one variable only are denoted by primes.

3 The equation is derived by solving
∫ t

t−T
γ exp[νs] ds = N(t), where γ exp[νs] denotes the cohort size of

the generation born at time s. Observe that γ → 1/T for ν → 0 and γ → ν for T →∞. Anticipating
definition (12), we can also write γ = 1/QT (ν).
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2.2 Firms

Consider a continuum of identical competitive firms i ∈ [0, 1]. All firms produce a homo-

geneous consumption good under conditions of perfect competition from capital k(t, i)

and effective labor A(t)l(t, i). A(t) characterizes the technological level of the economy

and grows exogenously at a constant rate ξ. Normalizing technological progress at t = 0

to unity implies

A(t) ≡ exp[ξt] . (6)

All firms have access to the same production technology F (k(t, i), A(t)l(t, i)), which

exhibits constant returns to scale and positive but strictly decreasing marginal produc-

tivity with respect to both inputs capital and effective labor. Furthermore, F satisfies

the Inada conditions.

Constant returns to scale of the production function and symmetry of the firms allow us

to work with a representative firm whose decision variables are interpreted as aggregate

variables. With minor abuse of notation, we introduce aggregate capital per effective

labor, k(t), and aggregate capital per capita, k̄(t),

k(t) ≡

∫ 1
0 k(t, i) di

A(t)
∫ 1

0 l(t, i) di
, k̄(t) ≡

∫ 1
0 k(t, i) di

N(t)
. (7)

In addition, we define the intensive form production function f
(
k(t)

)
≡ F

(
k(t), 1

)
.

Profit maximization of the representative firm yields for the wage w(t) and the interest

rate r(t)

w(t) = A(t)
[
f
(
k(t)

)
− f ′

(
k(t)

)
k(t)

]
, (8a)

r(t) = f ′
(
k(t)

)
. (8b)

2.3 Market Equilibrium and Aggregate Dynamics

In order to investigate the aggregate dynamics of the economy, we introduce aggregate

household variables per effective labor by integrating over all living individuals and divid-

ing by the product of technological level and the labor force of the economy. Analogously

to equation (7) we define under slight abuse of notation per effective labor household
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variables, x(t), and aggregate household variables per capita, x̄(t),

x(t) ≡

∫ t
t−T x(t, s)γ exp[νs] ds

A(t)
∫ 1

0 l(t, i) di
, x̄(t) ≡

∫ t
t−T x(t, s)γ exp[νs] ds

N(t)
, (9)

where x(t, s) stands for the individual household variables consumption c(t, s) and assets

b(t, s).

The economy consists of three markets: the labor market, the capital market and the

consumption good market. We assume the economy to be in market equilibrium at all

times t. In consequence, labor demand equals the population size, i.e.,
∫ 1

0 l(t, i) di = N(t),

and capital in terms of effective labor equals aggregate assets in terms of effective labor,

i.e., k(t) = b(t). Then, the aggregate dynamics imply4

ċ(t)

c(t)
= σH

[
r(t)− ρH

]
− (ν + ξ)−

∆c(t)

c(t)
, (10a)

k̇(t) = f
(
k(t)

)
− (ν + ξ)k(t)− c(t) , (10b)

where the term

∆c(t) ≡
γ exp[ν(t− T )]c(t, t− T )− γ exp[νt]c(t, t)

exp[νt] exp[ξt]
. (10c)

captures the difference in aggregate consumption per effective labor between the gener-

ation born and the generation dying at time t.

2.4 Steady State

Our analysis will concentrate on the long-run steady state growth path of the economy,

in which both consumption per effective labor and capital per effective labor are constant

over time, i.e., c(t) = c⋆, k(t) = k⋆. From equations (8) follows that in the steady state

the interest rate r(t) = r⋆ ≡ f ′(k⋆) is constant and the wage w(t) grows at the rate

of technological progress ξ. The wage relative to the technology level is constant in the

steady state

w⋆ ≡
w(t)

exp[ξt]

∣
∣
∣
∣
k=k⋆

=
[
f(k⋆)− f ′(k⋆)k⋆

]
. (11)

4 Note that ẋ(t) = −(ν+ξ)x(t)+exp[−(ν+ξ)t]
∫ t

t−T
ẋ(t, s)γ exp[νs] ds+γ

[

x(t, t)− x(t,t−T )
exp[(ν+ξ)T ]

]

exp[−ξt].

6



c⋆(a) b⋆(a)

0 010 1020 2030 3040 4050 50
a a

Figure 1: Steady state paths of consumption (left) and asset (right) for individual house-
holds over age.

For T ∈ R++ we define the function QT : R→ R+ as

QT (r) ≡
1− exp[−rT ]

r
, ∀ r 6= 0 , (12)

and QT (0) ≡ T . QT (r) can be interpreted as the present value of an annuity received

over T years, at the discount rate r. Properties of the function QT are summarized

in Lemma 1 in appendix A.10. Expressing steady state consumption and wealth of

individual households relative to the technology level returns functions that only depend

on the household’s age a ≡ t− s:

c⋆(a) ≡
c(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= w⋆
QT (r⋆− ξ)

QT
(
r⋆− σH(r⋆− ρH)

) exp
[(
σH(r⋆− ρH)− ξ

)
a
]
, (13a)

b⋆(a) ≡
b(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= w⋆Qa
(
r⋆− σH(r⋆− ρH)

)
exp[(r⋆− ξ)a]

×

[

Qa(r
⋆− ξ)

Qa
(
r⋆− σH(r⋆− ρH)

) −
QT (r⋆− ξ)

QT
(
r⋆− σH(r⋆− ρH)

)

]

.

(13b)

Figure 1 illustrates these steady state paths for individual consumption and assets in

terms of the technological level of the economy.5 The individual consumption path grows

exponentially over the lifetime of each generation. Individual household assets follow an

inverted U-shape, i.e., households are born with no assets, accumulate assets in their

youth and consume their wealth towards their death.

5 The calculations use the following model specifications: f(k) = kα, α = 0.3, ρ = 3%, σ = 1, ξ = 1.5%,
ν = 0, T = 50.
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Applying the aggregation rule (9), we obtain for the aggregate values per effective labor

c⋆ = w⋆
QT (r⋆ − ξ)

QT (ν)

QT
(
ν + ξ − σH(r⋆ − ρH)

)

QT
(
r⋆ − σH(r⋆ − ρH)

) , (14a)

b⋆ =
w⋆

r⋆ − ξ

[
QT (ξ + ν − r⋆)

QT (ν)
− 1

]

−
w⋆

r⋆ − σH(r⋆ − ρH)

×
QT (r⋆ − ξ)

QT (ν)

QT (ξ + ν − r⋆)−QT
(
ξ + ν − σH(r⋆ − ρH)

)

QT
(
r⋆ − σH(r⋆ − ρH)

) .

(14b)

The following proposition guarantees the existence of a non-trivial steady state for a

large class of production functions, in particular, CES-production functions.

Proposition 1 (Existence of the steady state)

There exists a k⋆ > 0 solving equations (8) and (14) with b⋆ = k⋆ if

lim
k→0
−kf ′′(k) >







σT , if σ ∈ (0, 1]

T , if σ > 1 .
(15)

The proof is given in the appendix.

In the proof of Proposition 1 we show that steady states may be equal to or larger than

the golden rule capital stock kgr, which is implicitly defined by rgr ≡ ν+ξ = f ′ (kgr). As

our aim is to compare the decentralized OLG with an ILA economy, we are particularly

interested in steady states with k⋆ < kgr.6

Definition 1 (Decentralized OLG economy)

(i) The set Γ ≡ {f, ξ, ν, σH , ρH , T} defines a decentralized OLG economy.

(ii) Γ⋆ ∈ {Γ| ∃ k⋆ with 0 < k⋆ < kgr
}

defines a decentralized OLG economy with a

dynamically efficient capital stock k⋆ < kgr. For an economy Γ⋆ we refer by k⋆ and

r⋆ to a steady state satisfying this condition.

The following proposition shows the existence of dynamically efficient economies Γ⋆.

Analogously to d’Albis (2007), we introduce the share of capital in output, s(k), and the

elasticity of substitution between capital and labor, ǫ(k),

s(k) ≡
kf ′(k)

f(k)
, ǫ(k) ≡ −

f(k)− f ′(k)k

k2f ′′(k)
. (16)

6 In the ILA economy only steady states k⋆ < kgr may occur.
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Proposition 2 (Existence and uniqueness of dynamically efficient steady states)

Given that condition (15) holds, there exists a steady state with k⋆ < kgr if

ρH ≥
σH − 1

σH
ξ + ν. (17)

There exists exactly one k⋆ < kgr if

s(k) ≤ ǫ(k) and
d

dk

(
s(k)

ǫ(k)

)

≥ 0 , (18a)

and, in case that σH > 1,

ρH <
σH − 1

σH
(ν + ξ) . (18b)

The proof is given in the appendix.

Although we cannot solve the implicit equation k⋆ = b⋆ analytically and, therefore,

cannot calculate the steady state interest rate r⋆, the following proposition determines a

lower bound of the steady state interest rates in a dynamically efficient OLG economy.

Proposition 3 (Lower bound of steady state interest rate)

For any economy Γ∗ holds

r⋆ > ρH +
ξ

σH
.

The proof is given in the appendix.

The lower bound of the steady state interest rate in the decentralized OLG economy will

play an important role for the comparison with the ILA economy.

