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Abstract

A collective decision problem is described by a set of agents, a profile
of single-peaked preferences over the real line and a number k of public fa-
cilities to be located. We consider public facilities that do not suffer from
congestion and are non-excludable. We provide a characterization of the
class of rules satisfying Pareto-efficiency, object-population monotonicity
and sovereignty. Each rule in the class is a priority rule that selects lo-
cations according to a predetermined priority ordering among “interest
groups”. We characterize each of the subclasses of priority rules that re-
spectively satisfy anonymity, hiding-proofness and strategy-proofness. In
particular, we prove that a priority rule is strategy-proof if and only if it
partitions the set of agents into a fixed hierarchy. Alternatively, any such
rule can be viewed as a collection of fixed-populations generalized peak-
selection median rules (Moulin, 1980), that are linked across populations,
in a way that we describe.
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1 Introduction

We consider a generalization of the unidimensional voting model studied by

Black (1948) and Moulin (1980). A collective decision problem is described

by a set of agents, a profile of single-peaked preferences over the real line,

and a number k of public facilities to be located –e.g. public libraries. Each

public facility is non-excludable and does not exhibit congestion. Thus, it is

a pure public good. Each agent has preferences over sets of locations that

reflect the fact that she will use only her preferred facility among the k that

are provided. We search for a rule that decides on how to locate the facilities,

in any possible collective decision problem. We follow the axiomatic method.

In addition to Pareto-efficiency, we search for rules that satisfy two normative

properties, which we introduce in this paper, object-population monotonicity

and sovereignty.

“Public facilities” should be interpreted in a broad sense. They could be

actual facilities, such as wireless towers, to be located in space. They could be

varieties of software to be provided to a community of users. In this example,

the “locations” represent different program varieties. They could also be the

official languages for a linguistically diversified society. We will use this third

example, to explain the content of our axioms in a concrete manner.

The European Union (henceforth, EU) has to select a set of official working

languages for its main tribune, among the set of all the languages used in EU

countries.1 Not all these languages can be selected as official working language.

How should the EU decide which languages to select as official working ones? In

addition, how should it modify this selection after an enlargement? We would

like to have a method for selecting official working languages that respects a

1Currently, the official working languages of the EU are English, French and German. For
a more detailed discussion concerning the choice of official languages in the EU, see the paper
by Fidrmuc, Ginsburgh and Weber (2006).
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few desirable properties.2 As a first requirement, we require Pareto-efficiency.

The selected set of languages should be such that no other set with the same

cardinality is weakly preferred by all EU citizens and strictly preferred by at

least one citizen. In addition, we are interested in two new properties –object-

population monotonicity and sovereignty. Roughly speaking, object-population

monotonicity says that if a new group of citizens joins the EU, and at the same

time, the number of official working languages increases, in such a way that

the increase of the number of languages compensates the increase in linguistic

diversity in the EU due to the arrival of new citizens, then all agents initially

present should weakly benefit from the change. Last, suppose that a single

language needs to be selected as communicating language within EU institu-

tions. Sovereignty loosely says that any language could be selected as the unique

working language, provided that an appropriately selected, and possibly large,

“group of interest” defending this particular language, is brought into the EU.

Equipped with these axioms, we provide a complete characterization of the

class of rules that jointly satisfy them. A priority rule operates as follows. First,

it partitions the EU population into linguistic groups, i.e. groups of citizens

that share the same preferred language. Second, it ranks these linguistic groups

according to some predetermined priority order that can depend on the identities

of their members and their full preferences over all languages. The rule then

selects the preferred languages of the top k groups in the priority order. Our

main result is that any rule that satisfies our three axioms is a priority rule

(Theorem 1). All priority rules are efficient, but not all are object-population

monotonic nor sovereign. We characterize the class of priority rules that satisfy

all three properties (Theorem 1). Priority rules form a rich class. In particular,

it includes an interesting subclass of majoritarian rules that rank linguistic

2In the process of its enlargement, the EU may repeatedly face the choice of adding new
languages. Hence, we need a method –a rule in the language of collective choice– that can be
used in different situations.
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groups according to their cardinality.

Next, we investigate on priority rules that satisfy additional desirable proper-

ties, such as anonymity, hiding-proofness, median-selection and strategy-proofness.

Unfortunately, no priority rule selects the median voter when a single language

needs to be selected and the number of agents is odd. The priority rules that

are strategy-proof form an interesting subclass of hierarchical rules (Theorem

2). Each such rule partitions the EU population into a fixed hierarchy of priority

levels. Each such rule can also be described as a linked collection of generalized

peak-selecting median rules (Moulin, 1980) restricted in a particular way. We

provide a complete description of the linkage across populations imposed by our

axioms on such a collection.

The problem of locating a single facility is well-studied in the voting litera-

ture. Moulin (1980), Ching (1997), Barberà and Jackson (1994) among others,

have studied the strategic properties of rules for locating a single facility. Other

scholars have studied rules for this problem, that satisfy normative properties.

The principle of solidarity says that when circumstances change, all agents not

responsible for the change should be affected in the same direction.3 Thomson

(1993), Ching and Thomson (1996), Vohra (1998) and Klaus (2001) investigate

the two main formulations in this context.4 In all the papers cited in this para-

graph, the rules select the location of a single facility, hence resources are kept

fixed.

3Thomson (1995, 1999a, 1999b) provides excellent surveys on the different formulations
of the solidarity principle and its applications to different economic contexts. Replacement-
domination operates on preference profiles for a fixed population. It says that when the
preferences of one agent change, all the other agents, whose preferences are kept fixed, should
be affected in the same direction. Population-monotonicity operates on preference profiles
for a variable population. It says that when new agents join the economy, all the agents who
were initially present should all be affected in the same direction.

4Gordon (2007b) studies the solidarity principle in the location of a public facility on
a cycle. Gordon (2007b) generalizes this literature on the solidarity principle to a more
abstract non-geometric setting that contains location problems of single and multiple facilities
as special cases.
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The problem of locating two facilities was studied first by Miyagawa (1998,

2001). In these works, Miyagawa proposes to extend preferences over single lo-

cations to finite sets of locations according to the max-extension. This extension

compares finite sets of locations by comparing only their best element. Ehlers

(2002, 2003) also studies this problem, but extends preferences in a lexicographic

manner. Both Miyagawa (1998, 2001) and Ehlers (2002, 2003) follow the nor-

mative route. They look for rules that satisfy either replacement-domination

or population-monotonicity. But once again, the set of resources is kept fixed,

since their rules always locate exactly two facilities. In contrast, we do not

restrict the set of facilities to any particular cardinality. Thus, our rules pre-

scribe how to locate any number of facilities. In addition, our object-population

monotonicity axiom operates across different populations and across problems

with different numbers of facilities. It can be viewed as a formulation of the

solidarity principle in a context where both population and resources can vary.

Our work resembles the work of these scholars in style, in the sense that we

also characterize families of rules using axioms, but the axioms we study are

different, and the set of location problems we cover is larger.

Barberà and Beviá (2002, 2005) and Ju (2007) also study the location of

multiple facilities. They focus on consistency. This property says that when one

k−1 facility and its “users” are simultaneously removed, the remaining location

should remain unchanged. These authors show that the set of rules that satisfy

this property and additional interesting requirements is large, but they do not

provide a characterization. In contrast, we obtain several characterizations on

the basis of object-population monotonicity and other axioms.

Our main contribution is that we identify and axiomatize a subclass of the

class of priority rules, in an environement for which few rules have been pro-

posed. These rules have a simple parametric structure. The structure, in turn,

facilitates further analysis: It is relatively easy to characterize the set of priority
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rules that satisfy an additional axiom. To obtain our main characterization, we

introduce two new axioms. These axioms are meaningful in the context of the

location of public facilities, but they also are of independent interest, and could

be futher investigated in other contexts.

The plan of the paper is as follows. In Section 2, we introduce the model

and necessary definitions. In Section 3, we introduce priorities and priority

rules. In Section 4, we present various examples of priorities and priority rules.

In Section 5, we present our main axioms. In Section 6, we present our main

characterization. In Section 7, we study the subclasses of priority rules that

satisfy respectively anonymity, and hiding-proofness. We also show that no

priority rule selects the median in problems with one good and a population

with an odd cardinality. In Section 8, we study the subclass of strategy-proof

priority rules.

2 The model

The following definitions are useful throughout the paper. A binary relation

over a set Z is a subset of Z2. A binary relation r over Z is transitive if for all

x, y, z ∈ Z, we have (x r y and y r z) =⇒ (x r z). It is reflexive if for all

x ∈ Z, we have x r x. It is complete if for all x, y ∈ Z, we have either x r y

or y r x. It is symmetric if for all x, y ∈ Z, we have (x r y) =⇒ (y r x) . It is

asymmetric if for all x, y ∈ Z, we have (x r y) =⇒ ¬ (y r x) . A binary relation

over Z is a weak ordering over Z if it is transitive, reflexive and complete. It

is a strict ordering over Z if it is transitive, asymmetric and complete. It is a

weak partial order if it is transitive and reflexive. It is an indifference relation

if it is transitive, reflexive, and symmetric. We will later introduce other types

of binary relations.

