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1 Introduction

Over the last decades human longevity has increased substantially. Higher expected lifetime

has been accompanied, at least in the developed world, by a significant rise of healthcare

expenditures. For example, between 1960 and 2000 life expectancy in the U.S. rose from

69.8 to 77.1 years, while health expenditures, as a share of GDP, increased from 5.2%

to 13.4% (according to OECD data). Even though empirical evidence on the relationship

between health expenditures and life expectancy is ambiguous, there is no doubt that ex-

pected lifetime is not given per se but can be influenced by investments in healthcare, such

as improving sanitation, buying medication and inoculation, consulting a physician, etc.

(Lichtenberg 2004, Cutler et al. 2006, Hall and Jones 2007, Caliskan 2009).

In this paper, we analyze the relationship between endogenous investments in longevity,

economic growth and welfare. Therefore, we develop a model that combines the household

side of perpetual youth models in the tradition of Yaari (1965) and Blanchard (1985) with

the production side of an endogenous growth model in the style of Romer (1986). The key

novelty in our model is a healthcare sector that allows individuals to reduce their risk of

dying by purchasing health services. Thus, instead of varying longevity exogenously, we

focus on how economic growth and welfare reacts to endogenous changes in life expectancy

induced by improvements in the healthcare technology.1 In fact, we consider two different

types of healthcare improvements. The first type decreases the baseline mortality, which is

independent of individual investments in healthcare. One could think of improvements in

the sanitary infrastructure or behavioral changes such as reduced smoking. The second type

increases the marginal productivity of healthcare expenditures. Examples include better

medication or therapeutic breakthroughs, such as new diagnostic tools or surgeries.

In our standard model specification, we find that improvements in the healthcare technology

always lead to higher steady state growth rates. Intuitively, higher life expectancy increases

the share of old (“rich”) relative to young (“poor”) households and leads ceteris paribus

to higher capital per capita accumulation. However, our numerical calculations suggest

that the effect on the growth rate is rather small. Yet, higher life expectancy may yield

considerable welfare gains. The type of healthcare improvements matters, however. For a

given increase in longevity, welfare improvements are substantially higher if higher longevity

is induced by improvements of the first type (baseline mortality decreases) compared to

improvements of the second type (higher efficiency of healthcare treatment). Using the data

set of Becker et al. (2005) amended by data on healthcare expenditures, we obtain higher

1 Our model emphasizes that increases in healthcare expenditures and longevity are mainly driven by the
availability of better healthcare technologies. Newhouse (1992), Cutler et al. (2006) and Fonseca et al.
(2009), among others, support this view. Alternative explanations focus on income effects (Hall and Jones
2007) or greater health-insurance coverage.
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welfare improvements than Becker et al. (2005) in low developed regions, where healthcare

improvements were predominantly of the first type, and lower welfare improvements in

highly developed regions, where longevity increases were mainly triggered by healthcare

improvements of the second type.

We identify two externalities associated with healthcare investments. The first, which is well

known (see, for example, Philipson and Becker 1998), stems from the price taking behavior of

households with respect to annuities and leads to over-investment in healthcare. The second

externality is a consequence of our growth model. Households under-invest in healthcare,

as they do not take into account that increased longevity on the aggregate level induces a

positive effect on the economy’s growth rate. We show that healthcare investments in the

market equilibrium cannot be inefficiently high and give a condition under which they are

inefficiently low.

Finally, we emphasize the importance of the spillover specification in the production sec-

tor for the growth effects of healthcare investments. Generalizing the specification of the

spillover effect in our basic model set-up, we show that when technological improvements

trigger higher healthcare expenditures, longevity increases may even lead to negative growth

and welfare effects. By contrast, increases in expected lifetime enjoyed without healthcare

expenditures always induce positive growth and welfare effects independent of the spillover

specification. This further highlights the importance of the source of longevity increases.

Our paper combines three strands of the literature. The first is the literature on the willing-

ness to pay for lower mortality risk including Grossman (1972), Arthur (1981), Shepard and

Zeckhauser (1984), Rosen (1988), Ehrlich and Chuma (1990), Murphy and Topel (2003).

These papers study the trade-off of an individual household between consumption and

longevity, but do not consider the effects on economic growth and also neglect potential ex-

ternalities of healthcare expenditures.2 A standard result in this literature is that healthcare

investments decrease in the household’s intertemporal substitution elasticity. The reason is

that there exists a trade-off between the quality (consumption level) and the quantity of life

(length of life). The household is the more willing to sacrifice current consumption in order

to increase its lifetime the stronger are the diminishing returns from consumption (i.e., the

more concave is the instantaneous utility function). We find that this trade-off between the

quality and the quantity of life is only present if the households’ consumption elasticities are

low but vanishes if consumption elasticities are higher. Households with high consumption

elasticities invest more in their longevity with the aim to maximize their quality of life,

2 The latter is examined by Kuhn et al. (2010) who explicitly account for negative externalities such as
congestion of medical facilities or positive spillovers of preventive activities. By contrast, the externalities
in our paper are induced by households not taking into account the aggregate effects of health expenditures
on annuity returns and the economy’s growth rate.
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i.e. their level of lifetime consumption. The reason is that when the households also decide

on capital savings, the consumption profile for a given lifetime becomes steeper for higher

intertemporal substitution elasticities. This gives an incentive to live longer to enjoy more

periods with high consumption levels. Thus, the relationship between healthcare expendi-

tures and the intertemporal elasticity of substitution is U-shaped rather than monotonically

declining.

The second strand is the literature on the growth effects of increased life expectancy. By

now, there exists a considerably body of literature that examines exogenous variations in

expected lifetime on economic development (see, for example, de la Croix and Licandro 1999,

Kalemli-Ozcan et al. 2000, Zhang et al. 2001 Kalemli-Ozcan 2002, Azomahou et al. 2009,

Prettner 2010). However, we are aware of only three other papers which consider endogenous

expected lifetime in the sense that healthcare investments are directly chosen either by the

government or the individual household.3 Chakraborty and Das (2005) examine the effects

of endogenous longevity choices on inequality, Bhattacharya and Qiao (2006) argue that the

presence of public input in private longevity may lead to chaotic dynamics in a neoclassical

growth model, and Finlay (2006) investigates individuals’ incentives to invest in human

capital and higher expected lifetime dependent on the agents’ degree of risk aversion. In

contrast to these papers, we investigate the growth effects of changes in the healthcare

technology rather than assuming a static one. In addition, these contributions employ a two

period overlapping generations model, where households have a certain probability to live

in the second period and growth is driven by human capital, while we consider a continuous

time perpetual youth model. This allows us to connect to the first strand of the literature

mentioned above in a natural way.

Finally, our numerical exercises are closely related to the papers on the welfare consequences

of increased longevity by Becker et al. (2005) and Jones and Klenow (2010). They neglect

effects of longevity on (consumption) growth in their welfare estimations. Our basic model

set-up supports such an approach, as growth effects of longevity are rather small. However,

we emphasize that reasonable changes in the specification of spillover effects may yield

growth effects of increased longevity that substantially (and negatively) affect welfare.

The paper is organized as follows. The next section introduces the model and provides a

detailed discussion of the household’s maximization problem with respect to healthcare.

Section 3 determines the market equilibrium and derives the dynamics of the aggregate

3 Other papers including Blackburn and Cipriani (2002), Aisa and Pueyo (2004) and Chakraborty (2004)
endogenize the individual’s life expectancy which, however, is not chosen fully independently. More re-
motely related to our paper is the literature on the effect of health expenditures on growth in the presence
of epidemics such as AIDS (Bell et al. 2006, Bell and Gersbach 2009). In these papers health expendi-
tures may have a substantial effect on longevity and growth by alleviating or eliminating the negative
consequences of the epidemic.
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economy. In Sections 4 and 5 we discuss the quality-quantity trade-off and the relationship

between healthcare expenditures and the economy’s age structure. We investigate the effects

of improvements in the healthcare technology on the economy’s steady state dynamics and

provide numerical examples that illustrate the growth and welfare effects in Section 6. In

Section 7, we identify the externalities of the market equilibrium. Section 8 extends the

analysis to different spillover specifications. Finally, Section 9 concludes.

2 The Model

The model comprises a continuum of households. Like in Blanchard (1985), households born

at time s ∈ (−∞,∞) face a hazard rate p(s) of dying that is constant throughout the lifetime

of each household. In our model, however, the hazard rate may vary among households of

different cohorts, as it is determined by the level of medical treatment the household gets

throughout its lifetime. At time of birth, households choose a level of medical treatment

h(s), which is fixed over the entire lifetime and determines the hazard rate via a healthcare

technology H
(

h(s)
)

.

As the hazard rate is constant over the entire lifetime, all households born at time s and

still alive face an expected remaining lifetime T (s) at any time t ≥ s given by

T (s) =

∫ ∞

t
(t′ − t)p(s) exp[−p(s)(t′ − t)]dt′ =

1

p(s)
. (1)

Although the lifetime of each household is stochastic, we assume that the size of each cohort

is large enough for cohort sizes to decline deterministically over time. At all times a new

cohort is born. We abstract from fertility choices of households and assume that cohort size

grows at the constant and exogenously given rate ν.4 Normalizing the cohort size at time

t = 0 to unity, we obtain for the size of the population at time t

N(t) =

∫ t

−∞
exp[νs] exp[−p(s)(t− s)]ds . (2)

Households exhibit identical ex ante preferences and face equal hazard rates for the same lev-

els of medical treatment. Households born at time s maximize expected discounted lifetime

utility derived from consumption U

U(s) ≡

∫ ∞

s
V
(

c(t, s)
)

exp
[

−
(

ρ+ p(s)
)

(t− s)
]

dt , (3)

4 The parameter ν can be mapped into the economy’s fertility rate, which specifies how many children are
born on average by each woman (or by our abstract genderless individual). The fertility rate is independent
of the size of the actual population.
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where V
(

c(t, s)
)

denotes the instantaneous utility derived from consumption c(t, s) at time

t of the household born at time s, and ρ is the constant rate of time preference. We impose

standard curvature properties on the instantaneous utility function (V ′ > 0 and V ′′ < 0).