3 Infinitely-Lived Agent Economy and Observational Equivalence

As intergenerational trade-offs are mostly discussed in ILA frameworks rather than in

OLG models, we investigate how the macroeconomic observables of an OLG and ILA

economy relate to each other. Therefore, we first introduce the ILA model and then define

observational equivalence between two economies. Whenever we compare two different

model structures in this paper we assume that population growth and the production

side of the economy are identical.
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Variables of the ILA model that are not exogenously fixed to its corresponding coun-

terparts in the OLG model are indexed by a superscript R. The ILA model abstracts

from individual generations’ life cycles only considering aggregate consumption and asset

holdings. In the ILA model optimal consumption and asset paths per capita are derived

by maximizing the discounted stream of instantaneous utility of consumption per capita

weighted by population size

UR ≡

∫ ∞

0
N(t)
c̄R(t)

1− 1

σR

1− 1
σR

exp
[
− ρRt

]
dt , (19)

subject to the budget constraint

ḃR(t) =
[
rR(t)− ξ − ν

]
bR(t) +

wR(t)

A(t)
− cR(t) , (20)

and the transversality condition

lim
t→∞
b(t) exp

[

−

∫ t

0
rR(t′) dt′ + (ξ + ν)t

]

= 0 . (21)

Maximizing (19) subject to (20) and (21) yields the well known Euler equation of the

ILA model

ċR(t)

cR(t)
= σR

[
rR(t)− ρR

]
− ξ . (22a)

Making use of equation (22a) we know that in a steady state the transversality condition

translates into

ρR >

(

1−
1

σR

)

ξ + ν . (22b)

In the following we assume that the transversality condition is met. Note that it is the

strict version for the Ramsey agent of the dynamic efficiency condition for the household

in the OLG economy.

Assuming markets to be in equilibrium at all times (i.e.,
∫ 1

0 l(t, i) di = N(t) and kR(t) =

bR(t)), the dynamics of the capital stock per effective labor in the ILA economy reads

k̇R(t) = f
(
kR(t)

)
− (ν + ξ)kR(t)− cR(t) , (22c)

which is formally equivalent to the corresponding equation (10b) of the OLG economy.

10



To compare the different models we use the following definition:

Definition 2 (Observational equivalence)

(i) Two economies A and B are observationally equivalent if coincidence in their

current observable macroeconomic variables leads to coincidence of their future ob-

servable macroeconomic variables. Formally, if for any cA(0) = cB(0) and kA(0) =

kB(0) it holds that cA(t) = cB(t) and kA(t) = kB(t) for all t ≥ 0.

(ii) Two economies A and B are observationally equivalent in steady state if there

exist c⋆ and k⋆ such that both economies are in a steady state.

Note that observational equivalence in the steady state (ii) is weaker than general ob-

servational equivalence (i).

4 Decentralized OLG Versus Infinitely-Lived Agent Economy

Now, we investigate under what conditions a decentralized OLG economy, as outlined

in Section 2, is observationally equivalent to an ILA economy, as defined in Section 3.

The following proposition states the necessary and sufficient condition:

Proposition 4 (Decentralized OLG versus ILA economy)

(i) A decentralized OLG economy Γ⋆ and an ILA economy are observationally equiv-

alent if and only if for all t ≥ 0 the following condition holds:

ρR =
σH

σR
ρH +

(

1−
σH

σR

)

r(t) +
1

σR

[
∆c(t)

c(t)
+ ν

]

. (23)

(ii) For any decentralized OLG economy Γ⋆ there exists an ILA economy that is obser-

vationally equivalent in the steady state.

The proof is given in the Appendix.

Proposition 4 states that any decentralized OLG economy Γ⋆ is – at least in the steady

state – observationally equivalent to an ILA economy for an appropriate choice of
(
σR, ρR

)
. Note that

(
σR, ρR

)
is, in general, not uniquely determined by (23).

If we assume that the intertemporal propensity to smooth consumption between two

periods is the same for the households in the OLG and the ILA economy, i.e., σH = σR,

we obtain the following corollary.
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Corollary 1 (Identical intertemporal elasticity of substitution)

For σR = σH condition (23) reduces to

ρR = ρH +
1

σR

[
∆c(t)

c(t)
+ ν

]

. (24)

To understand why the pure rates of time preference in the ILA economy differs from

the observationally equivalent OLG economy, we analyze the two terms in brackets on

the right-hand side of equation (24). The first term in brackets captures the difference

in consumption between the cohort dying and the cohort just born relative to aggregate

consumption. The term is a consequence of the fact that every individual in the OLG

model plans his own life cycle, saving while young and spending while old. If there is

no population growth, i.e., ν = 0 (γ = 1/T ), individual consumption growth is higher

than aggregate consumption growth and the term is always positive. More generally

the following proposition states that the first term is positive if and only if individual

consumption grows faster than aggregate consumption.7

Proposition 5 (Sign of ∆c(t)/c(t))

For any decentralized OLG economy Γ⋆ ∆c(t)/c(t) > 0 holds if and only if

ċ(t, s)

c(t, s)
>

˙̄c(t)

c̄(t)
+ ν for all s ∈ [t− T, t] . (25)

Proof: The equivalence between ∆c(t)/c(t) > 0 and (25) is obtained by substituting

the individual household’s Euler equation (4) into the aggregate Euler equation (10a)

and solving for ∆c(t)/c(t). �

Note that the right hand side of inequality (25) represents the growth rate of aggregate

consumption.

The second term in brackets of equation (24) reflects that instantaneous utility in the ILA

model is weighted by population size. Hence, for a growing population future consump-

tion receives an increasing weight in the objective function. A corresponding weighting

does not occur in the decentralized OLG economy, where all households only maximize

own lifetime utility.

It follows immediately from Proposition 5 that for σR = σH both effects in equation (24)

together yield ρR > ρH whenever ċ(t, s)/c(t, s) > ˙̄c(t)/c̄(t), i.e., individual consumption

7 Equation (25) holds for all s ∈ [t− T, t] if and only if it holds for some s.
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growth dominates growth per capita. The following corollary shows that the latter con-

dition always holds in the steady state and extends the analysis to the general case in

which σH 6= σR.

Corollary 2 (Comparing time preference rates)

Suppose a decentralized OLG economy Γ⋆ is observationally equivalent in the steady state

to an ILA economy. Then the following statements hold:

(i) σR = σH ⇒ ρR > ρH .

(ii) In general,

ρR > ρH ⇔ σR > σH
[

1 +
1

ξ

(
∆c(t)

c(t)
+ ν

)]−1

. (26)

The proof is given in the Appendix.

Equipping an ILA with a lower intertemporal substitutability than the household in

the decentralized OLG economy would ceteris paribus increase the steady state interest

rate in the ILA economy (as opposed to the situation whith coinciding elasticities).

In order to match the same observed interest rate as before, the ILA’s rate of time

preference has to be lower. Thus, the time preference relation can flip around if picking

the intertemporal elasticity of substitution of the ILA sufficiently below that of the

household in the decentralized OLG economy (note that [·]−1 < 1).

5 Utilitarian OLG Versus Infinitely-Lived Agent Economy

Consider an OLG economy, which is governed by a social planner maximizing a social

welfare function. In this section, we investigate the conditions under which this economy

is observationally equivalent to an ILA economy. We assume a utilitarian social welfare

function in which the social planner trades off the weighted lifetime utility of different

generations. The weight consists of two components. First, the lifetime utility of the

generation born at time s is weighted by cohort size. Second, the social planner exhibits

a social rate of time preference ρS ≥ 0 at which he discounts the expected lifetime utility

at birth for generations born in the future.8

8 We examine the discounted utilitarian social welfare function of e.g. Burton (1993) and Calvo and
Obstfeld (1988) as it represents the de facto standard in the economic literature. For a general criticism
of discounted utilitarianism, as also employed in the climate change debate by Nordhaus (2007) and
Stern (2007), see e.g. Sen and Williams (1982) and Asheim and Mitra (forthcoming). Calvo and
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Assuming that the social planner maximizes social welfare from t = 0 onward, the social

welfare function consists of two parts: (i) the weighted integral of the remaining lifetime

utility of all generations alive at time t = 0, and (ii) the weighted integral of all future

generations

W ≡

∫ 0

−T







∫ s+T

0

c(t, s)
1− 1

σH

1− 1
σH

exp
[
− ρH(t− s)

]
dt






γ exp[νs] exp[−ρSs]ds

+

∫ ∞

0







∫ s+T

s

c(t, s)
1− 1

σH

1− 1
σH

exp
[
− ρH(t− s)

]
dt






γ exp[νs] exp[−ρSs]ds .

(27a)

The term in the first curly braces is the (remaining) lifetime utility U(s) of a household

born at time s, as given by equation (1), the functional form of which is a given primitive

for the social planner. The term γ exp[νs] denotes the cohort size of the generation born

at time s. Changing the order of integration and replacing t− s by age a, we obtain

W =

∫ ∞

0







∫ T

0

c(t, t−a)
1− 1

σH

1− 1
σH

γ exp
[
(ρS− ρH− ν)a

]
da






exp

[
(ν −ρS)t

]
dt . (27b)

In the following, we consider two different scenarios. In the unconstrained utilitarian OLG

economy, a social planner maximizes the social welfare function (27b) directly controlling

investment and household consumption. Thus, the social planner is in command of a

centralized economy. In contrast, in the constrained utilitarian OLG economy the social

planner relies on a market economy, in which the households optimally control their

savings and consumption maximizing their individual lifetime utility (1). In this second

scenario, the social planner is constrained to influencing prices by a tax/subsidy regime

in order to maximize the social welfare function (27b).

5.1 Unconstrained Utilitarian OLG Economy

We determine the unconstrained social planner’s optimal allocation by maximizing (27b)

subject to the budget constraint (10b) and the transversality condition

lim
t→∞
k(t) exp

[

−

∫ t

0
f ′
(
k(t′)

)
dt′ + (ξ + ν)t

]

= 0 . (28)

Obstfeld (1988) show that social welfare functions which do not treat all present and future generations
symmetrically, i.e., discount lifetime utility to the same point of reference (here the date of birth),
may lead to time-inconsistent optimal plans.
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Following the approach of Calvo and Obstfeld (1988), we interpret the unconstrained

social planner’s optimization problem as two nested optimization problems. The first

problem is obtained by defining

V
(
c̄(t)

)
≡ max
{c(t,t−a)}Ta=0

∫ T

0

c(t, t−a)
1− 1

σH

1− 1
σH

γ exp
[
(ρS − ρH − ν)a

]
da , (29)

subject to

∫ T

0
c(t, t−a)γ exp[−νa]da ≤ c̄(t) . (30)

The solution to this maximization problem is the social planner’s optimal distribution

of consumption between all generations alive at time t.