There is a countably infinite set N of potential agents. A population N is a

finite and nonempty subset of N. The population is collectively endowed with a
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number k of identical public facilities, each to be located on the real line R. A

typical location on R is denoted by x. An assignment is a menu of locations, i.e.

a finite subset X ⊂ R. A k-assignment is an assignment for exactly k facilities,

i.e. a subset X ⊂ R such that |X| = k. Let Xk be the class of all k-assignments.

In particular, a 1-assignment is a single location x ∈ R, so that X1 = R. Let

X ≡ ∪k≥1Xk be the class of all assignments.

A preference over X is a weak ordering over X . Each agent i ∈ N has a

preference Ri over X . For each preference Ri, let Pi and Ii stand for the strict

ordering and the indifference relation associated with Ri, respectively. We re-

strict attention to the classR of single-peaked preferences over X , defined by the

following two conditions. The first condition is the common single-peakedness

notion, for preferences over single locations on the real line. The second con-

dition extends preferences from single locations to menus.5 A preference Ri is

single-peaked if the following holds.

i) There is a location p (Ri), such that for all x, y ∈ R satisfying either

x < y ≤ p(Ri) or p (Ri) ≥ y > x, we have y Pi x. The location p (Ri) is

called the peak of preference Ri.

ii) For all X, Y ∈ X , we let X Ri Y if there is x ∈ X such that for all y ∈ Y,

we have x Ri y.

For each population N, a preference profile for N is a list RN = (Ri)i∈N ∈
RN . More generally, a preference profile is a preference profile for some popu-

lation N.6 For each profile RN and each subpopulation K ⊆ N, let RK denote

the subprofile (Ri)i∈K . For each profile RN ∈ RN , let p(RN) be the set of peak

locations for RN , i.e. p (RN) ≡ {p(Ri) : i ∈ N} . For each k > 0, let Pk be the

5There are different ways to extend preferences over points to preferences over sets. Con-
sistent with the definition of a public facility used in this paper, we consider the max-extension
of preferences used by Miyagawa (2001).

6A profile RN specifies a population N and each of its agents’ preferences.
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set of preference profiles RN with a number of distinct peak locations greater

than or equal to k, i.e. such that k ≤ |p (RN)| . A problem is a pair (k,RN)

such that k is a positive integer, and RN ∈ Pk.7

A rule is a sequence f = {f1, f2, ...} of mappings fk : Pk→Xk. For each

problem (k, RN), the rule f prescribes an assignment in Xk.
8 For each k ≥ 1,

the set of mappings fk is XPk
k . Therefore, the set of all rules is the set

∏∞
k=1X

Pk
k .

3 Priority rules

Let us introduce a class F of rules which will play an important role in our

results. A profile RM is peak-unanimous if all the preferences of this profile have

the same peak, i.e. p (RM) is a singleton. Let T be the set of peak-unanimous

profiles. For any two peak-unanimous profiles RL and R′M , we say that RL

and R′M are compatible if they have distinct peaks and disjoint populations, i.e.

p (RL) 6= p (R′M) and L ∩M = ∅.
We now introduce the class of priorities over some nonempty subset S of T .

Let� be a binary relation over S. The binary relation� is almost complete if for

all RL, RM ∈ S, we have (RL � RM or RM � RL)⇔ (RL and RM are compatible) .9

It is almost transitive if for all RK , RL, RM ∈ S, such that RK and RM are com-

patible, we have (RK � RL and RL � RM) =⇒ (RK � RM). The binary

relation � is a priority over S if it is asymmetric, almost transitive and almost

complete.10 For each nonempty S ⊆ T , let PS be the set of priorities over S.

7The restriction k ≤ |p (RN )| allows us to focus on non-trivial cases. When k > |p (RN )| ,
it is possible to locate one facility at each peak location, so that the welfare of each agent is
maximized. Locating the remaining facilities does not affect any agent’s welfare.

8Our definitions rule out locating more than one facility at the same point. Under single-
peaked preferences, and for the class of problems we consider, Pareto-efficiency would exclude
duplication anyway.

9In particular, an almost complete binary relation � over T is never reflexive.
10A priority � is not a partial order, as it is not fully transitive. However, priorities have

the following important property. The restriction of a priority � on any set S of pairwise
compatible unanimous profiles is a strict ordering. If this set is finite, the priority � has a
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For each profile RN , the peak-unanimous subprofile RM of RN is maximal

if p (RM) ∩ p
(
RN\M

)
= ∅. Any two distinct maximal peak-unanimous subpro-

files are compatible. It follows that the collection of maximal peak-unanimous

subprofiles of some profile is strictly ordered by any priority (see footnote 10).

We are now ready to define the family of priority rules, parametrized by the

set PT . For each � ∈ PT , the priority rule f associated with � is defined as

follows. Let (k, RN) be an arbitrary problem. Then the priority � strictly

ranks the maximal peak-unanimous subprofiles in the decomposition of RN and

fk (RN) selects the peak locations of the top k maximal peak-unanimous sub-

profiles for � . In more precise terms, fk (RN) is the k-assignment such that

fk (RN) ⊆ p (RN) , and for all two maximal peak-unanimous subprofiles RM

and RL in RN , if p (RM) ⊆ fk (RN) and p (RL)  fk (RN) , then RM � RL. Let

F be the set of priority rules.

4 Examples

In this section, we provide a few examples that illustrate how large and diverse

the set of priorities is. We first present some priorities that can be described in a

simple way (Examples 1, 2 and 3), and then move on to more complex priorities,

for which it is convenient to use a lexicographic formulation (Examples 4 to 8).

Example 1: The left-peaks priority �LP is such that, for all compatible RM ,

RN ∈ T , we have RM �LP RN if and only if p (RM) < p (RN) . The left-peaks

rule fLP is the priority rule defined by �LP . An alternative definition of the

rule fLP is that it selects, for each problem (k, RN), the k-assignment X such

that for all i ∈ N , if p(Ri) /∈ X, then p(Ri) > max(X).

greatest (or top) element in S. A top element for � typically does not generally exist on a
set of unanimous profiles whose elements are not pairwise compatible, even if it is a finite set.
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Example 2: The right-peaks priority �RP is such that, for all compatible RM ,

RN ∈ T , we have RM �RP RN if and only if p (RM) > p (RN) . The right-peaks

rule fRP is the priority rule defined by �RP . An alternative definition of the

rule fRP is that it selects, for each problem (k,RN), the k-assignment X such

that for all i ∈ N , if p(Ri) /∈ X, then p(Ri) < min(X).11

Example 3: A priority �SD is a serial dictatorship if there exists a strict

ordering B of all agents in N such that, for all compatible RM , RN ∈ T , we

have RM �SD RN if and only if there exists i ∈ M, such that for all j ∈ N, we

have i B j. For example, the strict ordering could be such that for all i, j ∈ N,

we have i B j if and only if i < j.12

Lexicographic formulations: Some priorities are easier to describe using a

lexicographic formulation. This means that the priority is determined first by

a primary criterion that is not always decisive. When the primary criterion is

indecisive, a secondary criterion is used, which can vary depending on the pair

that is being compared.

To formalize this idea, let us introduce the following definitions. Let � be

a weak ordering over T . Let T be the set of indifference classes for � in T .13

For each T ∈ T, let �T be a priority over T. Finally, let � be a priority over

T . Then, the priority � has the lexicographic formulation
(
�, (�T )T∈T

)
if for

all compatible RM , RN ∈ T , we have RM � RN if and only if RM � RN and

11Miyagawa (2001) showed that when |N | ≥ 4 and k = 2, the only mappings RN → X2

satisfying efficiency and replacement-domination are the left-peaks rule and the right-peaks
rule. These solutions are also anonymous and group-strategy-proof. The left-peaks and right-
peaks priorities are also trivial hierarchical rules (see Example 4) where all agents belong to
the same unique indifference class.

12The serial dictatorships are extreme cases of hierarchical rules (see Example 4) where
each indifference class is a singleton.

13Requiring � to be a weak ordering rather than an almost complete and almost transitive
(and not asymetric) binary relation on T is important here, as it allows us to refer to the
indifference classes of �.
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either (i) ¬ (RN � RM) or (ii) There is an indifference class T for � such that

(RM , RN ∈ T and RM �T RN).

It should be clear that all priorities admit many lexicographic formulations.

However, there are priorities for which a particular lexicographic formulation is

the most natural and convenient definition. We now present a few examples of

such priorities.