Rosen (1988) showed that optimal investments in healthcare crucially depend on two char-

acteristics of the instantaneous utility function: (i) the intertemporal elasticity of substitu-

tion and (ii) the difference in instantaneous utility between being alive and dead. As our

definition of lifetime utility (3) normalizes instantaneous utility of being dead to zero, a

utility representation with V (c) > 0 for all c > 0 avoids that households may wish to be

rather dead than alive. As a consequence, we employ an instantaneous utility function with

intertemporal substitution elasticity of σ larger than one5

V
(

c(t, s)
)

≡
c(t, s)1− 1

σ

1− 1
σ

, σ > 1 . (4)

At any time alive households are endowed with one unit of labor each that is supplied

inelastically to the labor market at wage w(t). In addition, households can save and borrow

assets b(t, s) at the interest rate r(t). Households are born without assets and we assume

that they can contract against the risk of leaving unanticipated requests on a perfectly

competitive life insurance market. Each unit of assets buys a life annuity paying the return

a as long as the household is alive. We further assume that the insurance company can

learn the probability of dying p(s) of each cohort at no costs. Due to the large cohort sizes

insurance companies can offer risk free annuities. Perfect competition among insurance

companies leads to fair annuity payments a(t, s) = r(t) + p(s). In line with Philipson and

Becker (1998) and Eeckhoudt and Pestieau (2008), among others, we assume that households

take a(t, s) as given. Given that negative bequests are prohibited, households hold their

entire wealth in fair annuities. Denoting the costs of healthcare by M
(

h(s)
)

, the households’

budget constraint reads

ḃ(t, s) = a(t, s)b(t, s) + w(t)− c(t, s)−M
(

h(s)
)

, t ≥ s , (5)

with b(s, s) = 0.

The economy comprises two production sectors: the consumption-good and the healthcare

sector. We assume that both sectors operate at perfectly competitive conditions. As all firms

have access to the same constant returns to scale production technologies, we restrict the

5 Rosen (1988), Hall and Jones (2007) and Becker et al. (2005) use V
(

c(t, s)
)

= c(t, s)1−
1

σ /(1 − 1/σ) + α
with some positive constant α. This allows either to employ intertemporal substitution elasticities of σ < 1
(Hall and Jones 2007) or to calibrate the model to different values of a statistical life without changing the
intertemporal elasticity of substitution (Becker et al. 2005, Hall and Jones 2007). We use the functional
form (4) representing homothetic preferences which allow for a balanced growth path.
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analysis to one representative firm in each sector.

2.1 Consumption-good production

The representative firm in the consumption-good sector produces a homogeneous consump-

tion good, that can also be used as physical capital, via a Cobb-Douglas production technol-

ogy Y (t) ≡ K(t)α
(

A(t)LF (t)
)1−α

, where α ∈ (0, 1) and K(t) and LF (t) denote the aggregate

amount of capital and labor employed in consumption-good production, respectively. A(t)

characterizes the technological level of the economy that is exogenous to the representative

firm. We assume a “learning-by-investing” externality similar to Romer (1986) but corrected

for scale effects: A(t) ≡ K(t)/LF (t).6 Capital depreciates at the constant rate δ. Profit max-

imization of the representative firm yields factor prices equal to the marginal productivities

r(t) = α− δ , (6a)

w(t) = (1− α)
K(t)

LF (t)
. (6b)

As the interest rate is constant due to the “learning-by-investing” externality, we introduce

the notation r ≡ r(t) = α− δ and a(s) ≡ a(s, t) = r + p(s).

2.2 Healthcare sector

The representative firm in the healthcare sector provides medical treatment by employing

labor. Without loss of generality, we assume that one unit of labor produces one unit of

medical treatment. Given the levels h(s) of medical treatment of each cohort alive, the total

amount of labor employed in the healthcare sector equals

LH(t) =

∫ t

−∞
h(s) exp[νs] exp[−p(s)(t− s)]ds . (7)

In the labor market equilibrium, labor employed in the healthcare sector has to earn the same

wage as labor employed in the consumption-good sector. As a consequence, the healthcare

sector offers medical treatment at marginal costs w(t) and we obtain M
(

h(s)
)

= h(s)w(t)

for the costs of medical treatment of a household born at time s.

6 In Romer (1986) it is assumed that A(t) ≡ K(t). By specifying the learning externality to be proportional
to capital per worker, we correct for scale effects.
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The level of medical treatment h(s) determines the hazard rate p(s) via the healthcare

technology H
(

h(s)
)

p(s) = H
(

h(s)
)

≡ pmax − ψh(s) . (8)

Without medical treatment (h = 0) households face the hazard rate p(s) = pmax of dying.

The hazard rate p(s) decreases with constant returns ψ in the level of medical treatment

h(s). The parameter ψ < pmax reflects the productivity of healthcare investments and may

be interpreted as the quality level of the health system or the state of the art in medical

treatment. It denotes the maximum amount by which one may reduce the hazard rate

against pmax by spending all wage income on healthcare. While pmax reflects, for example,

the sanitary infrastructure of the economy, ψ increases with the human capital of physicians,

the efficiency of hospitals and the like.

Improvements in the healthcare technology may come in two qualitatively different ways.

First, the maximal hazard rate pmax may decrease implying that all households, indepen-

dently of their levels of healthcare spending, experience a lower hazard rate of dying. In

fact, a decrease in pmax offers higher life expectancy for free (at least for the individual

household). Historic examples in this respect could be new knowledge about germ theory

leading to better hygienic standards and a change in personal behavior. We also interpret

the introduction of most vaccines and drugs as a decrease in pmax, because these drugs

are usually not very expensive. As an example, think of penicillin which led to substantial

declines in mortality in the last century. Second, the state of the art in medical treatment

ψ may increase implying that the same amount of healthcare spending reduces the hazard

rate more than before. However, only households with positive healthcare spending benefit

from the improved healthcare technology. One may think of improvements such as magnetic

resonance imaging, coronary heart bypass grafting, transplantation, and the like.7 In Sec-

tions 6 and 8 we shall see that these two channels of healthcare technology improvements

differently affect the economy’s growth rate and the households’ lifetime utility.

2.3 The individual household’s problem

Inserting M
(

h(s)
)

= h(s)w(t) into the households’ budget constraint (5) yields

ḃ(t, s) = a(s)b(t, s) +
(

1− h(s)
)

w(t)− c(t, s) , t ≥ s . (9)

7 Although it makes perfect sense to distinguish conceptionally the two different channels of improvements in
the healthcare technology, we want to emphasize that most real world improvements impact simultaneously
on pmax and ψ. For example, knowledge about germ theory led to better hygienic standards not only in
every day life, thereby decreasing pmax, but also in medical treatment, which increased ψ.
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Thus, we can interpret the level of medical treatment h(s) as the fraction of labor income a

household spends throughout its entire life for healthcare services. This implies h(s) ∈ [0, 1],

as households are born without assets and must not be indebted when dying.

Households maximize expected intertemporal utility (3) subject to conditions (9) and b(s, s) =

0 by choosing an optimal level of medical treatment h(s) and an optimal consumption path

c(t, s). To solve this maximization problem we interpret it as a sequence of two maximiza-

tion problems. The first is to find the optimal consumption path for some given level of

healthcare expenditures c⋆(t, s, h). We obtain the second maximization problem by insert-

ing c⋆(t, s, h) back into the expected intertemporal utility function (3) and solve for the

optimal healthcare expenditures h⋆(s).

Assuming a given level of medical treatment h(s), which implies a given hazard rate p(s)

via the healthcare technology (8), the first maximization problem yields the Euler equation

ċ(t, s)

c(t, s)
= σ[a(s)− ρ− p(s)] , t ≥ s . (10)

For given h(s) the behavior of a household born at time s is characterized by the system

of differential equations (9) and (10), the initial condition b(s, s) = 0 and the transversality

condition for the stock of assets limt→∞ b(t, s) exp [−a(s)(t− s)] = 0. Under the assumptions

that (1 − σ)a(s) + σ
(

ρ + p(s)
)

> 0 and the long-run growth rate of wages w(t) is smaller

than a(s), we obtain for the optimal paths of consumption c⋆(t, s, h) and assets b⋆(t, s, h)8

c⋆(t, s, h) = c⋆(s, s, h) exp
[

σ
(

a(s)− ρ− p(s)
)

(t− s)
]

, (11a)

b⋆(t, s, h) =
c⋆(t, s, h)

(1− σ)a(s) + σ
(

ρ+ p(s)
) −

(

1− h(s)
)

W (t, s) , (11b)

c⋆(s, s, h) =
[

(1− σ)a(s) + σ
(

ρ+ p(s)
)] (

1− h(s)
)

W (s, s) . (11c)

where W (t, s) ≡
∫∞
t w(t′) exp [−a(s)(t′ − t)] dt′ denotes the expected net present value of

the household’s future labor income at time t.