Proposition 6 (Optimal consumption distribution for given time t)

The optimal solution of the maximization problem (29) subject to condition (30) is

c(t, t−a) = c̄(t)
QT (ν)

QT
(
ν + σH(ρH − ρS)

) exp
[
− σH(ρH− ρS)a

]
. (31)

As a consequence, all households receive the same amount of consumption at time t

irrespective of age for ρH = ρS, and receive less consumption the older (younger) they

are at a given time t for ρH > ρS (ρH < ρS).

The proof is given in the appendix.

Proposition 6 states that the difference between the households’ rate of time preference

ρH and the social rate of time preference ρS determines the social planner’s optimal

distribution of consumption across households of different age at some given time t. In

particular, if ρH > ρS the consumption profile with respect to age is qualitatively op-

posite to that of the decentralized solution at any time t, as following from the Euler

equation (4) and illustrated in Figure 2.9 That is, in the social planner’s solution house-

holds receive less consumption the older they are, whereas they would consume more

the older they are in the decentralized OLG economy. The intuition for this result is as

follows. The social planner weighs the lifetime utility of every individual discounted to

9 We do not take up a stance on the relationship between the individual and the social rate of time
preference, but merely hint at the resulting consequences. This is in line with Burton (1993), who
argues that “. . . they represent profoundly different concepts” (p. 121/122) and, thus, may differ. In
fact, ρH trades off consumption today versus consumption tomorrow within each generation, while ρS

trades off lifetime utilities across generations. If they are supposed to differ, then it is usually assumed
that ρH > ρS (see also Heinzel and Winkler 2007: Sec. 2).
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a) Decentralized OLG

c) Utilitarian OLG (ρH > ρS)

b) Utilitarian OLG (ρH = ρS)

d) Utilitarian OLG (ρH < ρS)

0 0

0 0

T T

T T

a a

a a

Figure 2: Distribution of consumption across all generations alive at given time t de-
pendent on age a for the decentralized OLG and three different utilitarian
OLGs.

the time of birth. Thus, the instantaneous utility at time t of those who are younger

(born later) is discounted for a relatively longer time at the social planner’s time prefer-

ence (before birth) and for a relatively shorter time by the individual’s time preference

(after birth) than is the case for the instantaneous utility at time t of those who are older

(born earlier). For ρH > ρS the social planner’s time preference is smaller and, thus, the

young generation’s utility at time t receives higher weight.

Proposition 6 shows that the standard approach of weighted intergenerational utilitar-

ianism poses a trade-off between intertemporal generational equity and intratemporal

generational equity to the social planner whenever households exhibit a positive rate of

time preference. Lifetime utilities of today’s and future generations receive equal weight

if and only if the social rate of time preference is zero. But then, ρH > ρS = 0 implies

that at each point in time the young enjoy higher consumption than the old. In contrast,

an equal distribution of consumption among the generations alive is obtained if and only

if social time preference matches individual time preference. However, a positive social

rate of time preference comes at the expense of an unequal treatment of lifetime utilities
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of different generations. This trade-off only vanishes if the individuals’ and the social

planner’s rates of time preference are both equal to zero. Such an equality trade-off can

only be captured in an OLG model which explicitly considers the life cycles of different

generations.

We now turn to the second part of the maximization problem, which optimizes c̄(t) over

time. It is obtained by replacing the term in curly brackets in equation (27b) by the left

hand side of equation (29) resulting in

max
{c̄(t)}∞t=0

∫ ∞

0
V
(
c̄(t)

)
exp[νt] exp

[
− ρSt

]
dt , (32)

subject to the budget constraint (10b). Observe that problem (32) is formally equivalent

to an ILA economy with the instantaneous utility function V
(
c̄(t)

)
and the time pref-

erence rate ρS .10 We obtain V
(
c̄(t)

)
by inserting the optimal consumption profile (31)

into equation (29) and carrying out the integration

V
(
c̄(t)

)
=

[

QT
(
ν + σH(ρH − ρS)

)

QT (ν)

] 1

σH c̄(t)
1− 1

σH

1− 1
σH

. (33)

The social planner’s maximization problem (32) is invariant under affine transformations

of the objective function (33), in particular, under a multiplication with the inverse of

the term in square brackets. Thus, problem (32) is identical to the optimization problem

in the ILA economy when setting the intertemporal elasticity of substitution σR = σH

and the time preference rate ρR = ρS .

Proposition 7 (Unconstrained utilitarian OLG and ILA economy)

For an unconstrained utilitarian OLG economy, i.e., a social planner maximizing the

social welfare function (27b) subject to the budget constraint (10b) and the transversality

condition (28), the following statements hold:

(i) An unconstrained utilitarian OLG economy is observationally equivalent to the ILA

economy if and only if σR = σH and ρR = ρS.

(ii) An unconstrained utilitarian OLG economy is observationally equivalent in the

steady state to an ILA economy if and only if

ρR = ρS + ξ
σR − σH

σRσH
. (34)

10 Such an equivalence was already observed by Calvo and Obstfeld (1988).
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The proof is given in the appendix.

Proposition 7 states that, maximizing the utilitarian social welfare function (27b) yields

the same aggregate consumption and capital paths as maximizing the welfare (19) in

the ILA model with σR = σH and ρR = ρS . This result, however, does not imply that

the unconstrained social planner problem can, in general, be replaced by an ILA model.

First, to derive the equivalence result, we have assumed a social planner who does not

exhibit any preferences for smoothing lifetime utility across generations. The parameter

σH in equation (33) stems from the individuals’ preferences to smooth consumption

within the lifetime of each generation. It is therefore a given primitive to the social

planner. Thus, the only normative parameter the social planner may choose is the social

time preference rate ρS . It remains an open question for future research whether a

different welfare functional for the unconstrained utilitarian social planner exists that

permits a normative choice of σS for the social planner and still delivers observational

equivalence to an ILA model with ρS = ρR.

Second, in the ILA setting, the first-best solution can easily be decentralized, for example,

via taxes that ensure the optimal path of the aggregate capital stock. However, this

may not be the case for the unconstrained social planner’s problem as the latter is

also concerned about the intratemporal allocation of consumption across all generations

alive at a certain point in time. Before, we investigate the decentralization of the social

optimum in the next section, we compare the outcome of the OLG economy managed

by the unconstrained social planner to that of a decentralized OLG economy. In all

comparisons between a utilitarian and a decentralized OLG economy, we assume identical

preferences of the individual households in both economies.

Proposition 8 (Unconstrained utilitarian OLG and decentralized OLG)

(i) For any economy Γ∗ there exists an unconstrained utilitarian OLG that is obser-

vationally equivalent in the steady state. In such a steady state ρS > ρH .

(ii) In the steady state, an economy Γ∗ and an unconstrained utilitarian OLG exhibit

the same allocation of consumption across the generations alive at each point in

time if and only if they are observationally equivalent in the steady state.

The proof is given in the appendix.

Remark: The converse of (i) is not true, as there exists no economy Γ∗ that would be

observationally equivalent to an unconstrained utilitarian OLG with ρS < ρH .
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Proposition 8 implies that an unconstrained utilitarian OLG economy exhibits the same

aggregate steady state as the decentralized OLG economy if and only if the intratemporal

distribution of consumption between all generations alive coincide. For this to hold, the

social planner’s rate of time preference has to be higher than the individual households’

rate of time preference.

5.2 Constrained Utilitarian OLG Economy

As seen in Proposition 8, the optimal solution of a social planner maximizing (27b)

subject to the budget constraint (10b) and the transversality condition (28) is, in general,

not identical to the outcome of a decentralized OLG economy.11 Thus, the question arises

whether and if so how the social optimum is implementable in a decentralized market

economy. Calvo and Obstfeld (1988) show that it is possible to implement the social

optimum by a transfer scheme discriminating by date of birth s and age a. Such a

transfer scheme may be difficult to implement because of its administrative burden. In

addition, it is questionable whether taxes and subsidies which are conditioned on age

per se are politically viable.12

As a consequence, we consider a social planner that cannot discriminate transfers by age

but may only influence prices via taxes and subsidies. In particular, we assume that the

social planner may impose taxes/subsidies on capital and labor income. Let τr(t) and

τw(t) denote the tax/subsidy on returns on savings and on labor income, respectively.13

The individual households of the OLG economy base their optimal consumption and sav-

ing decisions on the effective interest rate re
(
t, τr(t)

)
and the effective wage we

(
t, τw(t)

)

defined by

re
(
t, τr(t)

)
= r(t)− τr(t) , (35a)

we(t, τw(t)
)

= w(t)
[
1− τw(t)

]
. (35b)

Then, the individual budget constraint reads

ḃe(t, s) = re
(
t, τr(t)

)
be(t, s) + we(t, τw(t)

)
− ce(t, s) . (35c)

11 Recall that we assume the individual preference parameters to be identical in both economies.
12 See also the “Age Discrimination Act of 1975” for the US stating that “...no person in the United

States shall, on the basis of age, be excluded from participation in, be denied the benefits of, or be
subjected to discrimination under, any program or activity receiving Federal financial assistance.” Note
that programs like medicare use age as a proxy for the health condition and do not discriminate by
age per se.

13 Following the standard convention, τi(t) is positive if it is a tax and negative if it is a subsidy.
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Given this budget constraint, individual households choose consumption paths which

maximize lifetime utility (1). Thus, the optimal consumption path ce
(
t, s, {r(t′), τr(t

′),

τw(t′)}s+Tt′=s
)

is a function of the paths of the interest rate r(t) and the taxes τr(t) and

τw(t).

Note that for a given path of the interest rate and given tax/subsidy schemes {r(t), τr(t),

τw(t)}s+Tt=s the individual household’s optimal paths of consumption and assets can be

characterized as in the decentralized OLG economy by (2) and (4) when using re
(
t, τr(t)

)

and we
(
t, τw(t)

)
instead of r(t) and w(t), respectively. Applying the aggregation rule

(9) yields aggregate consumption per effective labor ce
(
t, {r(t′), τr(t

′), τw(t′)}t+Tt′=t−T
)
. To

analyze observational equivalence between such a constrained utilitarian OLG economy

and an ILA economy, we have to restrict redistribution to mechanisms which do not

alter the aggregate budget constraint (10b) of the economy. We consider the following

redistribution scheme which yields a balanced government budget at all times

τw(t)w(t) = −τr(t)b̄(t) . (35d)

Under these conditions the social optimum is, in general, not implementable.