Example 4: A priority �H is hierarchical if it admits a lexicographic for-

mulation (�, (�T )) that satisfies the following conditions. (i) There is a weak

ordering D of all agents in N, such that, for all RM , RN ∈ T , we have RM � RN

if and only if there exists i ∈M, such that for all j ∈ N, we have i D j. (ii) For

each T ∈ T, the priority �T is either the (restriction to T of) the left-peaks or

(restriction to T of) the right-peaks priority.14

Example 5: A priority �M is majoritarian if it admits a lexicographic formu-

lation (�, (�n)) such that, for all RM , RN ∈ T , we have RM � RN if and only if

|M | ≥ |N | . The indifference classes are the sets Tn = {RN ∈ T : |N | = n} . For

each n ≥ 1, the tie-breaking rule �n can be any priority. For example, we could

require �n to be the left-peaks priority, for all T (left-majoritarian priority) or

the right-peaks priority (right-majoritarian priority).15

Example 6: A priority �M is x0-centralist-majoritarian if it admits a lex-

icographic formulation (�, (�v)), such that there are a location x0 ∈ R (the

“center”), a distance D(x, y) on R and an index u : {1, 2, ...} ×R+ → R, where

u (n, d) is increasing in n and decreasing in d, such that, for all RM , RN ∈ T ,

14In Section 9, we show that hierarchical rules are the only priority rules that are strategy-
proof. One could also define a more general class of (non strategy-proof) hierarchical rules
by allowing the �T to be any priority, non necessarily the left-peaks or right-peaks priorities.

15We can similarly define the family of minoritarian priorities by requiring instead that
RM � RN iff |M | ≤ |N | .
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we have RM � RN if and only if

u (|M | , D (p (RM) , x0)) ≥ u (|N | , D (p (RN) , x0)) .

The indifference classes are the sets

Tv = {RN ∈ T : u (|M | , D (p (RM) , x0)) = v} .

For each such class, the tie-breaking rule �v can be any priority. For exam-

ple, we could require �v to be the left-peaks priority for all v ∈ R (left-x0-

centralist-majoritarian priority) or the right-peaks priority for all v ∈ R (right-

x0-centralist-majoritarian priority).16

We conclude this section by an illustration of how the left-majoritarian rule

fLM allocates goods for two particular problems. Let N = {1, ..., 10}, k = 2

and the two profiles RN and R′N with peak locations distributed as follows.

Profile RN Agents 9,10 6,7,8 1,...,5
Peak locations 0 1 2

Profile R′N Agents 1,2,3 4,5,6 7,8,9 10
Peak locations 0 1 2 3

Let RL0 , RL1 and RL2 be the maximal peak-unanimous subprofiles of RN ,

with L0 = {9, 10}, L1 = {6, 7, 8}, and L2 = {1, ..., 5} , we have |L0| < |L1| <
|L2| , therefore RL2 �LM RL1 �LM RL0 , i.e. f2 (RN) = {1, 2}. Similarly, let

R′M0
, R′M1

R′M2
and R′M2

be the maximal peak-unanimous subprofiles of R′N ,

with M0 = {1, 2, 3}, M1 = {4, 5, 6}, M2 = {7, 8, 9} , and M3 = {10} , we

have |M0| = |M1| = |M2| > |M3| , and p
(
R′M0

)
< p

(
R′M1

)
< p

(
R′M2

)
, thus

R′M0
�LM R′M1

�LM R′M2
�LM R′M3

, i.e. fLM
2 (R′N) = {0, 1}.

16A more general family is obtained by relaxing the monotonicity asumptions on u.
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5 Axioms

Our first axiom is the usual (Pareto)-efficiency axiom. For each profile RN ∈
RN and each x, y ∈ R, we say that x weakly Pareto-dominates y for profile RN

if x Ri y for each i ∈ N . This is denoted by x RN y.

A rule f satisfies efficiency if, for each problem (k,RN), there is no k-

assignment X such that X RN fk(RN), and X Pj fk(RN) for some j ∈ N .

Any rule that always selects distinct peaks locations is efficient. Therefore,

all priority rules are efficient. Next, we would like our rules to satisfy a fairness

condition when resources and population vary. First, when the population is

held fixed but resources vary, it is natural to require that the agents who are

initially present in the economy, and whose preferences are kept fixed, all weakly

gain as the number of available facilities increases.

A rule satisfies object-monotonicity if, for each problem (k,RN) such that

k < |p(RN)|, we have fk+1(RN) RN fk(RN).

All priority rules are object-monotonic, since they satisfy, for each such prob-

lem, the stronger condition fk(RN) ⊂ fk+1(RN). Object-monotonicity turns

out to be very weak in this model. Many rules that have very little in common

satisfy this axiom. This motivates looking at changes in both resources and

population.17 We require that if both resources and population increase, and

the new resources are sufficient to fully satisfy the newcomers, then the agents

who are initially present in the economy, and whose preferences are kept fixed,

17One could also study changes in population, while resources are kept fixed. The natural
axiom for this case, population monotonicity, requires that when new agents join the economy
(for a fixed number of facilities), all the agents that were initially present weakly lose. This
property is studied in this model by Miyagawa (1998), and by Ehlers (2003) in a model similar
to this one. Both restrict attention to the case of two facilities. Gordon (2007a) shows that
this axiom has strong general implications in the broader class of pure public goods, of which
this model is a special case.
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all weakly gain from this double expansion. In fact, we will restrict attention

to changes where exactly one facility is brought into the economy and exactly

one peak-unanimous profile is added to the initial profile. Observe that the ad-

ditional facility is indeed sufficient to fully satisfy the newcomers, since it could

be located at their common peak.

A rule f satisfies object-population monotonicity if, for each problem

(k,RN) with k < |p(RN)|, for each peak-unanimous profile RM ∈ T such that

N ∩M = ∅, we have fk+1(RN , RM) RN fk(RN).

All the priority rules presented in Examples 1 to 6 satisfy this axiom. This

is because the priority relations that define them have the following property. A

priority� is monotonic if, for all peak-unanimous profiles RL, RN , and any agent

i /∈ N ∪ L, we have RN � RL ⇒ RN∪{i} � RL. In fact, any priority rule whose

priority is monotone satisfies object-population monotonicity. Priority rules

whose priority is not monotone may not satisfy object-population monotonicity,

as shown in the following example.

Example 7: Let � be the priority such that for all two compatible peak-

unanimous profiles RL and RM , we have RL � RM if either (|L| > |M | and

|L| ≥ 3) or (|L| = 1 and |M | = 2) or (|L| = |M | and p (RL) < p (RM)). The

priority rule f defined by� violates object-population monotonicity. To see this,

consider a profile R{1,2,3,4} such that p(R1) = p (R2) < p(R3) < p (R4). There-

fore R1 � R3 � R4 � R{1,2}. Thus, f1(R{1,3,4}) = p (R1) and f2(R{1,2,3,4}) =

{p (R3) , p (R4)} . Therefore, f1(R{1,3,4}) P1 f2(R{1,2,3,4}), in contradiction with

object-population monotonicity.

The exact necessary and sufficient condition for a priority to define a rule

that is object-population monotonic is the following. A priority � is almost

monotonic if, there are no four peak-unanimous profiles RM , RK , RH and RL
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such that p (RM) = p (RL), M ∩ L = ∅, RK and RH are compatible, RM �
RH � RM∪L, and RM � RK � RM∪L. In the proof of Theorem 1 (step 4), we

will verify that this condition on the priority is indeed necessary for a priority

rule to be object-population monotonic. We leave it to the reader to check that

it is also sufficient.

Example 7 violates object-population monotonicity because the axiom re-

quires that agent 1, who has the same peak as the newcomer agent 2, also weakly

gain from the change. One can formulate a weaker, but somewhat unnatural,

version of the axiom that requires all agents initially present to weakly gain

from the addition of exactly one facility and one peak-unanimous profile, except

for agents who have the same peak as the newcomers.18 All priority rules satisfy

this weaker version of the axiom (Bochet and Gordon, 2008). We will however

proceed with the stronger version of the axiom, which we feel is more natural

and compelling.19

A related question is the following. Are all rules that satisfy efficiency and

object-population monotonicity priority rules? Again, the answer is negative,

as shown in the following example.

Example 8: LetB be the strict ordering on R such that, for all x, x′, y, y′, z, z′ ∈
R satisfying x < x′ < 0 < y < y′ < 1 < z < z′, we have 0B1ByBy′BxBx′BzB

18A precise definition of this weaker version of the axiom is as follows. A rule f satisfies
object-population monotonicity− if, for each problem (k, RN ) with k < |p(RN )|, for
each peak-unanimous profile RM ∈ T such that N ∩M = ∅, and for all i ∈ N such that
p (Ri) 6= p (RM ) , we have fk+1(RN , RM ) RN fk(RN ).