We now turn to the second maximization problem. Given an optimal consumption path

c⋆(t, s, h) and recalling that p(s) = H
(

h(s)
)

, the necessary condition for the optimal level

8 Without these assumptions, the household’s problem is not well defined. We shall see in Section 3 that
the condition that the long-run growth rate of wages w(t) is smaller than a(s) always holds in the market
equilibrium.
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of healthcare expenditures h⋆(s) reads

∫ ∞

s

∂V
(

c⋆(t, s, h)
)

∂h(s)
exp
[

−
(

ρ+ p(s)
)

(t− s)
]

dt

≤

∫ ∞

s
(t− s)H ′

(

h(s)
)

V
(

c⋆(t, s, h)
)

exp
[

−
(

ρ+ p(s)
)

(t− s)
]

dt .

(12)

For an interior solution the equality sign holds, while the inequality sign applies in case of the

corner solution h(s) = 0. The intuition for this condition is straightforward. In the optimum

the decrease in expected lifetime utility from a marginal increase of healthcare expenditures

due to decreasing lifetime consumption has to equal the increase in expected lifetime utility

due to an increasing expected lifetime. If the marginal benefits of an investment in healthcare

do not outweigh the corresponding costs for any level of healthcare expenditures, the optimal

level of healthcare is given by the corner solution h(s) = 0.9

Inserting equations (4), (11a), and (11c) into equation (12), we obtain for the first-order

condition

F
(

h(s)
)

≡
σψ

(σ − 1)
[

(1− σ)a(s) + σ
(

ρ+ p(s)
)] −

1

1− h(s)
≤ 0 . (13)

This determines a unique optimal level of healthcare expenditures h⋆(s).

Proposition 1 (Existence and uniqueness of household optimum)

There exists a unique optimal level of healthcare expenditures h⋆(s) which is given by

h⋆(s) =











max

[

0,
σψ − (σ − 1) [(1− σ)a(s) + σ(ρ+ pmax)]

σψ(2− σ)

]

, if σ < 2 ,

0 , if σ ≥ 2 .

In the proof of Proposition 1, provided in the appendix, we show that there is no interior

solution for σ ≥ 2. The corner solution h(s) = 1 cannot be optimal, as this implies no

consumption and zero lifetime utility, while both are positive for any other value h(s) ∈ [0, 1).

As a consequence, the corner solution h(s) = 0, i.e. no healthcare expenditures, is the

optimal solution. For σ < 2, there exists a local maximum, which is the optimal solution if

it occurs in the feasible range h(s) ∈ [0, 1). Otherwise again the corner solution h(s) = 0 is

optimal.

9 In the first-order condition (12), the trade-off between investments in healthcare and average lifetime
involves not only marginal but also absolute welfare comparisons. This illustrates the importance of the
difference in instantaneous utility between being alive and dead, as mentioned earlier.
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3 Market Equilibrium and Aggregate Dynamics

To investigate the aggregate economy, we introduce aggregate household variables per capita

derived by integrating over all living individuals and dividing by the population size of the

economy

z(t) ≡

∫ t
−∞ z(t, s) exp[νs] exp[−p(t− s)] ds

N(t)
, (14)

where z(t) and z(t, s) denote aggregate per capita respectively individual household vari-

ables.10 The economy consists of five markets: the labor market, the capital market, the

consumption good market, the market for annuities and the market for healthcare. We as-

sume the economy to be in market equilibrium at all times t. In particular, this implies

that labor demand equals the population size, LF (t) +LH(t) = N(t) and capital per capita

equals aggregate assets per capita, k(t) = b(t).

As the interest rate r is constant, the equilibrium on the market for annuities, a(s) = r+p(s),

implies that the first-order condition (13) is identical for all households irrespective of their

date of birth. Consequently, all households spend the same fraction h(s) = h of income for

medical treatment implying that the hazard rate p(s) = p and the population growth rate

Ṅ(t)/N(t) = ν are also constant. By setting a ≡ r+p, we obtain for the optimal healthcare

expenditures in the market equilibrium:

h⋆ =











max

[

0, σ −
(σ − 1) [(1− σ)r + σρ+ pmax]

ψ

]

, if σ < 2 ,

0 , if σ ≥ 2 .
(15)

Via the healthcare technology (8), the optimal level of healthcare expenditures h⋆ in the

market equilibrium, which is completely determined by the set of exogenous parameters,

maps into the optimal hazard rate p⋆. Introducing the abbreviation11

x(p) ≡ (1− σ)a(s) + σ(ρ+ p) = r + p− σ(r − ρ) > 0 , (16)

which reflects the difference between the return on annuities r+p and the growth rate of the

households’ consumption σ(r − ρ), we can characterize the aggregate dynamics dependent

on the hazard rate p.

10 We are aware of the slight abuse of notation, which we consider to be justified to keep notation at a
minimum.

11 Note that x(p) > 0 is necessary for the household’s maximization problem to be well defined.

10



Proposition 2 (Aggregate system dynamics)

(i) The dynamics of the aggregate economy is characterized by:

ċ(t) = σ(r − ρ)c(t) − (p + ν)x(p)k(t) , (17a)

k̇(t) = (1− δ − ν)k(t)− c(t) . (17b)

(ii) The dynamics of the aggregate economy is governed by a balanced growth path, i.e.

aggregate consumption c(t) and aggregate capital k(t) are growing at the same constant

rate g. The sign of the growth rate g is determined by

g T 0 ⇔ x(p)(p + ν) S σ(r − ρ)(1 − δ − ν) .

The proof is given in the appendix. Note that we neglect trivial steady states where c(t) =

k(t) = 0, for all t. The proposition establishes that there is a unique balanced growth path

for any given hazard rate p. As shown in the proof, the growth rate g equals

g(p) =
1

2

[

1 + σ(r − ρ)− δ − ν −
√

[

1− δ − ν − σ(r − ρ)
]2

+ 4x(p)(p + ν)

]

. (18)

Inserting the optimal hazard rate in the market equilibrium yields the growth rate in the

market equilibrium g⋆ = g(p⋆). Thus, the aggregate system dynamics is fully characterized

by the set (h⋆, p⋆, g⋆).

4 The quality-quantity trade-off

The literature on the value of life and the willingness to pay for lower mortality risk em-

phasizes that the value of the intertemporal substitution parameter is of key importance for

understanding trade-offs between the quantity and quality of life (see, for example, Arthur

1981, Shepard and Zeckhauser 1984, Rosen 1988, 1994, Ehrlich and Chuma 1990). A stan-

dard result of this literature is that the value of increases in longevity declines monotonically

with the intertemporal substitution elasticity σ. In our growth model, however, the equilib-

rium healthcare expenditures follow a U-shaped curve in σ, as shown in the next proposition

and explained in the subsequent paragraphs.

Proposition 3 (Effect of σ on optimal healthcare)

For an interior market equilibrium, the optimal level of healthcare h⋆(s) follows a U-shaped

curve in σ. Formally

dh⋆(s)

dσ
S 0 ⇔ σ S 1 +

ρ+ pmax − ψ

2(r − ρ)
.

11



Proof: The claim follows directly by differentiating the interior solution for h⋆ in (15) with

respect to σ. �

The intuition for Proposition 3 is that there exist two motives for healthcare investments

that depend differently on the intertemporal elasticity of substitution σ. First, consider the

household could not save but only spend labor income on either consumption or healthcare

investments. Then, the household invests more in healthcare, the lower is the intertemporal

elasticity of substitution σ. To see this, recall that instantaneous utility (4) is more concave,

the smaller is σ. In fact, for σ close to one instantaneous utility is insensitive to changes in

the consumption level. As a consequence, the household has an incentive to invest in the

quantity of life in order to spread out consumption over more periods, thereby counteracting

the strong diminishing returns of instantaneous utility with respect to consumption. If σ

becomes larger, instantaneous utility becomes more sensitive to changes in the consumption

level, i.e. the quality of life becomes more important. As a consequence, the household invests

less in healthcare, thereby enjoying higher levels of consumption over a shorter lifetime.

Second, if households can also save income in order to reap capital rents, the relationship

between the intertemporal elasticity of substitution σ and the investments in healthcare is

no longer monotonically decreasing but U-shaped. The reason is that now σ also influences

the growth rate of consumption. The household smoothes consumption less the higher is σ

leading to a higher growth rate of consumption σ(r−ρ). As the level of consumption becomes

more relevant the higher is σ, living longer can increase the expected lifetime utility if the

consumption loss in early periods is outweighed by the consumption gain in later periods.

In summary, there are two motives for households to invest in healthcare. The first is

to spread out consumption over time to counteract the diminishing returns of instaneous

utility. It is decreasing in σ and particularly strong for low values of σ. The second motive

is to maximize total lifetime consumption, i.e. the total quality of life. This motive exploits

the fact that the consumption levels increase over time and an additional period of life

comes with high levels of consumption. This motive is increasing in σ and particulary

strong for high values of σ. For small values of σ the first motive outweighs the second,

leading to a declining relationship between the intertemporal elasticity of substitution and

healthcare expenditures. Eventually, the second motive dominates the first and investments

into healthcare increase with σ. While the first motive is well understood (see, for example,

the references mentioned at the beginning of this section), the second motive can only

be captured if households simultaneously decide on consumption, savings, and healthcare

12



investments and if r > ρ.12

Using (18), the following proposition investigates how the economy’s growth rate is affected

by different values of the intertemporal elasticity of substitution σ.

Proposition 4 (Effect of σ on growth rate)

For interior levels of healthcare in the market equilibrium, if σ < 1+(ρ+pmax−ψ)/[2(r−ρ)],

implying dh⋆/dσ < 0, the sign of dg⋆/dσ is ambiguous. Otherwise, dg⋆/dσ > 0.