Proposition 9 (Implementation of the social optimum)

The optimal solution of a social planner maximizing (27b) subject to the budget con-

straint (10b) and the transversality condition (28) is not implementable by a tax/subsidy

regime satisfying (35) unless this solution is identical to the outcome of the unregulated

decentralized OLG economy Γ⋆.

The proof is given in the appendix.

Proposition 9 states that a constrained social planner who can only impose a tax/subsidy

regime on interest and wages cannot achieve the first-best social optimum. The intuition

is that the constrained social planner can achieve the socially optimal aggregate levels of

capital and consumption, but cannot implement the socially optimal intratemporal dis-

tribution of consumption across generations living at the same time. The only exception

occurs if the social optimum happens to be identical to the outcome of the unregulated

OLG economy. In this case, there is no need for the social planner to interfere and,

thus, it does not matter whether the social planner can freely re-distribute consumption

among generations or is constrained to a self-financing tax/subsidy scheme. In all other

cases, the constrained social planner will choose a tax path such as to achieve a second-

best optimum. In consequence, Proposition 9 questions the validity of the ILA model in
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deriving distributional policy advice for a democratic government that, most likely, is

not able to redistribute by age between the generations alive.

6 Stern vs. Nordhaus – A Critical Review of Choosing the Social Rate of

Time Preference

A prime example for questions of intergenerational equity is the mitigation of anthro-

pogenic climate change, as most of its costs accrue today while the benefits spread over

decades or even centuries. The question of optimal greenhouse gas abatement has been

analyzed in integrated assessment models combining an ILA economy with a climate

model. Interpreting the ILA’s utility function (19) as a utilitarian social welfare func-

tion, intergenerational equity concerns are closely related to the choice of intertemporal

elasticity of substitution σR and the rate of time preference ρR. This is illustrated well by

Nordhaus (2007), who compares two runs of his open source integrated assessment model

DICE-2007. The first run uses his preferred specifications σR = 0.5 and ρR = 1.5%. The

second run employs σR = 1 and ρR = 0.1%, which are the parameter values chosen by

Stern (2007). These different parameterizations cause a difference in the optimal reduc-

tion rate of emissions in the period 2010–2019 of 14% versus 53% and a difference in the

optimal carbon tax of 35$ versus 360$ per ton C.

In the following, we apply our results derived in Sections 4 and 5 to critically review

recent approaches to the evaluation of climate change mitigation scenarios. We focus

on the Stern (2007) review, which we consider a paradigm for the normative approach,

and its critique by Nordhaus (2007), which we consider representative for the positive

approach. We find that neither Nordhaus’ (2007) positive nor Stern’s (2007) normative

approach spell out all the normative assumptions hidden in their respective descriptions

of the intergenerational allocation problem. We identify the implicit assumptions and the

shortcomings in the current debate and argue that our analysis lays out a more compre-

hensive foundation for approaching the valuation problem in the integrated assessment

of climate change.

6.1 The “positive” approach

The majority of economists in the climate change debate takes an observation-based

approach to social discounting. This view is exemplarily laid out in Nordhaus’ (2007)
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critical review of the Stern (2007) review of climate change. Individual preferences to-

wards climate change mitigation cannot be observed directly in market transactions

because of the public good characteristic of greenhouse gas abatement. However, we

observe everyday investment decisions on capital markets that carry information on in-

tertemporal preferences. In particular, we observe the market interest rate and the steady

state growth rate of the economy. The positive approach transfers this information into

pairs of intertemporal elasticity of substitution σR and pure time preference ρR in an

ILA economy. This ILA economy is interpreted as a utilitarian social planner model and

confronts the climate problem in an integrated assessment model.

Our paper provides the tools to critically re-examine the positive approach explicitly

accounting for the finite lifespan of individuals living in an OLG economy. In Section 4

we found that, indeed, there exists an observationally equivalent ILA economy for the

decentralized OLG economy. However, we also showed that the rate of time preference

of the ILA does not reflect the actual time preference rate of the (homogeneous) individ-

uals in the decentralized OLG economy. The ILA model overestimates the rate of time

preference for two reasons. First, the ILA model assumes that every individual plans

for an infinite future when taking their market decisions. However, the households in

the OLG economy only plan for their own lifespan when revealing their preferences on

the market. Interpreting these decisions as if being taken with an infinite time horizon

overstates the actual pure time preference. Second, the ILA model assumes that the

representative consumer accounts for population growth by giving more weight to the

welfare of the larger future population. If the households in the OLG economy dismiss

this farsighted altruistic reasoning, the ILA approach once more overestimates individual

time preference rates.14

The second step of the positive approach passes the preferences of the ‘imaginary’ ILA on

to a social planner. This step calls for an explicit justification, given that we have shown

these preferences to differ from those of the individuals in the economy. In particular,

calibrating social planner preferences to those in an ILA model is not innocuous. The

social planner model is used to extrapolate action beyond observation. The particular

way extrapolation takes place determines what action is optimal. Obviously, carrying

over the households’ ρH and σH to the social planner and increasing his time horizon to

address time scales of climate change would imply a very different policy recommenda-

14 Of course, if bequests would be operative and the Ricardian equivalence holds then the interest rate
conveys the long run opportunity cost of investments exceeding the lifetime of individual households.
If the bequest motive is not operative – as suggested by a number of empirical studies (e.g., Hurd
1987, Hurd 1989, Laitner and Ohlsson 2001) – our setting applies.
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tion than does the procedure of calibration and extrapolation followed by the positive

approach of, e.g., Nordhaus (2007). A problem with the positive approach is that the

normative content of the preferences assigned to the social planner is concealed. They are

a combined estimate of agents’ preferences and macroeconomic characteristics driven by

life cycles. If we would like to capture only current observed preferences a clear cut ap-

proach would terminate the time horizon of the social planner T periods into the future,

use individual households’ rates of time preference, and introduce a weight that reflects

the current individuals still alive at a given point of time in the future. If we acknowledge

that climate change is a problem where individuals agree to adopt time horizons that

exceed their own lifetime, we can adopt an infinite planning horizon. Then, however,

on what grounds is it justified to increase social planner impatience over that of the

individuals? The same question arises in the context of increasing impatience in order to

match the fact that observed individuals in the decentralized OLG economy do not take

account of future population growth. If one considers it adequate to endow the social

planner with a welfare function giving more weight to larger (future) populations, then

why would one increase the time preference rate to crowd out this effect? We do not

provide an answer to these normative questions, but point to the normative content of

the positive approach and its possible normative inconsistencies. Moreover, Proposition

4 and Corollary 1 provide a starting point for extracting an individual household’s time

preference from the macroscopic ILA description if desired.

A numerical illustration shows how the inferred ILA preferences differ from actual house-

hold preferences. For our exogenous parameters underlying the economies (excluding

preference parameters) we choose a capital share α = .3, a rate of technological progress

ξ = 2%, a rate of population growth ν = 0%, a life time T = 50 and an interest rate

r = 5.5% close to Nordhaus (2007). Assuming the elasticities σH = σR = .5 as in Nord-

haus (2008) latest version of DICE, the ILA model implies a rate of time preference of

the representative household (and social planner) of ρR = 1.5%, while the individuals

of the decentralized OLG economy exhibit a time preference of ρH = −5.3%.15 The

surprising finding of a negative rate of time preference questions the plausibility of the

above specifications. A simple sensitivity check suggests that increasing the intertem-

poral elasticity of substitution is most promising for resolving the negativity puzzle.

The literature estimating intertemporal substitutability in approaches that disentangle

intertemporal substitutability from risk aversion precisely suggests such an increase. If

we follow Vissing-Jørgensen and Attanasio (2003) building on Epstein and Zin (1991)

15 The calculation solves equation (14b) or, alternatively, F (5.5%) = J (5.5%) in the notation introduced
in the proof of proposition 1.
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and Campbell (1996) the authors give us a best guess of σ = 1.5, which is also part of

a parameter constellation best explaining the equity premium puzzle. Employing their

estimate for the households in the decentralized OLG and the observationally equivalent

ILA economy we find ρH = 1.9% as opposed to ρR = 4.2%. Then, a social planner

equipped with the corresponding household preferences would go along with a steady

state interest rate r⋆ = ρH + ξ
σ

= 1.9% + 2%
1.5 = 3.2% rather than r⋆ = 5.5%. Such a 2.3%

difference in the social discount rate in the cost benefit analysis of climate change has a

major effect on the social costs of carbon and optimal abatement efforts.16 Finally, let

us give a numerical example adopting the wide-spread assumption of logarithmic utility

(σ = 1) which is also used in the Stern (2007) review. Interestingly, we find ρH = 0.1%,

which is precisely the rate chosen for the ILA model in the Stern (2007) review.

We have pointed out above that the positive approach does not avoid implicit normative

assumptions. These assumptions are important when the ILA model, which is calibrated

to match decentralized market equilibria, is used for policy recommendations. In this

paragraph, we compare the ILA model to our full-fletched model of the unconstrained

utilitarian planner developed in section 5.1, which makes normative assumptions explicit.

Such a comparison is justified by Proposition 7 asserting that both models give rise to

observationally equivalent equilibria. From Proposition 8 we know that, if we make the

OLG structure explicit and calibrate the unconstrained utilitarian OLG economy to the

decentralized unregulated market equilibrium, the condition ρS > ρH has to hold.17

Therefore, interpreting an ILA economy that reflects the decentralized market equilib-

rium as an observationally equivalent utilitarian OLG economy necessarily involves the

assumption that the intergenerational time preference rate of the social planner is higher

than individual time preference rate. This assumption stands in sharp contrast to most

of the literature on intergenerational ethics.

16 Having chosen T = 50 years in our simulation is based on the assumption that T is the time an
individual is active in the market rather than actual life time. To illustrate the sensitivity with respect
to the time horizon let us consider T = 75 instead. Then, for σH = σR = .5 we still find a negative
rate of pure time preference ρH = −1.6% and using σH = σR = 1.5 we obtain ρH = 3.1% as opposed
to ρR = 4.2%. This results in r⋆ = 3.1% + 2%

1.5
= 4.4% rather than r⋆ = 5.5%.