19Object-population monotonicity does not imply object-monotonicity. However, object-
population monotonicity, efficiency and sovereignty do imply object-monotonicity. Object-
population monotonicity is also logically independent from population monotonicity. The
rules presented in Example 5 satisfy object-population monotonicity, but not population-
monotonicity. Moreover consider the rule f for which for each problem (1, RN ), we
have f1(RN ) = fLP

1 (RN ), and for each k ≥ 2 and each problem (k,RN ) , we have
fk(RN ) = fRP

k (RN ). This rule satisfies population monotonicity but not object-population
monotonicity.
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z′. Let � be the priority such that, for any two peak-unanimous profiles RL and

R′M , we have RL � R′M if and only if p(RL)B p(R′M). Let g be the priority rule

defined by �. Let f be the rule such that, for each problem (k,RN), if k = 1

and p(RN) = {−1, 1}, then fk(RN) ≡ {1
2
}, and otherwise fk(RN) ≡ gk(RN).

The rule f satisfies efficiency and object-population monotonicity, but it is not

a priority rule.

We wish to eliminate rules that present pathologies of the kind we see in

Example 8. This leads us to introduce a third axiom. This axiom only restricts

the one-facility component f1 of a rule, as the population varies. It says that the

choice y made by the rule f1 for a given profile RN can be reversed in favor of

any given location x provided that some appropriately selected peak-unanimous

profile RM is brought into the economy in support of x.

A rule f satisfies sovereignty− if, for each profile RN , each location x ∈
R\f1 (RN), there exists a peak-unanimous profile RM ∈ T such that M∩N = ∅,
that satisfies f1 (RN , RM) = {x} = p (RM).

In fact, we will use the following slightly stronger version of the axiom,

which requires that there are infinitely many distinct and compatible such peak-

unanimous profiles.

A rule f satisfies sovereignty if, for each profile RN , each location x ∈ R \
f1 (RN), and each population L, there exists a peak-unanimous profile RM ∈ T
such that M is disjoint from both L and N, that satisfies f1 (RN , RM) = {x} =

p (RM).

The rule presented in Example 8 violates both versions of the axiom. We

will show in the next section that any efficient, object-population monotonic and

sovereign rule is a priority rule. However, not all priority rules are sovereign.

While the rules in examples 5, 6 and 7, and some of the rules in examples 3 and
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4 are, the ones in examples 1 and 2, and some of the rules in example 3 and 4 are

not. We now present a necessary and sufficient condition on the priority for the

priority rule it defines to be sovereign. We say that the priority � is sovereign if

the following two conditions hold. (i) For all peak-unanimous RH , RK ∈ T such

that RH � RK , and for any population L, there exists a peak-unanimous profile

RM ∈ T such that M is disjoint from K and L, and satisfies p (RM) = p (RK) ,

and RK∪M � RH . (ii) For each RH ∈ T , each x 6= p (RH) and each population

L, there exists a peak-unanimous profile RM ∈ T such that M ∩ L = ∅, and

satisfies p (RM) = x, and RM � RH . In the proof of Theorem 1 (step 5), we will

verify that this condition on the priority is indeed necessary for a priority rule

to be sovereign. We leave it to the reader to check that it is also sufficient.

6 Main characterization

We are now ready to present our main result.

Theorem 1: A rule f satisfies efficiency, object-population monotonicity and

sovereignty if and only if it is a priority rule whose priority is almost monotonic

and sovereign.20

As we observed in Section 5, it is quite easy to verify that all priority rules

whose priority is almost monotone and sovereign satisfy the three axioms. Be-

fore proving the converse, we first present two useful lemmas. The first one

states that object-population monotonicity and sovereignty imply the following

property.

20In an earlier version of this work (Bochet and Gordon, 2008), we prove the following
related result. A rule satisfies efficiency, object-population monotonicity− (see footnote 18)
and sovereignty if and only if it is a priority rule whose priority is sovereign (Theorem 1).
Furthermore, the following claims are equivalent for any rule f with domain D: (i) The rule
f is such that for all finite D ⊂ D, there exists a rule gD on D that satisfies efficiency, object-
population monotonicity− and sovereignty and coincides with f on D; (ii) The rule f is a
priority rule (Theorem 2).
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A rule f satisfies strong sovereignty if for each problem (k,RN) , each

location x ∈ R\fk (RN), and each population L, there exists a peak-unanimous

profile RM such that M is disjoint from both L and N, that satisfies p (RM) =

{x} ⊆ fk (RN , RM).

Lemma 1: If f satisfies object-population monotonicity and sovereignty,

then it satisfies strong sovereignty

Proof. Let (k,RN) be an arbitrary problem, let x ∈ R be an arbitrary

location, and let L be an arbitrary population. We will prove that there exists

a peak-unanimous profile RM such that M ∩ (L ∪N) = ∅ and p (RM) = {x} ⊆
fk (RN , RM) . If k = 1, then sovereignty guarantees that this is true. So suppose

instead, that k > 1. Let ` ≡ |p(RN)|. We have ` ≥ k.

Let RN1 , . . . , RN`−(k−1)
be `− (k− 1) distinct maximal peak-unanimous sub-

profiles of RN . Let Ñ ≡ N1 ∪ . . . ∪ N`−(k−1). We have |p(RÑ)| = ` − (k − 1).

Let L̃ ≡ (N \ Ñ)∪L. By sovereignty, there exists a profile RM ∈ RM such that

M ∩(L̃∪Ñ) = ∅, and p (RM) = {x} = f1(RÑ , RM). We have |p(RN\Ñ)| = k−1.

By object-population monotonicity, applied k − 1 times, we have in particular

fk(RÑ , RM , RN\Ñ) RM f1(RÑ , RM). Since f1(RN , RM) = {x} = p (RM) , this

implies that x ∈ fk(RÑ , RM , RN\Ñ), i.e. p (RM) = {x} ⊆ fk(RN , RM). Since

M ∩ (L ∪ N) = M ∩ (L̃ ∪ Ñ) = ∅, therefore the population M satisfies all the

desired properties.�

The second lemma shows that the three axioms Theorem 1 imply that each

public facility must be located at some agent’s peak location.

A rule f satisfies peak-selection if for each problem (k,RN), we have

fk(RN) ⊆ p (RN).

Lemma 2: If f satisfies efficiency, object-population monotonicity and

sovereignty, then it satisfies peak-selection.
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Proof : Let f satisfy the three axioms. We prove by induction on k,

that each fk satisfies peak-selection.

Step 1. The rule f1 satisfies peaks-selection.

Suppose by contradiction that f1 does not satisfy peak-selection. Let RN ∈
RN and let x ∈ R be such that f1 (RN) = {x} and x /∈ p (RN) . Throughout

the proof, for all j ∈ N, let pj := p (Rj) . By efficiency, there are two agents

i, ` ∈ N such that pi < x < p`, and p (RN) has no element strictly comprised

between pi and p`. Let u, v ∈ R be such that pi < u < x < v < p`. By

strong sovereignty, there are peak-unanimous profiles RJ and RK satisfying

the following conditions. Let RJ be such that J ∩ N = ∅, p(RJ) = {u}, and

u ∈ f2(RN , RJ). Similarly, let RK be such that K ∩ (N ∪ J) = ∅, p(RK) = {v},
and v ∈ f2(RN , RK). Let A ≡ f3(RN , RJ , RK). We will now show that A has at

least four elements. First, by object-population monotonicity, p(RJ) = {u} and

u ∈ f2(RN , RJ) imply that u ∈ A. Similarly, by object-population monotonicity,

p(RK) = {v} and v ∈ f2(RN , RK) imply that v ∈ A.

Second, by object-population monotonicity, since f1 (RN) = {x} , then the

set f2(RN , RK) has at least one location that is at least as good as x for Ri.

Let y ∈ f2(RN , RK) such that y Ri x. Efficiency requires that y ≤ pi. In

particular y < v. Since |f2(RN , RK)| = 2, it then follows that f2(RN , RK) =

{y, v} . By efficiency, there exists an agent h ∈ N such that ph ≤ y. By object-

population monotonicity, since f2 (RN , RK) = {y, v} , then the set A has at least

one location that is at least as good as y for Rh. Let y′ ∈ A such that y′ Rh y.

Since ph ≤ y, then in particular y′ ≤ y < v.

Third, by object-population monotonicity, since f1 (RN) = {x} , then the

set f2(RN , RJ) has at least one location that is at least as good as x for R`.

Let z ∈ f2(RN , RJ) such that z R` x. Efficiency requires that p` ≤ z. In

particular u < z. Since |f2(RN , RJ)| = 2, it then follows that f2(RN , RJ) =

{u, z} . By efficiency, there exists an agent m ∈ N such that z ≤ pm. By object-
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population monotonicity, since f2 (RN , RJ) = {u, z} , then the set A has at least

one location that is at least as good as x for Rm. Let z′ ∈ A such that z′ Rm z.