The proof is given in the appendix. The intertemporal elasticity of substitution σ exerts

two opposing effects on the growth rate. First, the direct effect of an increase in σ for given

hazard rate p is positive: everything else equal, households save more the higher is σ resulting

in an increasing growth rate. The indirect effect of σ via the households’ optimal choice of

healthcare expenditures h⋆ is ambiguous. If the indirect effect is negative, which is the case

if h⋆ is decreasing in σ, then the overall effect is ambiguous. Otherwise the economy’s growth

rate is increasing with σ.

5 Age Structure of the Economy

We now turn to the effects of the growth rate of the cohort size ν and the hazard rate

p on the economy’s growth rate g. To sharpen intuition, consider an identical model but

with a standard infinitely lived Ramsey consumer instead of finitely lived individuals on

the household side. Then, the system dynamics were characterized by ċ(t) = σ(r − ρ)c(t)

and (17b). Consequently, the economy’s growth rate would neither depend on ν and p. The

overlapping generations structure of our model is captured by the term (p + ν)x(p)k(t)

in equation (17a), which reflects the population-weighted difference between per capita

consumption and the consumption of the newly born individuals at time t. To see this,

12 Restricting attention to interior solutions, we can re-write the first-order condition (12) to yield

c⋆(s, s, h)1−
1

σ

x(p)

[

1

1− h

]

=
c⋆(s, s, h)1−

1

σ

x(p)

[

ψ
σ

(σ − 1)

1

x(p)

]

,

where the left-hand side reflects the marginal cost of longevity and the right-hand side the benefits.
Neglecting the identical terms in front of the brackets, we can observe that the relative marginal costs
(the expression in brackets on the left-hand side) does not depend on σ. The relative marginal benefits of
longevity (the expression in brackets on the right-hand side) decrease with σ for low values of σ and then
increase at higher σ-values, thereby reflecting the two investment motives for longevity. If r = ρ, x(p) is
independent of σ and consequently the second motive vanishes. Then, the willingness to pay for a longer
life only depends on the monotonically declining term σ/(σ − 1), as in Shepard and Zeckhauser (1984).
Relaxing the assumption r = ρ in Shepard and Zeckhauser (1984) should uncover the second motive for
investments to prolong life. We also expect the second motive to be present in Ehrlich (2000). However,
the comparative statics with respect to the intertemporal elasticity of substitution assume an exogenously
given wealth level, thereby excluding this motive.
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differentiate the aggregation rule (14) and insert equations (10) and (17a) yielding

(p+ ν) [c(t)− c(t, t)] = (p + ν)x(p)k(t) . (19)

Thus, (p + ν)x(p)k(t) reflects the economy’s age structure. When p decreases, the share of

older households rises. Ceteris paribus, this leads to higher capital per capita and, as can be

inferred from (18), to a higher growth rate of the economy. Further, (18) indicates that the

growth effect of the age structure is independent of the interest rate r. An increase in the

growth rate of the cohort size ν leads to a larger share of (“poor”) young households relative

to old (“rich”) ones implying, ceteris paribus, lower values of capital per capita. Thus, the

economy’s growth rate depends negatively on the long-run population growth rate ν.13

Proposition 5 (Effect of p and ν on growth rate)

Everything else equal, the economy’s growth rate decreases with the hazard rate p and the

growth rate of the cohort size ν.

The proof is given in the appendix.

6 Improvements in the Healthcare Technology

We are particularly interested in how the aggregate economy is affected by changes in

the healthcare technology. As discussed earlier, the healthcare technology (8) exhibits two

parameters influencing the hazard rate p of the households. A decline in the parameter

pmax reduces the hazard rate that households face without investments in healthcare. A

rise in the parameter ψ increases the reduction of the hazard rate that is purchased for any

given healthcare investment h. As stated in the following proposition, an improvement of

the healthcare technology either via a decrease in pmax or an increase in ψ leads to a higher

rate of growth.

Proposition 6 (Improvements in the healthcare technology)

For interior levels of healthcare in the market equilibrium, the following conditions hold:

(i)
dh⋆

dpmax
< 0 ,

dp⋆

dpmax
> 0 ,

dg⋆

dpmax
< 0 ,

dh⋆

dψ
> 0 ,

dp⋆

dψ
< 0 ,

dg⋆

dψ
> 0 ,

13 Note that we hold ν fixed when taking the derivative with respect to p. This implies that the birth rate
varies. Defining the measure of newborns at time t by βN(t), where β reflects the birth rate, we obtain in
equilibrium that ν = β − p⋆. Inserting this expression into g(p) as given in (18), it can be easily verified
that the growth rate increases with p holding β fixed and decreases with the birth rate β.
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(ii) −
dp⋆

dpmax
=
dp⋆

dψ
= −σ , −

dh⋆

dpmax
<
dh⋆

dψ
.

The proof of Proposition 6, given in the appendix, shows that better healthcare technology

affects the equilibrium growth rate g⋆ in two ways. First, there is a direct effect. Ceteris

paribus, a decrease in pmax or an increase in ψ lowers the hazard rate p⋆, which implies

an increase in the equilibrium growth rate g⋆, as detailed in Section 5. Second, there is

an indirect effect. When the healthcare technology is more productive, households invest a

higher share of income in healthcare implying an increase in h⋆. This additional reduction

in the hazard rate p⋆ further increases the equilibrium growth rate g⋆.

An important insight is conveyed by the conditions in Proposition 6 (ii). In an interior

equilibrium (h⋆ > 0), the magnitude by which a marginal improvement in the healthcare

technology increases expected lifetimes is determined by the households’ intertemporal elas-

ticity of substitution. The higher is the intertemporal elasticity of substitution, the larger is

the effect of a marginal improvement in the healthcare technology on life expectancy. The

magnitude of the effect is independent of whether the improvement results from a decrease

in pmax or an increase in ψ. However, the channel by which the healthcare technology

improves is crucial for the effect on equilibrium healthcare expenditures h⋆: An increase

in longevity via a marginal increase in ψ incurs higher costs in equilibrium relative to a

marginal decrease in pmax.

6.1 Magnitude of effects

To get an idea of the magnitude of the comparative static effects from an improvement in the

healthcare technology we provide a numerical example. Table 1 illustrates the case where

pmax = 1/60 (implying 60 years of expected lifetime without healthcare investments) and

improvements in the productivity of healthcare expenditures ψ are such that – in equilibrium

– life expectancy is increased in steps of 5 years. For each state of technology characterized

by pmax and ψ, the table gives the corresponding equilibrium levels of healthcare spending

h⋆, the expected lifetime T = 1/p⋆ and the corresponding growth rate of the economy g⋆.

For all parameters we choose plausible real world values.14

We observe that the growth rate g⋆ increases very little in response to a higher productivity

of healthcare investments ψ accompanied by a higher expected lifetime T . The relative

14 For the intertemporal elasticity of substitution σ we follow Murphy and Topel (2003) who suggest a value
of ε = (u′(c)c)/u(c) = 0.346 which is also used by Becker et al. (2005). For our instantaneous utility
function (4) this translates into σ = 1.529, which we round to σ = 1.5. The remaining parameters are
set to α = 0.33, r = 3.5%, ρ = 2%, ν = 0. In addition, we normalize the wage level at time t = 0 to
w(0) = 1. A sensitivity analysis (available upon request) shows that our results are qualitatively very
robust to reasonable changes in the parameter values.
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pmax 1/60

ψ 0.97% 1.06% 1.13% 1.19% 1.25% 1.30% 1.34%

h⋆ 0 12.12% 21.05% 27.91% 33.33% 37.74% 41.38%

T = 1/p⋆ 60 65 70 75 80 85 90

g⋆ 2.179% 2.187% 2.194% 2.200% 2.204% 2.208% 2.212%

∆g⋆/g⋆ 0% 0.383% 0.310% 0.255% 0.212% 0.179 0.153%

U(0) 102.03 102.29 102.80 103.46 104.20 104.98 105.77

∆UT (0)/U(0) 0% 0.249% 0.502% 0.640% 0.713% 0.746% 0.755%

∆Up(0)/U(0) 0% 0.152% 0.419% 0.569% 0.651% 0.692% 0.707%

∆Ug(0)/U(0) 0% 0.098% 0.083% 0.071% 0.062% 0.054% 0.047%

Table 1: Equilibrium values for healthcare expenditures h⋆, life expectancy T , growth rate
g⋆ and lifetime utility U(0) for different parameters of ψ.

increase of the growth rate induced by an additional five years of expected lifetime is shown

in the row labeled ∆g⋆/g⋆ and ranges between 0.383% for an increase of expected lifetime

from 60 to 65 and 0.153% for an increase in expected lifetime from 85 to 90 years.

The row of Table 1 labeled U(0) shows the expected lifetime utility of an individual house-

hold born at time t = 0 (with the wage at birth normalized to unity). We observe that

households living in an economy with a better healthcare technology (and everything else

equal) live longer and enjoy higher expected lifetime utility. The relative increase is shown

in the row labelled ∆UT (0)/U(0) and ranges between 0.249% for an increase of expected

lifetime from 60 to 65 and 0.755% for an increase in expected lifetime from 85 to 90 years.