17 Note that the social welfare function (27b) we considered does not include any preferences for smooth-
ing lifetime utility of different generations over time. Of course, such functional forms are conceivable
but it is not clear whether and how such a utilitarian OLG economy translates into an observationally
equivalent ILA economy.
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6.2 The normative approach

The normative approach to social discounting aims at treating all generations alike

and, therefore, argues that a positive rate of time preference is non-ethical. This view

is supported by a number of authors including Ramsey (1928), Pigou (1932), Harrod

(1948), Koopmans (1965), Solow (1974), Broome and Schmalensee (1992) and Cline

(1992). The Stern (2007) review of climate change effectively uses a zero rate of time

preference. It adopts a parameter value ρR = 0.1% in order to capture a small but

positive probability that society becomes extinct.18

In a normative approach to social discounting it seems more natural to jump straight

to an ILA model. By normatively justified assumptions the social planner exhibits an

infinite planning horizon and particular values of the time preference rate and the in-

tertemporal elasticity of substitution. It is obvious, however, that the ILA model cannot

capture any distinction or interaction between intergenerational weighting and individual

time preference. Nevertheless, Proposition 7 shows that a social planner fully controlling

an OLG economy is observationally equivalent to an ILA economy if the parameters σR

and ρR are appropriately chosen. In particular, the intertemporal path of aggregate con-

sumption does not depend on the individual rate of time preference ρH , but only on the

social planner’s rate of time preference ρS . In fact, the time preference rate of the social

planner coincides with the rate of time preference ρR of the observationally equivalent

ILA economy. This finding provides some support for Stern’s (2007) normative approach

to intergenerational equity in the ILA model. However, the shortcut of setting up an ILA

economy exhibits a number of caveats as questions of intergenerational equity are more

complex than the ILA model reveals.

First, according to Proposition 7, the interpretation of the time preference rate of the ILA

economy as the time preference rate of a social planner in an observationally equivalent

social planner OLG economy (ρR = ρS) requires that the intertemporal elasticity of

substitution in the ILA economy be equal to that of the individual households in the

OLG economy, i.e., σR = σH . This, however, implies that the intertemporal elasticity of

substitution is a primitive to the social planner and cannot be chosen to match particular

normative considerations.19

18 Strictly speaking this is not time preference, but Yaari (1965) shows the equivalence of discounting
because of a constant probability of death/extinction and a corresponding rate of time preference.

19 It is important to emphasize that we consider a specific utilitarian welfare function (27b) without
intergenerational smoothing of lifetime utility.
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Second, interpreting the ILA economy as a utilitarian social planner OLG neglects the

intratemporal allocation of consumption across all generations alive at each point in time.

The utilitarian OLG model allows us to explicitly analyze the social planner’s optimal

intratemporal distribution of consumption. As shown in Proposition 6, it depends on the

difference between the social planner’s and the individual households’ rates of time pref-

erence. Usually, it is assumed that the normatively chosen social rate of time preference

ρS is smaller than the individual rate of time preference ρH .20 According to Proposition

6, in this case the oldest generation receives least consumption while the newborns get

most among all generations alive (see Figure 2 part c), while it would be the other way

round in the decentralized OLG economy (see Figure 2 part a). As a consequence, the

standard approach of discounted utilitarianism poses a trade-off between intertemporal

and intratemporal generational equity to the social planner whenever households ex-

hibit a positive rate of pure time preference. It is, therefore, not obvious which type of

generational equity the aim of ‘treating all generations alike’ should refer to.

Third, apart from the question whether consumption discrimination by age is justified

on ethical grounds, it is questionable whether it is implementable. In Proposition 9 we

show that, in general, a social planner whose policy instruments are limited to non-age-

discriminating taxes and subsidies cannot implement the first-best solution. In fact, the

first-best social optimum can only be achieved in the special case that it coincides with

the outcome of the decentralized OLG economy without any regulatory intervention.

Thus, the ILA economy, interpreted as an unconstrained social planner model, cannot

capture this second best aspect of optimal policies.

7 Conclusions

Although the lifetime of individuals is finite, intergenerational trade-offs are most often

discussed within ILA frameworks, which are interpreted as a utilitarian social welfare

function. In this paper, we analyzed to what extend this interpretation is justified, in

particular, if we assume a non-operative bequest motive.

We examined under which conditions an ILA economy is observationally equivalent to

(i) a decentralized OLG economy and (ii) an OLG economy in which a social planner

maximizes a utilitarian welfare function. We found that preference parameters differ in

the decentralized OLG and the observationally equivalent ILA economy. In general, pure

20 This assumption seems particularly reasonable if ρS is close to zero. With respect to the Stern review,
it implies that the individual households’ time preference rates exceed ρS = 0.1%.
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time preference of an ILA planner is higher than pure time preference of the households

in the observationally equivalent OLG economy. Moreover, in a normative setting, a util-

itarian social planner faces a trade-off between intergenerational and intragenerational

equity that cannot be captured in the ILA model. Finally, even if the optimal intertem-

poral allocation of the economy’s aggregates coincide between the ILA economy and the

utilitarian social planner controlling an OLG economy, the limited implementability of

the first best allocation can only be observed and discussed in the OLG context. We ap-

plied our results to the recent dispute between Stern (2007) and Nordhaus (2007) in the

discussion on the mitigation of climate change and concluded that the ILA model cannot

adequately address important aspects of intergenerational trade-offs. In consequence, we

argue to explicitly consider the generations’ life cycles.

Our analysis employs two central assumptions. First, we assume selfish individual house-

holds. Although several empirical studies suggest that altruistic bequest motives are

rather weak, extending the model to include different degrees of altruism is an interest-

ing venue for future research. Second, part of our analysis assumes a specific utilitarian

social welfare function. Although commonplace in the literature, this assumption drives

some of our results, such as the trade-off between intra- and intergenerational equity.

In particular, discounted utilitarianism in general has been questioned as an appropri-

ate approach to deal with questions of intergenerational equity (e.g., Asheim and Mitra

forthcoming). It will be interesting to explore how other welfare functions relate to the

one we have chosen and to the standard ILA model.
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A Appendix

A.1 Proof of Proposition 1

We prove the existence of a non-trivial steady state, i.e. k⋆ 6= 0. For this purpose, we

re-write equation (14b) for r∗ /∈ {ξ, ν + ξ} as21

b⋆ =
w⋆

r⋆ − ν − ξ

{

QT (r⋆ − ξ)

QT (ν)

QT
(
ν + ξ − σH(r⋆ − ρH)

)

QT
(
r⋆ − σH(r⋆ − ρH)

) − 1

}

. (A.1)

We define the function J : R→ R by

J(r) ≡
QT (r − ξ)

QT (ν)

QT
(
ν + ξ − σH(r − ρH)

)

QT
(
r − σH(r − ρH)

) , ∀ r ∈ R (A.2)

for which Lemma 2 in Appendix A.10 summarizes some useful properties. Defining more-

over

φ(k) ≡
f(k)− f ′(k)k

f ′(k)− ν − ξ

[
J
(
f ′(k)

)
− 1

]
. (A.3)

the steady state is given by the solution of the equation

k = φ(k) , (A.4)

or equivalently

f(k)− (ν + ξ)k

f(k)− f ′(k)k
= J

(
f ′(k)

)
. (A.5)

Note that the transformation of equation (A.4) to (A.5) is only valid for r⋆ 6= rgr ≡ ν+ξ

implying k 6= kgr ≡ f ′−1 (rgr). Thus, the case r⋆ = ν + ξ will deserve special attention.

We discuss solutions to equation (A.5) in terms of the interest rate r instead of the

capital stock k. Therefore, we define

F (r) ≡
f
(
k(r)

)
− (ν + ξ)k(r)

f
(
k(r)

)
− f ′

(
k(r)

)
k(r)
, (A.6)

21 The equivalence of equation (14b) and (A.1) is easily verified by multiplying over the terms in the
denominator and expanding the resulting expressions. In addition, the domain of the functions making
up the right hand side of equations (14b) and (A.1) can be extended to r∗ ∈ {ξ, ν + ξ} by limit. Both
right hand side functions are continuous and coincide for these points. Thus, the two equations are
equivalent for all r⋆.
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where k(r) = f ′−1(r), which is well defined due to the strict monotonicity of f ′(k).

Observe that k′(r) = 1/f ′′
(
k(r)

)
. The derivative of F with respect to r yields:

F ′(r) =
f ′
(
k(r)

)
− (ν + ξ)

f ′′
(
k(r)

) [
f
(
k(r)

)
− f ′

(
k(r)

)
k(r)

] +
k(r)

[
f
(
k(r)

)
− (ν + ξ)k(r)

]

[
f
(
k(r)

)
− f ′

(
k(r)

)
k(r)

]2 . (A.7)

We seek a steady state interest rate r⋆. Under the assumption r⋆ 6= rgr it is a solution

of the equation F (r⋆) = J (r⋆).

To analyze the case r = rgr respectively k = kgr we can define φ(k) continuously by

limit22

lim
k→kgr

φ(k) =
[
(f(kgr)− f ′(kgr)kgr

]
J ′
(
f ′(kgr)

)
∈ (0,∞) , (A.8)

where we use l’Hospital’s rule (recognizing that J
(
f ′(kgr)

)
= 1). For the extended domain

we find that equation (A.4) becomes

kgr = lim
k→kgr

φ(k) =
[
f (kgr)− f ′ (kgr) kgr

]
J ′
(
f ′ (kgr)

)

⇔ J ′ (rgr) =
kgr

f (kgr)− rgrkgr
= F ′ (rgr) . (A.9)

Thus for r = rgr we have a steady state if J ′ (rgr) = F ′ (rgr) rather than when J (r) =

F (r) as for all other interest rates.

Coming back to equation (A.5) we find for r = rgr ≡ ν + ξ that

F (rgr) = 1 = J (rgr) . (A.10)

We can distinguish three different cases depending on whether F ′ (rgr) is (i) equal, (ii)

smaller or (iii) greater than J ′ (rgr).

(i) F ′ (rgr) = J ′ (rgr)

As shown in the preceding paragraph, in this case there exists a steady state k⋆ = kgr.