Since z ≤ pm, then in particular u < z ≤ z′.

In conclusion, y′ < u < v < z′ are four distinct elements of A, in contradic-

tion with |A| = 3.

Step 2. Let k ≥ 1. Suppose that fk satisfies peak-selection. Then fk+1 also

satisfies peak-selection.

Let RN ∈ RN . If |p(RN)| = k + 1, then by efficiency, fk+1 (RN) = p (RN),

so the claim is true. Suppose then that |p(RN)| > k + 1. We will first show

that fk+1 (RN) ∩ p (RN) 6= ∅. Since |p(RN)| > k + 1, then p (RN) * fk+1 (RN) .

Let RM be a maximal peak-unanimous subprofile of RN , with M ⊂ N, such

that p (RM) /∈ fk+1 (RN) . Consider the profile RN\M . We have
∣∣p (RN\M

)∣∣ > k.

From the induction hypothesis, we have fk

(
RN\M

)
⊆ p

(
RN\M

)
. By object-

population monotonicity, we have fk

(
RN\M

)
⊆ fk+1 (RN) . Thus fk

(
RN\M

)
⊆

fk+1 (RN) ∩ p (RN) . Therefore, fk+1 (RN) ∩ p (RN) 6= ∅.
Let x ∈ fk+1 (RN) ∩ p (RN) . Let RL be the maximal peak-unanimous sub-

profile of RN such that p (RL) = {x} . Then
∣∣p (RN\L

)∣∣ > k and x /∈ p
(
RN\L

)
.

From the induction hypothesis, we have fk

(
RN\L

)
⊆ p

(
RN\L

)
. By object-

population monotonicity, we have fk

(
RN\L

)
⊆ fk+1 (RN) . Since x ∈ fk+1 (RN) ,

then fk

(
RN\L

)
∪ {x} ⊆ fk+1 (RN) . Since x /∈ p

(
RN\L

)
, then x /∈ fk

(
RN\L

)
.

Thus,
∣∣fk

(
RN\L

)
∪ {x}

∣∣ = k+1 = |fk+1 (RN)| . Therefore, fk+1 (RN) = fk

(
RN\L

)
∪

{x} . Therefore, fk+1 (RN) ⊆ p (RN) , the desired conclusion.�

We are now ready to prove Theorem 1.

Proof of Theorem 1 (only if implication): Let f be an arbitrary rule that

satisfies efficiency, object-population monotonicity and sovereignty.

Step 1: Construction of a candidate priority � from f .
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By peak-selection, for each two compatible peak-unanimous profiles RL and

RM , we have f1 (RL, RM) ⊂ p(RL) ∪ p(RM). Let � be the binary relation over

peak-unanimous profiles such that, for each two compatible peak-unanimous

profiles RL and RM , we have RL � RM if f1 (RL, RM) = p (RL). By construc-

tion, the relation � is asymmetric and almost complete. It remains to show

that � is almost transitive. Consider three arbitrary peak-unanimous profiles

RK , RL and RM such that RK and RM are compatible. Suppose that RK � RL

and RL � RM . Then in particular, RK and RL are compatible, and RL and

RM are compatible. By definition of �, we know that f1 (RK , RL) = p (RK)

and f1 (RL, RM) = p (RL) . This and object-population monotonicity imply that

p (RK) ⊂ f2 (RK , RL, RM) and p (RL) ⊂ f2 (RK , RL, RM). By compatibility,

we have p (RK) 6= p (RL) . Therefore f2 (RK , RL, RM) = p (RK) ∪ p (RL). But

this and object-population monotonicity imply that f1 (RK , RM) = p (RK) , i.e.

RK � RM , the desired conclusion. Therefore � is a priority in PT .

Step 2: Let � be a priority defined as in step 1 from f. Let RN ∈ P1. Let

RM and RL be distinct maximal peak-unanimous subprofiles of RN such that

RM � RL. Then f1 (RN) 6= p (RL) .

The proof is by induction on |p (RN)|. For |p (RN)| = 2, the claim follows

from the definition of � . Let RN ∈ P1 be such that |p (RN)| = n ≥ 3, and

suppose that the claim is true for all R′N ′ ∈ P1 such that |p (R′N ′)| = n−1. Since

n ≥ 3, there is a maximal peak-unanimous subprofile RH of RN distinct from

both RL and RM , such that f1 (RN) 6= p (RH) . By the induction hypothesis,

f1

(
RN\H

)
6= p (RL) . Let RK be the maximal peak-unanimous subprofile of

RN , distinct from both RL and RH , such that f1

(
RN\H

)
= p (RK) . Strong

sovereignty ensures that there exists a peak-unanimous profile RJ such that

N ∩ J = ∅, p (RJ) = p (RH), and p (RJ) ⊂ f2 (RN , RJ) . By object-population

monotonicity, we have p (RK) ⊂ f2 (RN , RJ) . Since p (RK) 6= p (RJ) , thus

f2 (RN , RJ) = p (RK) ∪ p (RJ) . By object-population monotonicity, we have
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f1 (RN) ⊂ p (RK) ∪ p (RH) . Therefore, f1 (RN) 6= p (RL) , i.e. the claim is true

for |p (RN)| = n. Thus, it is true for any integer value of |p (RN)|, which proves

the claim.

Step 3: Let � be defined as in step 1 from f. Let (k, RN) be a problem. Let

RM and RL be distinct maximal peak-unanimous subprofiles of RN such that

RM � RL and p (RL) ⊆ fk (RN) . Then p (RM) ⊆ fk (RN) .

Let RM and RL satisfying the assumptions of the step. Consider all the max-

imal peak-unanimous subprofiles of RN that are distinct from RM and whose

peak location is not contained in fk (RN) . There are at least m := |p (RN)|−k−1

such subprofiles. Let RM1 , ..., RMm be m such subprofiles. By step 2, we know

that f1 (RM1 , ..., RMm , RM , RL) 6= p (RL) . Therefore f1 (RM1 , ..., RMm , RM , RL) ⊂
p (RM1∪...∪Mm∪M) . Next, using object-population monotonicity k − 1 times, we

obtain that fk (RN)∩ p (RM1∪...∪Mm∪M) 6= ∅. Since fk (RN)∩ p (RM1∪...∪Mm) = ∅
by definition of the subprofiles RMk

, therefore p (RM) ⊆ fk (RN) , the desired

conclusion.

It follows from Step 3 that any rule satisfying the axioms is the priority rule

associated with �, where � is defined as in Step 1.

Step 4: Let � be the priority associated with a rule f. If f is object-

population monotonic, then � is almost monotonic.

By contradiction, suppose that RM , RK , RH and RL are four peak-unanimous

profiles such that p (RM) = p (RL), M ∩ L = ∅, RK and RH are compatible,

RM � RH � RM∪L, and RM � RK � RM∪L. Then either RH � RK or RK �
RH . Suppose, for example, that RH � RK . Then f1 (RH , RK , RM) = p (RM) and

f2 (RH , RK , RM∪L) = p (RH) ∪ p (RK) , in violation of object-population mono-

tonicity. The same conclusion is obtained if we assume instead that RK � RH .

Therefore � is almost monotonic.
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Step 5: Let � be the priority associated with an arbitrary rule f. If f is

sovereign, then � is sovereign.

(i) Let RH and RK be two arbitrary peak-unanimous profiles satisfying

RH � RK , and let L be an arbitrary population. By sovereignty of f , since

f1 (RH , RK) 6= p (RK) , then there exists a peak-unanimous profile RM satis-

fying M ∩ (H ∪K ∪ L) = ∅, and f1 (RH , RK , RM) = p (RM) = p (RK) . Since

(RK , RM) is then a peak-unanimous profile, we have (RK , RM) � RH . (ii)

Next, let RH be an arbitrary peak-unanimous profile, let x 6= p (RH) , and let

L be an arbitrary population. By sovereignty of f , since f1 (RH) 6= x, then

there exists a peak-unanimous profile RM satisfying M ∩ (H ∪ L) = ∅, and

f1 (RH , RM) = p (RM) . Therefore, we have RM � RH .Therefore � is sovereign.

�

Independence of the axioms We verify that the axioms are independent.