Our previous analysis showed that these utility gains of longevity originate from two dif-

ferent sources: (i) the direct utility of a longer lifetime and (ii) the utility gain associated

with a higher growth rate. Decomposing the relative utility gain of five year increases in

longevity into these two sources, the row labeled ∆Up(0)/U(0) shows the relative utility

increase stemming from the first source. More precisely, it captures the relative utility gain

of a household that experiences an additional five years of expected lifetime but the same

growth rate of the economy.15 The residuum to the total relative utility gain from increased

life expectancy is presented in the last row labeled ∆Ug(0)/U(0). It reflects the utility gain

due to the increase in the growth rate compared to the economy in which households live

five years less in expectation.16 We observe that most of the utility gain is due to the direct

15 One may consider two hypothetical households. Household 1’s expected lifetime, 1/p1, is 5 years higher
than the one of household 2, 1/p2. Then ∆Up(0)/U(0) represents the relative utility difference between
these two households given they both experience growth rate g(p2).

16 The results change minimally when ∆Up(0)/U(0) is derived as the residuum and ∆Ug(0)/U(0) is calculated
as follows. Both households exhibit the same life expectancy 1/p2, but household 1 experiences the growth
rate g(p1) and household 2 the growth rate g(p2), where 1/p1 − 1/p2 = 5 years.
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pmax 1/60 1/65 1/70 1/75 1/80 1/85 1/90

ψ 0.5%

h⋆ 0 0 0 0 0 0 0

T = 1/p⋆ 60 65 70 75 80 85 90

g⋆ 2.179% 2.187% 2.194% 2.200% 2.204% 2.208% 2.212%

∆g⋆/g⋆ 0% 0.383% 0.310% 0.255% 0.212% 0.179 0.153%

U(0) 102.03 106.79 111.23 115.38 119.28 122.93 126.38

∆UT (0)/U(0) 0% 4.662% 4.157% 3.734% 3.375% 3.067% 2.800%

∆Up(0)/U(0) 0% 4.560% 4.071% 3.661% 3.311% 3.012% 2.752%

∆Ug(0)/U(0) 0% 0.102% 0.086% 0.073% 0.063% 0.055% 0.048%

Table 2: Equilibrium values for healthcare expenditures h⋆, life expectancy T , growth rate
g⋆ and lifetime utility U(0) for different parameters of pmax.

effect of a longer expected lifetime and only a small fraction is attributable to the increase

of the growth rate.

Overall, the utility gains from longevity due to a higher productivity of healthcare invest-

ments seem rather limited. This may change when we consider five-year increases of expected

lifetime resulting from decreases in pmax, as – according to Proposition 6 – a marginal de-

crease in pmax induces a smaller rise in the healthcare expenditures compared to a marginal

increase in ψ. In Table 2 we demonstrate the case where ψ is so low that no investments in

healthcare are always optimal and, thus, increases of expected lifetime solely stem from the

reduction of pmax. As a consequence, improvements in longevity come without direct costs

to households. We concentrate on this polar case for two reasons. First, it highlights the

difference between increases in longevity via the two different channels, as utility gains are

highest if longevity increases come without healthcare costs. Second, this case is method-

ologically identical to models with exogenous changes in longevity and, hence, allows us to

compare our results with this literature. Apart from ψ and pmax all parameter values are

identical to the example shown in Table 1 (see footnote 14).

We observe the same growth rates as in the previous example, as in our model the growth

rate only depends on the equilibrium life expectancy p⋆ and the other exogenous parame-

ters. However, the relative utility gain from a five-year increase in expected lifetime is now

substantially higher (more than threefold). As a consequence, the share of the utility gain

attributable to an increasing growth rate is now even smaller compared to the scenario

where the longevity increase stems from improvements in the productivity of healthcare

investments.

Thus, our model indicates that improvements in healthcare technology may have a large
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impact on overall welfare. However, this impact is rather driven by increasing lifetime utility

due to an increasing life expectancy than by the effects of longevity on economic growth.

Therefore, our model supports the assumption (implicitly) made by several papers on the

welfare aspects of longevity (see, for example, Becker et al. 2005 and Jones and Klenow

2010) that the welfare gains from an increase in longevity are not well reflected in the

GDP-growth rate. However, our numerical example also shows that the magnitude of the

welfare gains due to a higher expected lifetime strongly depends on the channel by which

this increase in longevity is reached, and, in particular, by the accompanied rise in health

expenditures. Welfare gains are considerably higher if increases in expected lifetime come as

windfall gains from a decrease in the maximal hazard rate pmax together with no healthcare

expenditures compared to improvements in the productivity of healthcare treatment ψ.

6.2 Welfare gains between 1960 and 2000

The previous discussion indicates that the welfare consequences of increased longevity de-

pend substantially on the healthcare costs associated with it. To elicit the welfare gains that

have been realized by the longevity increases over the last decades, we apply our model to

the development of healthcare expenditures and average lifetime between the years 1960 and

2000 for seven world regions.17 The results for all seven regions and details on the data for

the numerical exercise are given in the appendix. In the following discussion, we concentrate

on a developed (North America) and a developing (South Asia) region.

The levels of h given in Table 3 are the observed health expenditures per GDP multiplied

by 3/4. This factor has been chosen for the following reason: On the one hand, h in our

model is the share of labor income spent on healthcare rather than the share of total GDP.

Assuming a labor share of 2/3, we divide data on health expenditures per GDP by this

number. On the other hand, not all health expenditures are effective in prolonging life.

Assuming that half of the expenditures affect the individuals’ life expectancy leads to the

factor of 3/4 given above. We have no data on health expenditures for South Asia in 1960,

which we estimate to be (close to) zero.18 In line with our theoretical model, we assume

that increases in average lifetime stem from improvements of the healthcare technology.

This implies that the growth rate increases accordingly. We assume that between 1960 and

1980 the respective world region experienced growth of income per capita consistent with

the healthcare expenditure and average lifetime data of 1960, and between 1980 and 2000

income per capita grew consistently with 2000 data. Using the parameters α = 0.33, σ = 1.5

17 To be able to compare our results with previous studies, we use the original data set of Becker et al. (2005),
which we amend by data on healthcare expenditures.

18 As further discussed in the appendix, our qualitative results are very robust with respect to variations of
the level of health expenditures.
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Region N. America N. Am. (exo. p) S. Asia

Year 1960 2000 1960 2000 1960 2000

T = 1/p⋆ 69.9 77.3 69.9 77.3 44.0 62.7

h⋆ 3.9% 9.8% 0% 0% 0% 3.1%

g⋆ 2.44% 2.45% 2.44% 2.45% 2.38% 2.45%

r 3.69% 3.69% 3.74%

ν 1.14% 1.14% 2.22%

g∅ 2.44% 2.44% 2.42%

ĝ 2.57% 2.65% 3.30%

∆U/U(1960) 43.25% 46.29% 71.04%

∆UT /∆U 11.24% 17.06% 47.43%

∆Ug/∆U 0.67% 0.64% 3.19%

∆Up/∆U 10.57% 16.43% 44.24%

Table 3: Utility gains for North America and South Asia from 1960 to 2000.

and ρ = 0.02 of the previous numerical example and normalizing the wage level in 1960 to

1, the depreciation rate has been adjusted such that the simulated average growth rate in

each region is identical to the observed average growth rate between 1960 and 2000.

Table 3 shows the results. In North America average life expectancy increased from 69.9 in

1960 to 77.3 years in 2000. At the same time the healthcare expenditures (in percentage of

labor income) increased from 3.9% to 9.8%. In South Asia, life expectancy rose from 44.0 in

1960 to 62.7 years in 2000. Healthcare expenditures equaled 3.1% in 2000 and are estimated

(close to) zero for 1960. Over this 40 year period the average annual growth rate of income

per capita equaled 2.44% for North America and 2.42% for South Asia. Population grew by

an average annual rate of 1.14% in North America and 2.22% in South Asia.

We are now interested in the utility gain of a person born under the conditions of the year

2000 relative to a person born in 1960 in the same region. The result is given in the row

labeled ∆U/U(1960): In North America the expected lifetime utility increased by 43.25%.

Of course, due to economic growth a person born in 2000 was better off than a person born

in 1960 even without increases in life expectancy. To elicit which share of the utility gain

is attributable to the increase in average lifetime, we deduct the utility gain that a person

would enjoy if born in 2000 while expected lifetime remained unchanged relative to 1960.

We find that a share of 11.24% of the total welfare gains in North America between 1960

and 2000 is attributable to the increase in average lifetime (see row labeled ∆UT /∆U). The

last two rows recall our previous finding that almost all the utility gains originate directly

from a longer expected lifetime (∆Up/∆U) rather than indirectly via an increased growth

rate of GDP per capita (∆Ug/∆U). The row labelled ĝ reports the average annual “full-
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income” growth rate of GDP per capita that would have been necessary between 1960 and

2000 to give a person born in 2000 the same utility without the increase in longevity. The

table indicates that the growth rate had to be 2.57% instead of 2.44% to compensate for

the utility gain of increased expected lifetime.

To get an idea of the role played by healthcare expenditures, we contrast our results with

a thought experiment in which longevity increases come without costs. The results are

reported in the second column headed “North America (exogenous p)”. Without healthcare

expenditures the total relative welfare gains between 1960 and 2000 would be higher and

17.06% of these larger welfare gains would be due to increased longevity, an increase of more

than 50% relative to the real world scenario. This is also reflected in the higher full-income

growth rate of 2.65% compared to 2.57% when healthcare costs are considered.

These results might indicate that relative welfare gains due to increased longevity are con-

siderably higher in developing countries where relatively cheap measures (such as better

sanitation, better access to standard vaccines, etc.) involve relatively high increases in pmax

compared to developed countries where further increases in average lifetime are mainly due

to improvements of expensive cutting-edge medical treatment. As an example for a devel-

oping region, we report in the third column of Table 3 the relative welfare gain of 71.04%

in South Asia between 1960 and 2000 of which almost half (47.43%) are attributable to

increases in life expectancy. We obtain a full-income growth rate of 3.3% while on average

GDP per capita only grew by 2.42% per annum in this region.