(ii) F ′ (rgr) < J ′ (rgr)

In this case, there exists a steady state k⋆ > kgr and r⋆ < rgr (inefficient steady state),

22 See footnote 21 for the reason why a solution to equation (A.4) in the limit is also a solution to
equation (14b).
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because J(0) > 0 and

lim
r→0
F (r) = lim

r→0

→−(ν+ξ)
︷ ︸︸ ︷

f
(
k(r)

)
/k(r)− (ν + ξ)

f
(
k(r)

)
/k(r)− r

︸ ︷︷ ︸

→0

= −∞ . (A.11)

Note that limr→0 f
(
k(r)

)
/k(r) = 0 because f is strictly concave and satisfies Inada

conditions. Because of equation (A.11) the F (r) curve has to cross the J(r) curve from

below somewhere in the interval (0, rgr). The intersection defines r⋆ and, thus, k⋆.

(iii) F ′ (rgr) > J ′ (rgr)

In this case, J(r) < F (r) for r > rgr in a sufficiently small neighborhood around rgr. We

show that there exists r⋆ > rgr such that J(r) crosses F (r) from below at r = r⋆. First,

we show that

lim
r→∞

J ′(r)

J(r)
> lim
r→∞

F ′(r)

F (r)
. (A.12)

We know from part (iii) and (v) of Lemma 2 that

lim
r→∞

J ′(r)

J(r)
=

{

σT , if σ ∈ (0, 1]

T , if σ > 1
. (A.13)

In addition, we obtain for

lim
r→∞

F ′(r)

F (r)
= lim
r→∞

[

r − (ν + ξ)

f ′′
(
k(r)

) [
f
(
k(r)

)
− (ν + ξ)k(r)

]

︸ ︷︷ ︸

≤0

+
k(r)

f
(
k(r)

)
− rk(r)

]

. (A.14)

The sign of the underbraced term holds as the numerator goes to +∞, f ′′
(
k(r)

)
< 0 and

f
(
k(r)

)
− (ν + ξ)k(r) goes to +0. Thus the limit of the first term lies between −∞ and

0. Thus, a sufficient condition for (A.12) to hold is

lim
r→∞

k(r)

f
(
k(r)

)
− rk(r)

= lim
k→0

k

f(k)− f ′(k)k

= lim
k→0

1

−f ′′(k)k
<

{

σT , if σ ∈ (0, 1]

T , if σ > 1
, (A.15)

which is ensured to hold by condition (15).
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Second, observe that condition (A.12) implies

lim
r→∞

d

dr
ln

(
J(r)

F (r)

)

∈ {R++,∞} . (A.16)

Thus, there exist r0 and ǫ > 0 such that

lim
r→∞

ln

(
J(r)

F (r)

)

≥ lim
r→∞

ln

(
J(r0)

F (r0)

)

+ ǫ(r − r0) =∞ (A.17)

and, in consequence, there exists a finite r = r⋆ where J(r) crosses F (r) from below.

A.2 Proof of Proposition 2

Given that condition (15) holds, we know from the proof of Proposition 1 that there

exists a steady state with k⋆ < kgr if F ′ (rgr) > J ′ (rgr). As F ′ (rgr) > 0, a sufficient

condition for F ′ (rgr) > J ′ (rgr) to hold is that

J ′ (rgr) = q(ν)− q
(
(ν + ξ)(1− σH) + σHρH

)
≤ 0. (A.18)

As q′(r) > 0 due to part (v) of Lemma 1, condition (A.18) holds if and only if (17) is

satisfied.

We now derive sufficient conditions such that there exists only one steady state k⋆ < kgr.

Suppose that condition (15) holds, which guarantees existence of a dynamically efficient

steady state. There exists only one steady state interest rate r⋆ with r⋆ > rgr if and only

if

F ′(r)|r=r⋆ < J
′(r)|r=r⋆ , ∀ r

⋆ > rgr

⇔
F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆
<
J ′(r)

J(r)

∣
∣
∣
∣
r=r⋆

, ∀ r⋆ > rgr . (A.19)

The second line holds, as F (r) = J(r) for all r = r⋆. A sufficient condition for (A.19) to

hold is that

d

dr

(

F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆

)

< 0 ∧
d

dr

(

J ′(r)

J(r)

∣
∣
∣
∣
r=r⋆

)

> 0 , ∀ r⋆ > rgr . (A.20)

>From part (ii) and (iv) of Lemma 2 we know that the second condition holds for all
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r > rgr if, in case that σ > 1, also condition (18b) holds.

F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆

=

[

r − ν − ξ

f ′′
(
k(r)

) [
f
(
k(r)

)
− (ν + ξ)k(r)

] +
k(r)

f
(
k(r)

)
− rk(r)

]∣
∣
∣
∣
∣
r=r⋆

(A.21a)

=

[

1

k(r)f ′′
(
k(r)

)

(

1−
1

F (r)

)

+
k(r)

f
(
k(r)

)
− rk(r)

]∣
∣
∣
∣
∣
r=r⋆

(A.21b)

=

[

1

k(r)f ′′
(
k(r)

)

(

1−
1

J(r)

)

+
k(r)

f
(
k(r)

)
− rk(r)

]∣
∣
∣
∣
∣
r=r⋆

(A.21c)

=
k(r)

f
(
k(r)

)
− rk(r)

︸ ︷︷ ︸

≡g1(r)

[

1−

(

1−
1

J(r)

)
f
(
k(r)

)
− rk(r)

−k2(r)f ′′
(
k(r)

)

︸ ︷︷ ︸

≡g2(r)

]∣
∣
∣
∣
∣
r=r⋆

. (A.21d)

>From the second to the third line we employed F (r) = J(r) for all r = r⋆. We show in

the following that g′1(r) ≤ 0 and g′2(r) ≥ 0 are sufficient for d
dr

(
F ′(r)
F (r)

∣
∣
∣
r=r⋆

)

< 0.

First, observe from equation (A.3) that J (r⋆) > 1 for all r⋆ > rgr. As J(r) is U-shaped

on r ∈ (rrg,∞) because of part (ii) and (iv) of Lemma 2 and J (rgr) = 1, this implies

that J ′ (r⋆) > 0 for all r⋆ > rgr.

Second, we show that F
′(r)
F (r)

∣
∣
∣
r=r⋆
> 0 for all r⋆ > rgr if g′2(r) ≥ 0. Observe that

lim
r⋆→∞

F ′(r)

F (r)

∣
∣
∣
∣
∣
r=r⋆

= lim
r→∞

[

1

k(r)f ′′
(
k(r)

)

(

1−
1

J(r)

)

+
k(r)

f
(
k(r)

)
− rk(r)

]

(A.22a)

= lim
r→∞

[

1

k(r)f ′′
(
k(r)

) +
k(r)

f
(
k(r)

)
− rk(r)

]

(A.22b)

= lim
r→∞

[

1

k(r)f ′′
(
k(r)

) −
1

k(r)f ′′
(
k(r)

)

]

= 0 . (A.22c)

In addition, we know that g1(r) > 0 for all r > 0 and

lim
r→∞
g1(r) = lim

r→∞

1

k(r)f ′′
(
k(r)

) > 0 . (A.23)

The latter implies together with equation (A.22)

lim
r→∞
g2(r)

(

1−
1

J(r)

)

= 1 . (A.24)

As g2(r)
(

1− 1
J(r)

)

equals zero at r = rgr and is monotonically increasing in r for

g′2(r) ≥ 0 = 0, this implies that F ′(r)/F (r)|r=r⋆ > 0 for all r⋆ > rgr. Then, we obtain
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for g′1(r) ≤ 0 and g′2(r) ≥ 0

d

dr

(

F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆

)

= g′1(r)

[

1−

(

1−
1

J(r)

)

g − 2(r)

]

− g1(r)g2(r)
J ′(r)

J2(r)

− g1(r)g′2(r)

(

1−
1

J(r)

)

< 0 . (A.25)

The conditions s(k) ≥ ǫ(k) and d
dk

(
s(k)
ǫ(k)

)

are sufficient for g′1(r) ≤ 0 and g′2(r) ≥ 0. �

A.3 Proof of Proposition 3

We show that σ(r⋆ − ρH)− ξ > 0 is a necessary condition for aggregate assets b⋆ to be

strictly positive in a dynamically efficient steady state, i.e., (σH , ρH) ∈ ΓΨ,T . As b⋆ = k⋆

holds, this implies that for k⋆ > 0 the steady state real interest rate must exceed ρH+ ξ
σ

.

The household’s wealth, as given by equation (13b), can be re-written to yield

b⋆(a) =
w⋆

r⋆ − ξ

{
θ exp

[(
σ(r⋆ − ρH)− ξ

)
a
]

+ (1− θ) exp[(r⋆ − ξ)a]− 1
}
, (A.26)

with

θ =
1− exp[−(r⋆ − ξ)T ]

1− exp[−(r⋆ − σH(r⋆ − ρ))T ]
. (A.27)

Assuming a dynamically efficient steady states implies that r⋆ − ξ > 0 and we obtain

from (A.27)

θ







< 1, if σ(r⋆ − ρH)− ξ < 0

= 1, if σ(r⋆ − ρH)− ξ = 0

> 1, if σ(r⋆ − ρH)− ξ > 0

. (A.28)

Thus, we can directly infer from (A.26) that b⋆(a) = 0 for all a ∈ [0, T ] for σ(r⋆−ρH)−ξ =

0. As all households hold no assets, the aggregate capital stock equals zero. To show

that σ(r⋆− ρH)− ξ < 0 precludes strictly positive capital stocks, we analyze the second

derivative of b⋆(a)

d2 b⋆(a)

d a2
=
w⋆

r⋆ − ξ

{
θ
(
σ(r⋆ − ρH)− ξ

)2
exp

[(
σ(r⋆ − ρH)− ξ

)
a
]

+ (1− θ)(r⋆ − ξ)2 exp[(r⋆ − ξ)a]
}
. (A.29)

33



For σ(r⋆−ρH)−ξ < 0, θ < 1 holds, which implies that d
2b⋆(a)
d a2 > 0. Hence, the household’s

wealth profile is strictly convex. Together with the boundary conditions b⋆(0) = 0 =

b⋆(T ) this implies that all households possess non-positive wealth at all times. This, in

turn, precludes k⋆ > 0.