First, the left-peaks rule fLP (like any other priority rule whose priority is not

sovereign) satisfies all the axioms but sovereignty. Second, the rule f such

that f1 selects the location xm of the (left)-median voter when k = 1, and

such that fk coincides with the left-peaks rule for all k ≥ 2 satisfies efficiency

and sovereignty, but violates object-population monotonicity. Finally, the rule

that locates the first facility on the left-majoritarian peak and the remaining

facilities at the smallest k − 1 positive integers distinct from p(RN) satisfies

object-population monotonicity and sovereignty but violates efficiency.21

21Observe that the three axioms imply object-monotonicity, since all priority rules are
object-monotonic. Also, none of the rules characterized in Theorem 1 satisfies population-
monotonicity, since the only population-monotonic priority rules are the left peaks rule and
the right peaks rule and these two rules are not sovereign.
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7 Other properties

In this section and the next one, we investigate on subclasses of priority rules in

F that satisfy other additional desirable properties, such as anonymity, hiding-

proofness and median-selection. In the next section, we will turn our attention

to strategy-proofness.

A rule f satisfies anonymity if, for all k ≥ 1, and all RN , R′M ∈ Pk

where for all R ∈ R, we have |{i ∈M : R′i = R}| = |{i ∈ N : Ri = R}| , we

have fk(RN) = fk(R′M). A priority � is anonymous if it satisfies the follow-

ing condition. For all RM , RN , R′M ′ , R
′
N ′ ∈ T , such that: (i) RM and RN

are compatible, (ii) R′M ′ and R′N ′ are compatible, (iii) for all R ∈ R, we

have |{i ∈M : Ri = R}| = |{i ∈M ′ : R′i = R}| , (iv) for all R ∈ R, we have

|{i ∈ N : Ri = R}| = |{i ∈ N ′ : R′i = R}| , the following equivalence holds

RM � RN ⇔ R′M ′ � R′N ′ .

We leave it to the reader to verify the following result.

Proposition 1: A priority rule f ∈ F satisfies anonymity if and only if its

priority � is anonymous.

Next, we consider a property that ensures that no agent gains from hiding

from the social planner. Consider a university which has to choose k software

licenses from a larger set of available software for its employees. The decision

is taken through an online poll, to which employees can freely respond. One

would want that no employee has an incentive not to participate in the poll. A

rule f satisfies hiding-proofness if for each problem k ≥ 1, each RN ∈ Pk,

and each i ∈ N such that RN\{i} ∈ Pk, we have fk(RN) Ri fk(RN\{i}). The

following holds.
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Proposition 2: A priority rule f ∈ F satisfies hiding-proofness if and only

if its priority � is monotonic.

Proof. The if implication is clear. Let us prove the only if implication. Let

f be a priority rule that satisfies hiding-proofness, associated with the priority

� . Let RL, RN ∈ T be such that RN and RL are compatible. Let i ∈ N.

Suppose that RN\{i} � RL. Then f1

(
RL, RN\{i}

)
= p

(
RN\{i}

)
= p (RN) . This

equality and hiding-proofness imply f1 (RL, RN) = p (RN), which in turn implies

RN � RM , the desired conclusion.�

Last, an important rule for selecting a single location in this model is the

one which selects the median peak, for each preference profile RN such that |N |
is odd (Black, 1948). A natural question is thus whether there exists a priority

rule f such that, for any RN such that |N | is odd, the location f1 (RN) is the

median of the peaks. Unfortunately, the answer is negative. In fact we are able

to show a much stronger negative result.

Proposition 3: Let N = {1, ..., 11}. There is no rule f satisfying object-

population monotonicity and such that, for each RM ∈ RM , with M ⊂ N such

that |M | is odd, the location f1(RM) is the median of the peaks of the profile

RM .

Proof : By contradiction, suppose that f is such a rule. Consider a profile

RN whose only maximal peak-unanimous subprofiles R{1,2,3,4}, R{5,6}, R{8,9,10,11}

have peaks locations respectively at 1, 2 and 4. Let R7 be such that p (R7) = 3.

Then, by the median property, we have f1

(
RN\{1,2,3,4}

)
= 4, f1

(
RN\{5,6}

)
= 3

and f1

(
RN\{8,9,10,11}

)
= 1. By object-population monotonicity, we have {1, 3, 4} ⊆

f2 (RN) , which contradicts |f2 (RN)| = 2.�
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8 Strategy-proofness and hierarchical rules

In this section, we investigate on the class of procedures to locate a single

facility that are both the first component of some priority rule and robust to

the manipulation of preferences. A 1-rule is a mapping g : P1→X1. It can

also be seen as the first component of a rule. A 1-rule is a 1-priority rule if

it is the first component of a priority rule. The non-manipulability property

we are interested in requires that truthfully reporting preferences be a (weakly)

dominant strategy in the associated direct revelation game:

A 1-rule g satisfies strategy-proofness if for each RN ∈ P1, each i ∈ N

and each R′i ∈ R, we have g(RN) Ri g(R′i, R−i).

The first components of the left-peaks rule, the right-peaks rule and of all the

serial dictatorships are strategy-proof priority 1-rules. More generally, the first

component of any hierarchical rule (see Example 8) is strategy-proof. In fact, we

will show in this section that the hierarchical 1-rules are the only strategy-proof

priority 1-rules.22

8.1 Strategy-proof priority N-schemes

For each population N , an N-scheme is a mapping gN : RN→X1. It can also be

seen as the restriction of a 1-rule to the subset RN . Moulin (1980) introduced

the following class of N -schemes.

An N -scheme gN is a peak-selecting generalized median N -scheme if there

is a list {aM}M⊆N of parameters such that aN = −∞, a∅ = +∞, and for each

M ⊆ N, we have aM ∈ {−∞, +∞}; for all L, M ⊆ N, we have L ⊆M ⇒ aM ≤
22The definition of strategy-proofness can be extended to rules in the obvious way. See the

comments at the end of the section.
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aL; and for each RN ∈ RN , we have

g(RN) = min
M⊆N

{
max
i∈M

[aM , p(Ri)]

}
.

It is well known that peak-selecting generalized median N -schemes are the

only peak selecting strategy-proof N -schemes.23 Let MN be the class of peak-

selecting generalized median N -schemes. We say that a subset M ⊆ N is

minimal for the N -scheme g if aM,N = −∞ and, for all L  M, we have

aL = +∞. In particular, any minimal subset M is nonempty, and is therefore a

subpopulation of N. Clearly, we have

g(RN) = min
M⊆N,

s.t. M is minimal

{max [p(RM)]} .

We say that an N -scheme gN is a priority N-scheme if there is a priority 1-rule

that coincides with gN onRN .We now provide a description of all strategy-proof

priority N -schemes, in terms of the collection of their minimal sets.

Lemma 3: Let gN be a strategy-proof priority N-scheme. Then, gN is peak-

selecting generalized median. Furthermore, either gN has exactly one minimal

set, or all minimal sets of gN are singletons.

Proof : Since gN is a priority N -scheme, it satisfies peaks-selection. Since it

is also strategy-proof, then it is a peak-selecting generalized median. Therefore,

it can be described by its minimal sets. By contradiction, suppose that L and

M are two distinct minimal sets for gN , and that |M | ≥ 2. Let j∗ ∈ M \ L.

Since |M | ≥ 2, then M \ {j∗} 6= ∅. Since L and M are two distinct minimal

sets for gN , then L  M, which further implies that N \M 6= ∅. The sets {j∗},
M \ {j∗}, and N \M form a disjoint partition of N, and none of these sets is

empty.

23This follows from the work of Moulin (1980) and Barberà and Jackson (1994). This family
plays an important role in the work of Jackson and Nicolò (2004), and Cantala (2004).
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Let RN ∈ RN be a profile whose maximal peak-unanimous subprofiles are

RM\{j∗}, RN\M and Rj∗ and have peak locations respectively at 0, 1 and 2, so

that p(RN) = {0, 1, 2}. Since M is minimal, then for each minimal set K, we

do not have K  M. In particular, we do not have K ⊆ M \ {j∗}. Therefore

max[p(RK)] ≥ 1. Since this holds for each minimal set K, therefore gN(RN) ≥ 1.

Since, however, max[p(RL)] = 1 and L ⊆ N \ {j} , then gN(RN) = 1. Thus,

RN\M � RM\{j∗}.

Next, let R′j∗ be a preference whose peak location is at −1. Let R′N :=

(R′j∗ , RN\{j∗}). Then, we have p(R′N) = {−1, 0, 1}. Since M is minimal, then

for each minimal set K, we do not have K  M. In particular, we do not have

K ⊆ {j∗}. Therefore max[p(R′K)] ≥ 0. Since this holds for each minimal set

K, therefore gN(R′N) ≥ 0. Since, however, max[p(R′M)] = 0, then gN(R′N) = 0.

Therefore, R′M\{j∗} � R′N\M , i.e. RM\{j∗} � RN\M , which contradicts RN\M �
RM\{j∗}.�

We now provide a convenient description of the family of strategy-proof

priority N -schemes. Consider a pair (C, D) such that C ⊆ N and D ⊆ N.

Let the N -scheme gN be the (C, D)-oligarchy if exactly one of the following

mutually exclusive conditions holds.