For the period between 1960 and 2000, Becker et al. (2005) report full-income growth rates

for North America of 2.7% and for South Asia of 3.1%. Further they calculate shares of

welfare improvements due to mortality reductions compared to overall welfare improve-

ments between 1960 and 2000 for North America of about 12% and for South Asia of

about 30.4%. They conclude that when additionally considering longevity improvements

the world’s welfare inequality has become lower than solely GDP-based measures suggest.

The re-examination of their data set in light of our theoretical model supports this con-

clusion. However, the numbers given in Table 3 suggest an even stronger convergence of

welfare for two reasons. First, in contrast to Becker et al. (2005), we consider a growth

model and take lifetime utility and not instantaneous utility as yardstick for welfare. The

strong diminishing returns of consumption due to the concavity of the instantaneous welfare

function (3) lead to a lower lifetime utility increase in high-income countries compared to

low-income countries for the same average growth rate of income per capita. Second, in our

model we explicitly consider costs of improvements in life expectancy.19 As a consequence,

19 While Becker et al. (2005) did not include healthcare expenditures in their analysis, they conjectured that
this would make a difference in the relative welfare gains from longevity increases enjoyed by developed
and developing countries.
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welfare gains for a given increase in longevity are higher if this increase is accompanied by

no or small changes in healthcare expenditures.

7 Inefficient Market Equilibria

An important policy question is whether the market equilibrium, as analyzed in the previous

sections, is efficient. In fact, the model comprises three externalities that are not accounted

for in the market equilibrium.

First, there is a “learning-by-investing” externality (Romer 1986). At any time, firms take

the technological level A(t) of the economy as given, neglecting the positive spillovers the

employment of capital exerts on the economy’s production output Y (t) via an increase in

the technological level. As is well known, this leads to an inefficiently low level of asset

holdings that could be corrected, for example, by subsidizing household savings.

Second, there are two additional externalities associated with healthcare expenditures. To

identify these, we take the total derivative of an individual’s lifetime utility with respect to

healthcare expenditures and use (11a), (13), and w(t) = exp[gt] to obtain

dU(s)

dh
=
c⋆(s, s, h)1− 1

σ

x(p)

[

F (h) +
da

dh

(

1

x(p)
−

1

y(p)

)

+
dg(p)

dh

(

1

y(p)
+ s

)]

. (21)

The term y(p) ≡ r+p−g represents the difference between the return of annuities a and the

economy’s growth rate g. The function F (h) constitutes the individual’s first-order condi-

tion with respect to healthcare expenditures (12). In the decentralized market equilibrium

with an interior solution the first-order condition equals zero. The remaining two sum-

mands in brackets denote the impact of healthcare investments on the equilibrium return

for annuities, a, and the economy’s growth rate, g, which the households do not take into

account. The existence of these two externalities is independent of the positive spillovers

from capital accumulation. The reason is that internalizing the “learning-by-investing” ex-

ternality increases the effective interest rate. The additional two externalities, however, do

not disappear for any the level of the interest rate. They occur because households do not

take into account that increased longevity reduces the equilibrium return of annuities (for

a given interest rate) and increases the economy’s growth rate via the age structure of

the economy, as described in Section 3. The externality of healthcare spending on the rate

of return for annuities a, reflected by the expression da/dh (1/x(p)− 1/y(p)), is negative

because da/dh = −ψ and y(p)−x(p) = σ(r− ρ)− g > 0.20 Hence, households tend to over-

20 The term y(p)−x(p) represents the difference between the growth rate of individual household consumption
and the growth rate of per capita consumption, which is positive due to equation (17a).
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invest in healthcare (Philipson and Becker 1998). However, the last expression in brackets

in (21) representing the externality on the economy’s equilibrium growth rate g is positive

implying under-investment in healthcare. Thus, a decrease in healthcare expenditures has

a positive effect on the rate of return from annuities a, but a negative effect on g and vice

versa. Whether the equilibrium level of healthcare expenditures is inefficient in the sense

that there exists a steady state in which all households are better off by investing either

more or less in healthcare depends on the magnitude of the welfare losses associated with

the two opposed externalities.

All terms in brackets in equation (21) are independent of time except for the last term

that reflects the increase of the wage-level of a generation born at time s due to a marginal

change in the growth rate. This term increases with s,21 implying that the welfare loss due

to a lower than optimal steady-state growth rate is larger the later a household is born.

Even small changes in the economy’s growth rate g have huge welfare effects for generations

living in the far distant future. As the term is linear in s, there exists some s̄ for any

decrease in healthcare expenditures such that all generations born at s > s̄ are worse off,

although early generations may benefit. Thus, it cannot occur that healthcare expenditures

in the market equilibrium are inefficiently high in the sense that there exists a lower level

of healthcare expenditures for which all households born at s ≥ 0 would be better off.

Whether healthcare expenditures are inefficiently low in the market equilibrium depends on

the relative strengths of the two externalities for the generation born at s = 0. Proposition

7 gives a condition for which under-investment in healthcare occurs.

Proposition 7 (Inefficient levels of healthcare expenditures)

For interior levels of healthcare expenditures, households invest inefficiently low amounts in

healthcare in the market equilibrium if dg(p)/dp < 1− y(p)/x(p).

The proof is given in the appendix.

8 Spillover Effects

In our model we have specified the “learning-by-investing” spillovers as a function of the

capital-stock per worker. Although this is a reasonable assumption, one may ask how our

results would change with a different specification. To answer this question, we consider the

definition

A(t) ≡
K(t)

LF (t) + (1− η)LH(t)
, η ∈ [0, 1] , (22)

21 Note that by setting w(t) = exp[gt], we normalize the wage rate at t = 0 to unity. This implies that we
compare the lifetime utility of all generations born at s ≥ 0.
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which captures all spillover magnitudes between the two polar cases η = 1 representing our

previous model and η = 0 reflecting spillovers depending on capital per capita A(t) = k(t).

While condition (13) for the individual household’s optimal choice of healthcare expenditures

remains unchanged, as households take prices as given, the new specification of A(t) affects

the interest and the wage rate

r(t) = α

[

LF (t)

LF (t) + (1− η)LH(t)

]1−α

− δ , (23a)

w(t) = (1− α)
K(t)

LF (t)

[

LF (t)

LF (t) + (1− η)LH(t)

]1−α

. (23b)

Given the equilibrium levels of h(s), LH(t) can still be expressed by (7). For η < 1 the interest

rate declines with the level of healthcare expenditures, as LH(t) increases and LF (t) =

N(t)− LH(t) declines. On the one hand, a decline in labor employed in consumption-good

production reduces the marginal productivity of capital. On the other hand, for η > 0 the

technological level A(t) increases, as the capital intensity in consumption-good production

increases which amplifies the learning externality.22 The first effect dominates the second

implying a negative influence of health-care expenditures on the interest rate. Note that in

the basic version of our model, which corresponds to η = 1, the two effects cancel out leading

to the constant interest rate r(t) = α−δ. This interest rate also results in the general set-up

if no healthcare expenditures are optimal in the market equilibrium for all generations, i.e.

h(s) = 0 for all s, implying LF (t) = N(t) and LH(t) = 0 at all times t.

In the following, we restrict attention to the steady state market equilibrium in which

the interest rate r(t) = r is constant. For this to hold, optimal healthcare expenditures h

have to be constant implying that also the hazard rate p and the population growth rate

Ṅ(t)/N(t) = ν are constant. We obtain for the interest rate and the wage rate in steady

state23

r̄(h) = α

[

1− h

1− ηh

]1−α

− δ , (24a)

22 An alternative interpretation of the effect of healthcare expenditures on A(t) would be that better health
increases the workers’ productivity. A more precise implementation of this idea would specify A(t) as a
function of LH(t), LF (t), pmax, ψ, and K(t). A simple way to augment our basic model in this direction
is to multiply A(t), as given in Section 2.1, by a constant ζ(pmax, ψ) that increases with ψ and declines
with pmax. This would not change our analysis substantially but leads to larger effects of improvements
in the healthcare technology on the growth rate. A more general way is to include the average health
status reflected by average lifetime into the model. Such an extension yields similar effects of health on
production as described in the main text. On the one hand, better health increases the productivity of
capital in consumption-good production. On the other hand, if this higher level of health incurs healthcare
expenditures, the labor force decreases leading to a lower marginal productivity of capital.

23 We indicate steady state values in the general spillover setting by a bar and, where applicable, use h as
an additional argument to highlight the difference to the basic version of the model.

23



w̄(h, t) =
1− α

1− h
k(t)

[

1− h

1− ηh

]1−α

. (24b)

Inserting ā(h, p) = r̄(h) + p into (13) determines the healthcare expenditures in the steady

state market equilibrium.

Proposition 8 (Existence of steady state healthcare level)

Given equation (22) for the technological level of the economy, there exists a steady state

equilibrium level of healthcare expenditures, h̄⋆.

The proof is given in the appendix. In contrast to the basic model, the aggregate dynamics

in the steady state depends not only on the hazard rate p but also on the level of healthcare

expenditures h.