Further, it is obvious from (A.26) and (A.29) that σ(r⋆ − ρH)− ξ > 0 does not contra-

dict strictly positive wealth of the individual households and, therefore, is a necessary

condition for k⋆ > 0. �

A.4 Proof of Proposition 4

(i) Both economies exhibit the same technology and rate of population growth by as-

sumption and, thus, the market equilibria on the capital and the labor market imply

that the equations of motion for the aggregate capital per effective labor (22c) and (10b)

coincide. The remaining difference in the macroeconomic system dynamics is governed

by the Euler equations (10a) and (22a) and by the transversality condition (21).

“⇒”: Suppose the two economies are observationally equivalent, i.e., coincidence in the

initial levels of consumption and capital imply coincidence at all future times. For this

to hold the Euler equations (10a) and (22a) have to coincide giving rise to (23).

“⇐”: If condition (23) holds, then also the Euler equations (10a) and (22a) coincide and

the system dynamics of both economies is governed by the same system of two ordinary

first order differential equations. The solution is uniquely determined by some initial

conditions on c and k. Thus, if the two economies coincide in the levels of consumption

and capital at one point in time they also do so for all future times. In consequence, the

two economies are observationally equivalent. Moreover, the capital stock is an equilib-

rium of Γ⋆ implying k⋆ < kgr. As a consequence, the transversality condition for the ILA

economy is satisfied and, thus, the described path is indeed an optimal solution.

(ii) Let r⋆ be the steady state interest rate of Γ⋆. Thus, all combinations of
(
ρR, σR

)

which satisfy

r⋆ = ρR +
ξ

σR
, (A.30)

yield ILA economies which are observationally equivalent in the steady state. As for all

Γ⋆, r⋆ < rgr holds, also the transversality condition (21) is satisfied. �
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A.5 Proof of Corollary 2

(i) For the steady state, equation (10a) returns 1
σH

[
∆c(t)
c(t) + ν

]

= r(t)− ρH − ξ
σH

which,

by Proposition 3, is strictly positive. Thus, by equation (24) ρR − ρH > 0.

(ii) From the respective Euler equations (10a) and (22a) we obtain the condition that

r −
ξ

σR
= ρR > ρH = r −

1

σH

[
∆c(t)

c(t)
+ ν + ξ

]

(A.31)

⇔
σH

σR
<

1

ξ

[
∆c(t)

c(t)
+ ν + ξ

]

(A.32)

which is equivalent to equation (26). �

A.6 Proof of Proposition 6

The optimization problem (29) subject to condition (30) is equivalent to a resource

extraction model (or an isoperimetrical control problem). We denote consumption at

time t of an individual of age a by C(a) ≡ c(t, t− a) and define the stock of consumption

left to distribute among those older than age a by

y(a) = c̄(t)−

∫ a

0
C(a′)γ exp[−νa′] da′ . (A.33)

Then, the problem of optimally distributing between the age groups is equivalent to

optimally ‘extracting’ the consumption stock over age (instead of time). The equation

of motion of the stock is dy
da

= −C(a)γ exp[−νa], the terminal condition is y(T ) ≥ 0, and

the present value Hamiltonian reads

H =
C(a)

1− 1

σH

1− 1
σH

γ exp
[
(ρS− ρH− ν)a

]
− λ(a)C(a)γ exp[−νa] , (A.34)

where λ(a) denotes the co-state variable of the stock y. The first order conditions yield

λ(a) = C(a)
− 1

σH exp
[(

ρS − ρH
)

a
]

, (A.35a)

λ̇(a) = 0 , (A.35b)

which imply that

C(a) = C(0) exp
[
σH(ρS − ρH)a

]
. (A.36)
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As λ(T ) is obviously not zero, transversality implies that y(T ) = 0. Therefore, we obtain

from equation (A.33), acknowledging QT (ν) = 1/γ,

C(0) = c̄(t)
QT (ν)

QT
(
ν + σH(ρH − ρS)

) , (A.37)

which, together with equation (A.36), returns equation (31). �

A.7 Proof of Proposition 7

(i) The equivalence of the unconstrained social planner problem and of the optimization

problem in the ILA economy pointed out in relation to equations (32) and (33) implies

the Euler equation of the unconstrained social planner economy

ċ(t)

c(t)
= σH

[

r(t)− ρS
]

− ξ . (A.38)

For both economies the Euler equation implies that a time varying consumption rate

also implies a time varying interest rate (and obviously so does a time varying capital

stock).

For observational equivalence to hold, consumption and interest rate of the unconstrained

utilitarian OLG economy have to coincide with that of the ILA economy, implying the

following equality of the Euler equations

σH
[

r(t)− ρS
]

− ξ = σR
[

r(t)− ρR
]

− ξ

⇔ σRρR − σHρS = (σR − σH)r(t) . (A.39)

For a time varying interest rate this equation can only be satisfied if σR = σH and

ρH = ρS .

If σR = σH and ρH = ρS hold, the equivalence of the two problems was explained in

relation to equations (32) and (33).

(ii) Existence of an observationally equivalent ILA economy implies that, first, the ILA

economy has to be in a steady state as well and, second, that the steady state Euler
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equations have to coincide implying

r = ρR −
ξ

σR
= ρS −

ξ

σH

⇒ ρR − ρS = ξ
σR − σH

σRσH
.

The same reasoning applies when starting from the ILA economy steady state and as-

suming an observationally equivalent unconstrained utilitarian OLG economy.

If equation (34) is satisfied and the unconstrained utilitarian OLG economy is in a steady

state, equation (A.38) implies

rS = ρS +
ξ

σH
. (A.40)

Using equation (34) to substitute ρS on the right hand side yields

rS = ρR − ξ
σR − σH

σRσH
+
ξ

σH
= ρR +

ξ

σR
= rR . (A.41)

Thus, also the ILA economy is in a steady state (see Section 3) with coinciding interest

rate. As the interest rates coincide, so does the capital stock and so do the consump-

tion paths. Starting with the ILA steady state with interest rate rR yields a coinciding

unconstrained utilitarian OLG steady state by the same procedure. �

A.8 Proof of Proposition 8

(i) According to the proof of Proposition 7, the Euler equation of the unconstrained

social planner solution is (A.38). In a steady state with interest rate r⋆ it is satisfied for

any (obviously non-empty) set of preference parameters σH and ρS satisfying

ρS +
ξ

σH
= r⋆ . (A.42)

Moreover, by virtue of Proposition 3, ρS = r⋆ − ξ
σH
> ρH holds. Note that for all

decentralized economies Γ⋆ r⋆ < rgr. Hence, the same reasoning as in the proof of

Proposition 4 can be applied to make sure that the budget constraints of the decentralized

OLG and the unconstrained utilitarian social planner OLG coincide. The condition r⋆ <

rgr also implies that the social planner’s transversality condition is satisfied.

37



(ii) Using (31), we can write the intratemporal allocation of consumption across the

generations alive in steady state in the unconstrained utilitarian OLG as

c⋆S(a) =
c(t, t− a)

exp[ξt]
= c⋆

QT (ν)

QT (ν + σH
(
ρH − ρS)

) exp[−σH(ρH − ρS)a] . (A.43)

The intratemporal allocation of consumption in the decentralized OLG economy is given

by (13a) and can be written as

c⋆d(a) = c⋆
QT (ν)

QT (ν + ξ − σH
(
r⋆d − ρ

H)
) exp[(σH(r⋆d − ρ

H)− ξ)a] , (A.44)

where r⋆d is the steady state interest rate of the decentralized OLG in which the house-

holds exhibit the same preference parameters as in the unconstrained utilitarian OLG

economy.

⇒: Suppose that the allocation of consumption across all generations alive at each point

is identical. For this to be the case, the following two equations have to hold simultane-

ously for all a ∈ [0, T ]

exp[−σH(ρH − ρS)a] = exp[(σH(r⋆d − ρ
H)− ξ)a] , (A.45a)

σH
(
ρH − ρS) = ξ − σH

(
r⋆d − ρ

H) . (A.45b)

Minor mathematical transformations show that this only holds for

ρs = r⋆d −
ξ

σH
. (A.46)

This is the condition for the unconstrained utilitarian OLG and the decentralized OLG

to be observationally equivalent in steady state.

⇐: Now suppose that the unconstrained utilitarian OLG and the decentralized OLG are

observationally equivalent in steady state, i.e., equation (A.46) is satisfied.

Inserting ρS as given by (A.46) into (A.43) yields

c⋆S(a) = c⋆
QT (ν)

QT (ν + ξ − σH
(
r⋆d − ρ

H)
) exp[(σH(r⋆d − ρ

H)− ξ)a] , (A.47)

which is identical to (A.44). Hence, observational equivalence in steady state is also

sufficient for identical allocations across the generations alive in both economies. �
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A.9 Proof of Proposition 9

We show that the constrained social planner can implement the steady state social

optimum with a tax/subsidy regime on interest and wages only if the steady states

of the first-best optimum and the decentralized OLG economy coincide. This implies

that the first-best solution is, in general, not implementable, as every first-best solution

converges to a non-implementable steady state.