(a). |C| ≥ 2, D = ∅, and for all RN ∈ RN , gN (RN) = min {p (RC)} .

(b). C = ∅, |D| ≥ 2, and for all RN ∈ RN , gN (RN) = max {p (RD)} .

(c). C = D = {i∗} for some i∗ ∈ N , and for all RN ∈ RN , gN (RN) = p (Ri) .

The (C, D)-oligarchy is not defined for all pairs (C, D) , only the ones satis-

fying one of the above admissibility conditions. Also, two distinct pairs (C, D)

and (C ′, D′) define different oligarchies. In case (a), the scheme is similar to

a left-peaks N -scheme, but it only takes into account a subset C of the pop-

ulation. In case (b), it is similar to a right-peaks N -scheme, but it takes into
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account only a subset D of the population. In case (c), it is the dictatorship of

some agent i∗. As we will see in Theorem 2, an N -scheme is a strategy-proof

priority N -scheme if and only if it is a (C, D)-oligarchy for some admissible pair

(C, D) .

8.2 Conjugate weak partial orders

In order to be able to characterize strategy-proof priority 1-rules, we introduce

here a few concepts. Two weak partial orders DL and DR on N are conjugate

if for all i, j ∈ N such that i 6= j, we have (i DL j) ⇔ ¬(j DR i). Given two

weak partial orders D′ and D′′ on N, let the union of D′ and D′′ be the binary

relation D on N such that, for all i, j ∈ N, we have i D j ≡ (i D′ j or i D′′ j).

The following holds.

Lemma 4: LetDL and DR be two conjugate partial orders on N. Then the

union D of DL and DR is a weak ordering.

Proof. We leave it to the reader to verify that the relation D is reflexive and

complete. We will prove that it is transitive. Let i, j, k be arbitrary elements of

N, such that i D j, and j D k. We will prove that i D k. If i, j and k are not

three distinct integers, the claim is obviously true. Suppose then that i, j and

k are three distinct integers. Four cases may arise. Case 1: iDL j, and j DL k.

Then by transitivity of DL, we have i DL k. Case 2: i DR j, and j DR k. Then

by transitivity of DR, we have iDR k. Case 3: iDL j, and j DR k. Since iDL j,

i 6= j, and DL and DR are conjugates, therefore ¬(j DR i). By transitivity of

DR, and since j DR k and ¬(j DR i), therefore ¬(k DR i). Since k 6= i, and DL

and DR are conjugates, this is equivalent to iDL k. Case 4: iDR j, and j DL k.

Following a reasoning symmetric to Case 3, we can prove that iDR k. In all four

cases we proved, either that iDL k, or that iDR k. Therefore, in all four cases,

iD k, the desired conclusion, holds.�
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Lemma 5: Let DL and DR be two conjugate weak partial orders. Let T ⊂ N be

an indifference class for the union D of DL and DR with at least two elements.

Then, T is an indifference class, either for DL, or for DR, but not for both.

Proof. Throughout the proof, let ./, ./L, and ./R denote the respective

indifference relations associated with D, DL and DR. We will first show that for

all i, j ∈ T, such that i 6= j, and i ./ j, we have either i ./L j or i ./R j, but not

both. Let i, j ∈ T be two such agents. Since DL and DR are conjugates and

i 6= j, we cannot have i DL j and j DR i. For the same reason, we cannot have

i DR j and j DL i. Therefore, either i ./L j, or i ./R j, but not both. If T has

exactly two elements, there is nothing left to prove. Assume then that T has at

least three elements.

Next, we will show that for all three distinct i, j, k ∈ T, we have either

i ./L j ./L k, or i ./R j ./R k, but not both. We will first show that i ./L j ./R k

cannot hold. Suppose, by contradiction, that these relations hold. Then, on

the one hand, we have i DL j DR k. By Case 3 in the proof of Lemma 4, this

implies that i DL k. But, also, on the other hand, we have k DR j DL i. By

Case 4 in the proof of Lemma 4, this implies that k DR i. Thus we have i 6= k,

iDL k and kDR i, which contradicts that DL and DR are conjugates. Therefore,

i ./L j ./R k cannot hold. A symmetric reasoning shows that i ./R j ./L k

cannot hold either. Therefore, we have either i ./L j ./L k, or i ./R j ./R k,

but not both. Since this holds for all distinct i, j, k ∈ T, it follows that T is

an indifference class, either for DL, or for DR, but not for both, the desired

conclusion.�

8.3 Strategy-proof priority 1-rules

We are now ready to provide a characterization of all strategy-proof priority

1-rules. We describe this set in two ways.

Under the first description, each such 1-rule is viewed as the collection of
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the N -schemes it induces: Each of them is a (CN , DN)-oligarchy. Moreover the

parameters (CN , DN) are linked across population, in a way which will be made

clear. We describe the exact nature of the linkage. In the second description,

we focus on the priority itself and show that it is hierarchical, as defined in

Example 4. We are now ready to present the main result of this section.

Theorem 2: Let g be a 1-rule. The three following statements are equivalent.

(i) . g is a strategy-proof priority 1-rule.

(ii) . There are conjugate weak partial orders DL and DR such that, for each

population N, the 1-rule g induces the (CN , DN)-oligarchic N-scheme gN

on N, with CN = {i ∈ N : ∀j ∈ N, i DL j} and DN = {i ∈ N : ∀j ∈
N, iDR j}.

(iii) . g is a hierarchical 1-rule.

Proof: (iii) =⇒ (i) . A hierarchical rule g is obviously a priority 1-rule. It

remains to show that it is strategy-proof. Let N be an arbitrary population.

Let gN be the N -scheme induced by g on N. Let T be the highest priority class

of agents in the hierarchy such that T ∩ N 6= ∅. Then either, for all profile

RN ∈ RN , we have gN (RN) = min [p (RN∩T )] or, for all profile RN ∈ RN , we

have gN (RN) = max [p (RN∩T )] . In both cases, the N -scheme gN is strategy-

proof, the desired conclusion.

(i) =⇒ (ii). By Lemma 3, either gN has a single minimal set and this set

is not a singleton, or it contains more than one minimal set and they are all

singletons, or it contains a single set and it is a singleton. Clearly, these three

cases are mutually exclusive. In the first case, let CN be the union of the many

singleton sets for gN , and let DN ≡ ∅. In the second case, let DN be unique (non

singleton) minimal set, and let CN ≡ ∅. In the third and last case, let i∗ be the
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unique element of the unique minimal set, and let CN ≡ {i∗}, and DN ≡ {i∗}.
Clearly, for each N , the pair (CN , DN) satisfies conditions (a), (b) and (c) of the

definition of an oligarchic 1-rule. Next, let DL and DR be two binary relations

on N defined as follows. For all i, j ∈ N, let (i DL j) ⇔ (i ∈ C{i,j} or i = j),

and let (i DR j) ⇔ (i ∈ D{i,j} or i = j). We will prove that DL,DR satisfy the

requirements of statement (ii) in three steps.

Step 1. The binary relations DL and DR are transitive. We will only prove

that DL is transitive. The proof that DR is transitive follows a symmetric

reasoning. Let i, j and k be three agents such that iDL j and j DL k. We claim

that iDL k holds. If these agents are not all distinct, then our claim is obvious.

Suppose then that they are distinct. Let the preferences Ri, Rj and Rk have

their respective peak locations at −1, 0 and 1. Then, on the one hand, i DL j

and i 6= j imply that i ∈ C{i,j}. Since p(Ri) = −1 < 0 = p(Rj), it follows that

g(Ri, Rj) = −1. Since g is the priority rule associated with �, this implies that

Ri � Rj. By a similar reasoning, we can show that jDL k implies that Rj � Rk.

By almost transitivity, we obtain Ri � Rk. Therefore, g(Ri, Rk) = −1. Since

p(Ri) = −1 < 1 = p(Rk), this implies that i ∈ C{i,k}. Therefore, we have iDL k.

Therefore, DL is transitive, the desired conclusion.

Step 2. The weak partial orders DL and DR are conjugate. Let i, j ∈ N

such that i 6= j and i DL j. Then i ∈ C{i,j} and i 6= j. Therefore D{i,j} ⊆ {i} . In

particular, j /∈ D{i,j} and i 6= j. Therefore, ¬ (j DR i), the desired conclusion.

Step 3. For all N, we have CN = {i ∈ N : ∀j ∈ N, i DL j} and DN =

{i ∈ N : ∀j ∈ N, i DR j}. We will only prove the claim for CN . The proof of

the claim for DN follows a symmetric reasoning. First we prove that CN ⊆
{i ∈ N : ∀j ∈ N, i DL j}. Let i ∈ CN and j ∈ N. We will prove that i DL j.