Proposition 9 (Steady state aggregate dynamics)

Given equation (22) for the technological level of the economy, the steady state dynamics of

the aggregate economy

(i) is characterized by:

ċ(t) = σ [r̄(h)− ρ] c(t)− x̄(h, p)(p + ν)k(t) ,

k̇(t) =

[

r̄(h)

α
+

1− α

α
δ − ν

]

k(t)− c(t) ,

(ii) is governed by a balanced growth path given by

ḡ(h, p) =
1

2

{

r̄(h)

α
+

1− α

α
δ − ν + σ [r̄(h)− ρ]

}

−
1

2

√

{

r̄(h)

α
+

1− α

α
δ − ν − σ [r̄(h)− ρ]

}2

+ 4x̄(h, p)(p + ν) ,

where x̄(h, p) ≡ r̄(h) + p− σ(r̄(h) − ρ).

The proof is given in the appendix. Equation (9) shows that not only the hazard rate p

matters for the steady state growth rate, as it is the case in the basic model, but also

the level of healthcare expenditures by which it is achieved. If there are no healthcare

investments in steady state, h̄⋆ = 0, we are back in the basic model implying ḡ(0, p) =

ḡ(0, pmax) = g(pmax). By virtue of Proposition 5, for h̄⋆ = 0 a decreasing p = pmax leads

to an increasing equilibrium growth rate ∂ḡ(0, p)/∂p < 0. This does not necessarily hold if

the reduction in p is accompanied by an increase in h. We obtain for the total derivative of

24



ḡ(h, p) with respect to h

dḡ(h, p)

dh
=
∂ḡ(h, p)

∂p

dp

dh
+
∂ḡ(h, p)

∂r̄(h)

dr̄(h)

dh
. (26)

The first term is positive, as ∂ḡ(h, p)/∂p < 0 (Proposition 5) and dp/dh < 0. The sign of the

second term is ambiguous, as the sign of ∂ḡ(h, p)/∂r̄(h) is ambiguous and dr̄(h)/dh < 0. In

contrast to our basic model, it is now possible that the steady state growth rate declines in

response to an increase in longevity. This happens, if ∂ḡ(h, p)/∂r > 0 and sufficiently large

so that the second term outweighs the first. Thus, the difference between improvements in

longevity originating from increases in pmax accompanied by zero healthcare expenditures

and those from an increase of ψ is even further pronounced compared to the basic model.

In the basic model, both types of longevity increases had (small) positive growth effects but

substantial welfare differences. With the alternative spillover mechanism and η < 1 we may

even experience negative growth effects in response to longevity increases.

This also affects the inefficiency result given in Proposition 7. It is now possible that the

steady state investments in healthcare are inefficiently high in the sense that all households

born at s ≥ 0 were better off in a steady state where all households invest less in healthcare.

Proposition 10 (Inefficient levels of healthcare expenditures)

Given equation (22) for the technological level of the economy, in an interior steady state,

healthcare expenditures h̄⋆ are inefficiently high if dḡ(h, p)/dh|h=h̄⋆ < 0.

The proof of Proposition 10, provided in the appendix, shows that under the given condition

both externalities connected with healthcare investments – on the return of annuities and

on the steady state growth rate – have a negative impact on expected lifetime utility.

Finally, we illustrate how the results of our numerical example given in Section 6.2 change

under the alternative spillover specification. More precisely, we show results for η ranging

from 1 (which corresponds to our previous setup) to 0.9. In addition, we also show the results

for a hypothetical North America in which no healthcare expenditures are undertaken and

all improvements in longevity solely stem from an increase in pmax. In this case the new

specification of the spillover effect collapses to the basic model for any value of η. Thus, the

results are identical to the second row in Table 3.

For both values of η < 1 given in Table 4, we observe that the steady state growth rate

declines in response to the increase of the healthcare expenditures from 3.9% of labor income

in 1960 to 9.8% in 2000. The effect is more pronounced the smaller is η. As in Section 6.2,

we adjust the depreciation rate such that the average annual growth rate of GDP per capita

matches the observed value of 2.44%. This implies that the growth rate drops from 2.49% in

1960 to 2.39% in 2000 for η = 0.95 and from 2.55% in 1960 to 2.34% in 2000 for η = 0.9. In
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Region North America

T T (1960) = 69.9 T (2000) = 77.3

h 0 h(1960) = 3.9% h(2000) = 9.8%

η ∈ [0, 1] 1 0.95 0.9

r(1960) 3.69% 3.69% 3.73% 3.76%

r(2000) 3.69% 3.69% 3.65% 3.62%

g⋆(1960) 2.44% 2.44% 2.49% 2.55%

g⋆(2000) 2.45% 2.45% 2.39% 2.34%

ĝ 2.65% 2.57% 2.54% 2.51%

∆U/U(1960) 46.29% 43.25% 41.16% 39.11%

∆UT /∆U 17.06% 11.24% 4.18% −3.48%

∆Ug/∆U 0.64% 0.67% −7.16% −15.64%

∆Up/∆U 16.43% 10.57% 11.33% 12.16%

Table 4: Utility gains for North America from 1960 to 2000 for different values of η.

contrast to the results in Section 6.2, the welfare effects of these changes in the growth rate

may be substantial, as can be seen in the row labeled ∆Ug/∆U . In fact, while for η = 0.95

the total welfare gain attributable to increases in longevity is still positive, for η = 0.9

the utility loss from the decreasing growth rate outweighs the direct utility increase due to

increased average lifetime so that the welfare gain between 1960 and 2000 had been higher

by 3.48% without the increase in life expectancy.

These results emphasize that the growth effects of increases in longevity may drastically

depend on the associated healthcare costs. In any case, welfare and growth effects are the

highest if the increases in longevity stem from a decrease of the maximal hazard rate pmax

together with zero healthcare expenditures. If increases in longevity are accompanied by

increases in healthcare expenditures, as is always the case for increases in the efficiency

of healthcare ψ, the growth effects of increased longevity are either small (in case of our

basic model) or may even be negative (in case of our alternative spillover specification). In

fact, the negative growth effects may even outweigh the direct utility gains from increased

longevity. At least for the richest regions like North America or Western Europe, this might

challenge the conclusions of Becker et al. (2005) and Jones and Klenow (2010) who argue

that recent increases in longevity induced non-negligible positive welfare gains.

It is important to recognize that the negative welfare effects in the case of η = 0.9 result

from the negative externality of healthcare expenditures on the economy’s growth rate. In

general, these externalities call for governmental action. In most countries, the healthcare

system is heavily regulated. Usually health insurance systems result in inefficiently high
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demand for healthcare implying higher healthcare spending relative to the pure market

equilibrium considered in our model (see, for example, Manning et al. 1987, Cutler and

Zeckhauser 2000, Cutler 2002, Gruber 2008). As a consequence, when government subsidies

for healthcare are taken into account welfare losses may be even higher than those shown

for the case η = 0.9 in Table 4.

Which model specification applies is an important empirical question. To answer this ques-

tion, one could test whether the return on capital is affected by healthcare expenditures.

One of the challenges of such an exercise would be to isolate healthcare expenditures that

prolong life from those that do not. For the existing empirical literature, our model is consis-

tent with recent results suggesting that the long-run effects of longevity on GDP per capita

are either moderately positive (Ashraf et al. 2008), insignificant or even negative (Acemoglu

and Johnson 2007). By contrast, many (earlier) contributions to this literature usually found

substantial positive effects of longevity on economic growth.24 In an attempt to reconcile

these different findings, Aghion et al. (2010) argue that both the level of life expectancy and

the increase in life expectancy have to be considered and find that both have significantly

positive effects on per-capita GDP growth. However, they also indicate that when restricting

attention to OECD-countries in the post-1960 period, the effects weaken. Our model allows

for two different interpretations of this result. First, in our basic model the growth rate is

increasing and concave with respect to longevity. Hence, the model predicts that the effect

of an increase in life expectancy on the growth rate becomes smaller the higher is the level of

longevity. Second, in the alternative spillover specification the growth rate of the economy

may decline in response to higher healthcare costs. The longevity increases in the developed

countries in the recent past have mainly originated from “big medicine” involving expensive

and intensive personal interventions rather than the eradication of infectious diseases with

relatively cheap hygienic measures (see, for example, Becker et al. 2005, Cutler et al. 2006).

As a consequence, our theory would predict smaller growth and welfare gains derived from

increased life expectancy.25

9 Conclusion

We developed an overlapping generations endogenous growth model in continuous time to

investigate the link between life expectancy, which is the result of endogenous investments

24 See, for example, Gallup and Sachs (2001), Bhargava et al. (2001), Barro (1996), Azomahou et al. (2009),
Lorentzen et al. (2008). Only very few studies find small negative or no effects of longevity of growth such
as Caselli et al. (1996). An overview can be found in Bloom et al. (2004).

25 Aghion et al. (2010) hypothesize that gains in life expectancy at young age mattered more than gains in
life expectancy at old age supposedly for reasons of labor market participation and education. We do not
refute these reasons but emphasize the importance of healthcare expenditures associated with the increase
in expected lifetime.
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in healthcare, economic growth and welfare. We find that improvements in the healthcare

technology increase both life expectancy and steady state growth rates of the economy.

However, simulation results suggest that the magnitude of the latter effect is small, even

for substantial improvements in the healthcare technology. Hence, for the most part welfare

gains stem from an increase in average lifetime directly. The magnitude of the welfare gains,

however, strongly depends on the channel by which the healthcare technology improves.

A reduction of the baseline mortality yields higher welfare gains than an increase in the

productivity of healthcare expenditures. Our finding tends to be reinforced when considering

more general specifications of the spillover effects in the production sector.

This has implications for the future development of healthcare expenditures and welfare.