We show that for a given steady state, the intratemporal distribution of consumption

coincides in the constrained and the unconstrained utilitarian OLG economy if and only

if τ⋆r = 0. To see this consider an unconstrained utilitarian OLG economy in steady

state. The household problem in the constrained utilitarian OLG economy is identical

to the household problem in the decentralized economy if we substitute r(t) by re(t) and

w(t) by we(t). Solving for individual consumption and wealth in the steady states yields

analogously to equations (13a) and (13b):

ce⋆(a) ≡
ce(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= we⋆ QT (re⋆− ξ)

QT
(
re⋆− σH(re⋆− ρH)

) exp
[(
σH(re⋆− ρH)− ξ

)
a
]
,

(A.48a)

be⋆(a) ≡
be(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= we⋆Qa
(
re⋆− σH(re⋆− ρH)

)
exp[(re⋆− ξ)a]

×

[

Qa(r
e⋆− ξ)

Qa
(
re⋆− σH(re⋆− ρH)

) −
QT (re⋆− ξ)

QT
(
re⋆− σH(re⋆− ρH)

)

]

,

(A.48b)

where re⋆ = re(t) and we⋆ = we(t)/ exp[ξt], both evaluated at the steady state. Following

the aggregation rule (9), we derive for aggregate steady state consumption and wealth:

ce⋆ = we⋆QT (re⋆ − ξ)

QT (ν)

QT
(
ν + ξ − σH(re⋆ − ρH)

)

QT
(
re⋆ − σH(re⋆ − ρH)

) , (A.49a)

be⋆ =
we⋆

re⋆ − ξ

[
QT (ξ + ν − re⋆)

QT (ν)
− 1

]

−
we⋆

re⋆ − σH(re⋆ − ρH)

×
QT (re⋆ − ξ)

QT (ν)

QT (ξ + ν − re⋆)−QT
(
ξ + ν − σH(re⋆ − ρH)

)

QT
(
re⋆ − σH(re⋆ − ρH)

) .

(A.49b)

Inserting equation (A.49a) into equation (A.48a), we obtain the following intratemporal
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distribution of consumption

ce⋆(a) = ce⋆
QT (ν)

QT (ν + ξ − σH(re⋆ − ρH))
exp

[(
σH(re⋆ − ρH)− ξ

)
a
]

. (A.50)

By virtue of equation (31), however, the steady state intertemporal distribution of con-

sumption in the social optimum yields:

c⋆(a) = c⋆
QT (ν)

QT (ν − σH(ρS − ρH))
exp

[(
σH(ρS − ρH)

)
a
]

. (A.51)

Aggregate equivalence requires that ce⋆ = c⋆. Distributional equivalence at a point in

time requires moreover that equation (A.50) and equation (A.51) coincide. Together

these conditions imply that σH(re⋆ − ρH) − ξ = σH(ρS − ρH) ⇔ re⋆ = ρS + ξ
σH

. Thus,

by equation (A.42), it must be re⋆ = r⋆ and therefore τ⋆r = 0. �

A.10 Characteristics of the functions characterizing the steady state capital stock

Lemma 1

The function QT (r) defined in (12) satisfies:

(i) QT (r) > 0 for all r ∈ R,

(ii) Q′T (r) < 0 for all r ∈ R.

The function

q(r) ≡
Q′T (r)

QT (r)
=

T

exp(rT )− 1
−

1

r
, (A.52)

satisfies

(iii) q(r) < 0 for all r ∈ R,

(iv) limr→∞ q(r) = 0 and limr→−∞ q(r) = −T ,

(v) q′(r) = q′(−r) > 0 for all r ∈ R,

(vi) q′(r) > z2q′(zr) for all r ∈ R, z ∈ (0, 1),

(vii) y2q′(yr) > z2q′(zr) for all r ∈ R, y > z ≥ 1,

(viii) q′′(r) < 0 for all r ∈ R++.
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Proof: (i) Obviously, QT (r) > 0 for all r 6= 0. In addition, limr→0QT (r) = T > 0.

(ii) We obtain

Q′T (r) = −
1− exp[−rT ](1 + rT )

r2
.

For all r 6= 0:

Q′T (r) < 0 ⇔ exp[−rT ](1 + rT ) < 1 ⇔ 1 + rT < exp[rT ] .

The last inequality holds as x + 1 < exp[x] for all x ∈ R. In addition, limr→0Q
′
T (r) =

−T
2

2 < 0.

(iii) Follows directly from items (i) and (ii).

(iv) Follows directly from the definition (A.52).

(v) We obtain:

q′(r) = −
1

r2
−
T 2 exp[−rT ]

(1− exp[−rT ])2
=

1

r2
−

T 2

2(cosh[rT ]− 1)
.

For all r 6= 0:

q′(r) > 0 ⇔ 2(cosh[rT ]− 1) > r2T 2 ⇔ cosh[rT ] > 1 +
r2T 2

2
.

The last inequality holds as cosh[x] > 1 + x2

2 for all x ∈ R. In addition, limr→0 q
′(r) =

T 2

12 > 0.

(vi) The statement holds if and only if:

q′(r)− z2q′(zr) =
z2T 2

2(cosh[zrT ]− 1)
−

T 2

2(cosh[rT ]− 1)
> 0

⇔ z2(cosh[rT ]− 1) > cosh[zrT ]− 1 .

To see that the last inequality holds, we employ the infinite series expansion of cosh[x]:

z2(cosh[x]− 1)− (cosh[zx]− 1) = z2
(
∞∑

n=0

x2n

(2n)!
− 1

)

−

(
∞∑

n=0

(zx)2n

(2n)!
− 1

)

= z2
∞∑

n=1

x2n

(2n)!
−
∞∑

n=1

(zx)2n

(2n)!
=
∞∑

n=1

x2n

(2n)!

(

z2 − z2n
)

> 0 .

The inequality holds, as the first summand is zero and all other terms are strictly positive
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for all z ∈ (0, 1). (vii) The statement holds if and only if:

y2q′(yr)− z2q′(zr) =
z2T 2

2(cosh[zrT ]− 1)
−

y2T 2

2(cosh[yrT ]− 1)
> 0

⇔ z2(cosh[yrT ]− 1) > y2 cosh[zrT ]− 1 .

Employing the infinite series expansion of cosh[x], we obtain

z2(cosh[yx]− 1)− y2(cosh[zx]− 1) = z2
(
∞∑

n=0

(yx)2n

(2n)!
− 1

)

− y2
(
∞∑

n=0

x2n

(2n)!
− 1

)

= z2
∞∑

n=1

(yx)2n

(2n)!
− y2

∞∑

n=1

(yx)2n

(2n)!
=
∞∑

n=1

x2n

(2n)!
z2y2

(

y2(n−1) − z2(n−1)
)

> 0 .

The inequality holds, as the first summand is zero and all other terms are strictly positive

for all y > z ≥ 1.

(viii) We obtain:

q′′(r) = −
2

r3
+

2T 3 sinh[rT ]

(2 cosh[rT ]− 2)2
= −2T 3

(
1

(rT )3
+

sinh[rT ]

(2 cosh[rT ]− 2)2

)

Then, the statement holds if and only if (cosh[x] − 2)2 > x3 sinh[x]. To see this, we

employ the infinite series expansion of cosh[x] and sinh[x]

(

2
∞∑

n=0

x2n

(2n)!
− 2

)2

− x3
∞∑

n=0

x2n+1

(2n+ 1)!
=

(

2
∞∑

n=1

x2n

(2n)!

)2

−
∞∑

n=0

x2n+4

(2n+ 1)!

= 4

(
∞∑

n=1

x2n

(2n)!

)2

−
∞∑

n=0

x2n+4

(2n+ 1)!

Both series exhibit all even powers of x starting with x4:

x4
(

4

2!2!
− 1

)

+ x6
(

2 · 4

2!4!
−

1

3!

)

+ x8
(

2 · 4

2!6!
+

4

4!4!
−

1

5!

)

+ · · · ≥ 0 .

The inequality holds as the first term is zero and all other terms are strictly positive for

all x ∈ R++. �

Lemma 2

For all ξ, ν ∈ R++ the function J defined in (A.2) satisfies

(i) J(r) > 0.

For all ξ, ν ∈ R++ and σH ∈ (0, 1] the function J satisfies
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(ii) d
dr

(
J ′(r)
J(r)

)

> 0 for all r ≥ ξ,

(iii) limr→∞
J ′(r)
J(r) = σH T .

For all ξ, ν ∈ R++ and σH > 1 the function J satisfies

(iv) d
dr

(
J ′(r)
J(r)

)

> 0 for all r ≥ ν + ξ and ρH < σ
H−1
σH

(ν + ξ),

(v) limr→∞
J ′(r)
J(r) = T .

Proof: (i) Follows immediately from QT (r) > 0 for all r ∈ R as shown in Lemma 1.

(ii) Using the definition (A.52), we obtain

J ′(r)

J(r)
= q(r − ξ)− σHq

(

ν + ξ − σH
(

r − ρH
))

−
(

1− σH
)

q
(

r − σH
(

r − ρH
))

,

(A.53a)

and

M(r) ≡
d

dr

(
J ′(r)

J(r)

)

=
J ′′(r)

J(r)
−

(
J ′(r)

J(r)

)2

(A.53b)

= q′(r − ξ) +
(

σH
)2
q′
(

ν + ξ − σH
(

r − ρH
))

−
(

1− σH
)2
q′
(

r − σH
(

r − ρH
))

.

For σH ∈ (0, 1] set x = r − ξ and restrict attention to all x ≥ 0

M(x) = q′(x) +
(

σH
)2
q′
(

ν +
(

1− σH
)

ξ − σH
(

x− ρH
))

−
(

1− σH
)2
q′
((

1− σH
)

x+
(

1− σH
)

ξ + σHρH
)

> q′(x)−
(

1− σH
)2
q′
((

1− σH
)

x+
(

1− σH
)

ξ + σHρH
)

≥ q′(x)−
(

1− σH
)2
q′
((

1− σH
)

x
)

≥ 0 .

The first inequality holds due to part (v), the second inequality due to part (viii) and

the last inequality due to part (vi) of Lemma 1.

(iii) Follows directly from equation (A.53a) and part (iv) of Lemma 1.

(iv) For σH > 1 and ρH < σ
H−1
σH

(ν + ξ) consider only r ≥ ν + ξ

M(r) = q′(r − ξ) +
(

σH
)2
q′
(

σHr − σHρH − (ν + ξ)
)

−
(

σH − 1
)2
q′
((

σH − 1
)

r + σHr
)

>
(

σH
)2
q′
(

σHr − σHρH − (ν + ξ)
)

−
(

σH − 1
)2
q′
((

σH − 1
)

r + σHr
)

>
(

σH
)2
q′
(

σHr
)

−
(

σH − 1
)2
q′
((

σH − 1
)

r
)

≥ 0

43



The first inequality holds due to part (v), the second inequality due to part (viii) and

the last inequality due to part (vii) of Lemma 1.

(v) Follows directly from equation (A.53a) and part (iv) of Lemma 1. �
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