Let RN be a profile whose only maximal peak-unanimous subprofiles are Ri,

Rj and RN\{i,j} and have their respective peak locations at −1, 0 and 1. Then

g(RN) = min[p(RCN
)] = −1. This implies that Ri � Rj. Therefore, g(Ri,j) =
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−1, i.e. i DL j. Second, we prove that {i ∈ N : ∀j ∈ N, i DL j} ⊆ CN . Let

i ∈ {i ∈ N : ∀j ∈ N, i DL j}. We will prove that i ∈ CN . Let j1, . . . , jl be

the elements of N \ i. Let RN be a profile such that p (Ri) := 0 and for all

k = 1, ..., l, we have p (Rjl
) := l. For all k = 1, . . . , l, we have iDL jk, therefore

g(Ri,jk
) = −1, therefore Ri � Rjk

. Since this holds for all k = 1, . . . , l and g

is a priority rule, it follows that g(RN) = −1 = p(Ri). Therefore i ∈ CN , the

desired conclusion.

(ii) =⇒ (iii). Let the statement (ii) hold. We will proceed in two steps.

First, we will construct a candidate hierarchical priority �. Second, we will

show that g is indeed the 1-rule associated with this priority.

Step 1: Definition of a candidate hierarchical priority. Let � be binary

relation on T defined as follows. Let D be the union of DL and DR . Then

D is a weak ordering of N, such that each indifference class W for D is either

an indifference class for DL, or for DR, but not for both. Let � be the weak

ordering on T defined as follows. For all RM , RN ∈ T , we have RM � RN

if there is i ∈ M such that for all j ∈ N ∪ M, we have i D j. Let T∗ be

the set of non-singleton indifference classes for � in T . Then, for each non

singleton indifference class T ∈ T∗, there is a (unique) indifference class WT

for D in N, such that T = {RN ∈ T : N ∩WT 6= ∅} . We know that for each

class T ∈ T∗, the class WT satisfies exactly one of the following two mutually

exclusives conditions. Either it is a non-singleton indifference class for DL, or

it is a non-singleton indifference class for DR. We will now define a priority

�T over each non-singleton indifference class T ∈ T∗. If WT is a non-singleton

indifference class for DL, then let �T be the left peaks priority over T. If instead

WT is a non-singleton indifference class for DL, then let �T be the right peaks

priority over T. The tuple
(
�, (�T )T∈T

)
defines a hierarchical priority �.

Step 2: g is the priority 1-rule associated with � . We know that each of

the N -schemes gN satisfies peaks selection. Thus g satisfies peaks selection. Let
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RN be an arbitrary profile. Let RL be the maximal peak-unanimous subprofile

of RN such that g (RN) = p (RL) . We will show that this implies that for all

other maximal peak-unanimous subprofile RM of RN , we have RL � RM . To

do so, we will distinguish three mutually exclusive cases. Case 1: |CN | ≥ 2.

Then p (RL) = min {p (RCN
)} . Since it is nonempty, the set CN is the highest

indifference class for D in N and is also an indifference class for DL . This

and p (RL) = min {p (RCN
)} implies that RL � RM , for all maximal peak-

unanimous profiles RM in RN that are distinct from RL. Case 2: |DN | ≥ 2.

Then p (RL) = max {p (RDN
)} . Since it is nonempty, the set DN is the highest

indifference class for D in N and is also an indifference class for DR . This and

p (RL) = min {p (RCN
)} implies that RL � RM , for all maximal peak-unanimous

profiles RM in RN that are distinct from RL. Case 3: CN = DN = {i} for some

i ∈ N . Then i is the sole element in the highest indifference class for D in N .

As a consequence, whichever maximal peak-unanimous profile of RN has agent

i enjoys the highest priority for �. Since g (RN) = p (RL) , therefore i ∈ L.

Therefore, RL � RM , for all maximal peak-unanimous subprofiles RM of RN

that are distinct from RL. Therefore, g is the hierarchical 1-rule associated with

the priority �, the desired conclusion.�

Finally, we should point out that, although we defined strategy-proofness

for 1-rules, the definition can easily be adapted for rules. It is easy to see that

hierarchical rules are strategy-proof. Thus, our results in this section also imply

that the only strategy-proof priority rules are the hierarchical rules.

We conclude with the following additional observations. All of the hier-

archical rules satisfy hiding-proofness. However, the left-peaks rule and the

right-peaks rule are the only anonymous hierarchical rules. Each majoritarian

rule is hiding-proof and anonymous, but it is not a hierarchical rule, i.e. it is

not strategy-proof. All hierarchical priorities are monotone, therefore almost

monotone. A necessary and sufficient condition for a hierarchical priority � to
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be sovereign is that the weak ordering D of the agents that is associated with

it should have no maximal element.

9 Conclusion

In this paper we undertake the task of designing rules for the provision of mul-

tiple public facilities to populations of agents with single peaked preferences

over the real line. To this end, we introduce two new axioms –object-population

monotonicity and sovereignty. We uncover and characterize a rich family of

priority rules. Some rules in the family are appealing, for example the majori-

tarian rules. Unfortunately, no priority rule coincides with the median for each

problem of providing exactly one public facility to an odd population of agents.

On the positive side, the structure of the rules in the family is very simple, which

makes it possible to characterize several subfamilies on the basis of anonymity,

hiding-proofness and strategy-proofness. In particular, strategy-proof priority

rules form the interesting subfamily of hierarchical rules.

We view our work as an initial step towards a comprehensive understanding

of the implications of normative and strategic axioms in the problem of locating

multiple facilities. An obvious question is whether it is possible to generalize

Moulin’s (1980) generalized median voter schemes to this more complex setting.

We only provide a partial answer to this question. The priority structure enables

us to generalize only a particular type of generalized median voter scheme, the

oligarchies. A generalization of the entire family of generalized median voter

schemes to the problem of locating multiple facilities requires a flexibility which

conflicts with the priority structure, and thus with our main axioms.

Our analysis is based on a particular way to extend preferences over single-

locations to preferences over multiple locations, the max-extension, introduced

by Miyagawa (1998, 2001). The work of Miyagawa seems to indicate that the

max-extension is not very tractable, in the sense that it leads to characteriza-
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tions of rules that are not particularly appealing, such as the left peaks rule

and the right peaks rule, and other more complicated rules. As our results

suggest, this may have more to do with the solidarity axioms used there than

the max-extension itself. As Gordon (2007a) has shown, solidarity axioms have

strong general implication in all public decisions models, of which the location

of multiple public facilities is a special case. Nevertheless, both Miyagawa and

us obtain highly discontinuous rules, for any natural topology. This seems to be

a regular feature of the max-extension model. Thus, insisting on continuity in

this model may be too strong a requirement. Majoritarian rules, for instance,

are not continuous.

However, a natural extension of our work would be precisely to study what

happens under other types of preference extensions, e.g. the lexicographic ex-

tension. Ehlers (2002, 2003) studies the same axioms as Miyagawa (1998, 2001)

under the lexicographic extension and obtains strikingly different characteriza-

tions. So, it is quite possible that the axioms we used here would lead to other

families of rules as well, if one were to replace the max-extension of our model

with the lexicographic extension, or some other extension.

Finally, we have considered here the pure public goods case. Richer set-ups

include problems with congestion and cost-sharing to finance the facilities, such

as in the model by Jackson and Nicolò (2004), for the case k = 1. We leave this

and the other questions open for future research.
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2. Barberà S., Beviá C., 2005. “Locating Public Facilities by Majority:

Stability, Consistency and Group formation.” Games and Economic Behavior,

56, 185-200.
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https://www.webdepot.umontreal.ca/Usagers/gordons/MonDepotPublic/wp.pdf

6. Cantala D. 2004. “Choosing the Level of a Public Good when Agents

have an Outside Option.” Social Choice and Welfare, 22, 491-514.

7. Ching S., 1997. “Strategy-Proofness and Median Voters.” International

Journal of Game Theory, 26, 473-490.

8. Ching S. and Thomson W., 1996. “Population-Monotonic Solutions in

Public Good Economies with Single-Peaked Preferences.” Forthcoming, Social

Choice and Welfare.

9. Ehlers L., 2002. “Multiple Public Goods and Lexicographic Preferences.”

Journal of Mathematical Economics, 37, 1-15.

10. Ehlers L., 2003. “Multiple Public Goods, Lexicographic Preferences,

and Single-Plateaued Preference Rules.” Games and Economic Behavior, 43,

1-27.

11. Fidrmuc, J., Ginsburgh V., Weber S., 2006. “On the Choice of Official

Languages in the European Union.” mimeo.

12. Gordon S., 2007a. “Public Decisions: Solidarity and the Status Quo.”

Games and Economic Behavior, 61, 225-241.

13. Gordon S., 2007b. “Solidarity in Choosing a Location on a Cycle.”

Social Choice and Welfare, 29, 125-147.
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