Several authors have argued that the recent increases in longevity in the developed countries

are mainly the result of “big medicine” rendering healthcare expenditures more productive in

treating life-threatening diseases rather than a decrease in the baseline mortality level via

cheap measures such as improved sanitation. Extrapolating this development, our model

suggests that the prospects for future welfare gains from increased longevity are rather

modest.

We have shown that the decentralized market solution exhibits several externalities that

call for government action. It would be an interesting venue for future research to augment

the model with realistic features of national health systems to examine their effects on

growth and welfare and to be able to evaluate potential policy interventions. Other inter-

esting extensions would be to incorporate age-dependent mortality, retirement decisions or

endogenous fertility. Finally, we only considered exogenous improvements in the healthcare

technology. Endogenizing these improvements is a further challenge for future research.
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Appendix

A.1 Proof of Proposition 1

First, the corner solution h(s) = 1 cannot be an optimal solution, as consumption and

lifetime utility would drop to zero, while both are positive for any value h(s) ∈ [0, 1).

Second, there exists at most one h⋆(s) with F
(

h⋆(s)
)

= 0. To see this, set F
(

h(s)
)

= 0 and

re-arrange terms to yield26

1− h(s) =
σ(σ − 1)(ρ+ pmax)− (σ − 1)2a(s)

σψ
− (σ − 1)h(s) . (A.1)

Both, the left-hand and the right-hand side are linear equations in h(s), which intersect

at most once and are identical in the special case that σ = 2 and σ(σ − 1)(ρ + pmax) −

(σ − 1)2a(s) = σψ hold simultaneously. This special case is precluded, however, as the

latter condition contradicts the necessary condition (1 − σ)a(s) + σ(ρ + p(s)) > 0 for all

p(s) ∈ [pmax, pmax − ψ] for the household’s problem to be well defined.

Third, the local extremum given by F
(

h(s)
)

= 0 is a local maximum only if σ < 2. Differ-

entiating F
(

h(s)
)

with respect to h(s) and evaluating at the local extremum yields:

∂F
(

h(s)
)

∂h(s)

∣

∣

∣

∣

∣

F (h(s))=0

=
σ2ψ2

(σ − 1)2x̃2
(

h(s)
) (σ − 2) T 0 ⇔ σ T 2 , (A.2)

where x̃
(

h(s)
)

=
[

(1− σ)a(s) + σ
(

ρ+ pmax − ψh(s)
)]

. As a consequence, an interior optimal

solution can only exist for σ ∈ (1, 2) and thus h⋆(s) = 0 if σ ≥ 2. Even for σ ∈ (1, 2), the

optimal solution may be the corner solution h(s) = 0. This holds if F
(

h(s)
)

< 0 for all

h(s) ∈ [0, 1). �

A.2 Proof of Proposition 2

(i) Aggregate dynamics: To derive the aggregate system dynamics, we evaluate equation

(11b) in the market equilibrium, aggregate according to equation (14) and differentiate

with respect to t:

ċ(t) = x(p)
[

k̇(t) + (1− h)Ẇ (t)
]

, (A.3)

26 Obviously, this re-arrangement is only identical to F
(

h(s)
)

= 0 if h(s) 6= 1. However, we have already seen
that h(s) = 1 cannot be an optimal solution.
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where W (t) ≡
∫∞
t w(t′) exp[−(r + p)(t′ − t)] dt′ denotes the net present value of the house-

hold’s lifetime labor income. Evaluating the budget constraint in the market equilibrium

and aggregating according to equation (14), we obtain

ḃ(t) = (r − ν)b(t) + (1− h)w(t) − c(t) . (A.4)

Inserting Ẇ (t) and equation (A.4) into equation (A.3) yields equation (17a). We derive

(17b) by observing that in the market equilibrium w(t) = k(t)(1−α)/(1− h) and inserting

it into equation (A.4).

(ii) Balanced growth path: We prove the existence of a unique balanced growth path (BGP)

given a fixed hazard rate p by contradiction. Suppose there is no BGP, but capital would

grow at a constant rate gk and consumption at the constant rate gc, with gk 6= gc. Observe

in equations (17a) and (17b) that gc > gk implies gk = −∞ and gc < gk implies gc = −∞.

As both cases yield economically infeasible solutions the only remaining possibility is a BGP

with gc = gk = g.

To verify uniqueness and the second part of the proposition, we calculate the growth rate

g and show that under the given conditions it possesses the respective sign. First, we solve

the equations of motion for c(t)/k(t) given that gc = gk = g. As x(p)(p + ν) > 0 for all

p > 0, there is only one economically feasible solution (with c(t)/k(t) > 0)

c(t)

k(t)
=

1

2

[

(1− δ − ν)− σ(r − ρ) +
√

[(1− δ − ν)− σ(r − ρ)]2 + 4x(p)(p + ν))

]

. (A.5)

This establishes the uniqueness of the BGP for a given value of p.

Inserting (A.5) into g = (1− δ − ν)− c(t)/k(t), we obtain for the growth rate g

g =
1

2

[

(1− δ − ν) + σ(r − ρ)−
√

[(1− δ − ν)− σ(r − ρ)]2 + 4x(p)(p + ν)

]

. (A.6)

After some minor manipulations, we observe that the growth rate on the BGP is positive

if and only if x(p)(p + ν) < σ(r − ρ)(1 − δ − ν). Consequently, g < 0 if x(p)(p + ν) >

σ(r − ρ)(1− δ − ν) and g = 0 if x(p)(p + ν) = σ(r − ρ)(1− δ − ν). �

A.3 Proof of Proposition 4

The total derivative of g(p) with respect to σ equals:

dg⋆

dσ
=
∂g(p)

∂σ

∣

∣

∣

∣

p=p⋆
+
∂g(p)

∂p

∣

∣

∣

∣

p=p⋆

dp⋆

dσ
. (A.7)

30



The first term denoting the direct effect of σ on the growth rate g is always positive

∂g(p)

∂σ
=

1

2
(r − ρ)

[

1 +
x(p) + p+ ν + 1− α

√

[1− δ − ν − σ(r − ρ)]2 + 4(p+ ν)x(p)

]

> 0 . (A.8)

For the second term constituting the indirect effect via changes in the hazard rate p, we

differentiate equation (18) with respect to the hazard rate p to obtain

∂g(p)

∂p
= −

x(p) + p+ ν
√

[1− δ − ν − σ(r − ρ)]2 + 4(p + ν)x(p)
< 0 . (A.9)

We can decompose dp⋆/dσ: dp⋆/dσ = dp⋆/dh⋆ · dh⋆/dσ. By virtue of the healthcare tech-

nology, we find that dp⋆/dh⋆ = −ψ < 0. We also know from Proposition 3 that the sign

of dh⋆/dσ is ambiguous, depending on the value of σ. Combining these findings yields the

claim of the proposition. �

A.4 Proof of Proposition 5

The total derivative of the equilibrium growth rate g(p) with respect to ν reads

dg⋆

dν
=
∂g(p)

∂ν

∣

∣

∣

∣

p=p⋆
+
∂g(p)

∂p

∣

∣

∣

∣

p=p⋆

dp⋆

dh⋆
dh⋆

dν
. (A.10)

According to equation (15), ∂h⋆/∂ν = 0 implying that the second summand equals zero.

We obtain for the partial derivative of g(p) with respect to ν

∂g(p)

∂ν
= −

1

2

[

1 +
x(p) + p+ v − (1− α)

√

[1 − δ − ν − σ(r − ρ)]2 + 4(p + ν)x(p)

]

, (A.11)

which is smaller than zero if

[1− δ − ν − σ(r − ρ)]2 + 4(p + ν)x(p) > [x(p) + p+ v − (1− α)]2

⇔ 4x(p)(1 − α) > 0 .
(A.12)

The last condition is always satisfied as α ∈ (0, 1) and x(p) > 0. In addition, we know from

the proof of Proposition 4 that ∂g(p)/∂p < 0. �
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A.5 Proof of Proposition 6

(i) Differentiating the equilibrium level of healthcare expenditures, as given in (15), with

respect to ψ and pmax yields:

dh⋆

dψ
=

(σ − 1) [(1− σ)r + σρ+ pmax]

ψ2
> 0 ,

dh⋆

dpmax
= −

σ − 1

ψ
< 0 . (A.13)

From the healthcare technology (8), we obtain

dp⋆

dψ
=
∂p⋆

∂ψ
+
∂p⋆

∂h⋆
dh⋆

dψ
= −

(

h⋆ + ψ
dh⋆

dψ

)

< 0 , (A.14a)

dp⋆

dpmax
=

∂p⋆

∂pmax
+
∂p⋆

∂h⋆
dh⋆

dpmax
= 1− ψ

dh⋆

dpmax
> 0 . (A.14b)

For the growth rate g⋆ we obtain

dg⋆

dψ
=
∂g(p)

∂p

∣

∣

∣

∣

p=p⋆

dp⋆

dψ
> 0 ,

dg⋆

dpmax
=
∂g(p)

∂p

∣

∣

∣

∣

p=p⋆

dp⋆

dpmax
< 0 . (A.15)

The inequalities follow from ∂g(p)/∂p < 0, as shown in Proposition 5.

(ii) Inserting the derivatives in (A.13) and the interior solution for h⋆ from (15) into

equations (A.14) gives dp⋆/dψ = −σ and dp⋆/dpmax = σ. Using (A.13), the condition

−dh⋆/dpmax < dh⋆/dψ translates to

σ − 1

ψ
<

(σ − 1) [(1− σ)r + σρ+ pmax]

ψ2
⇔ (1−σ)r+σρ+ pmax−ψ > 0 . (A.16)

The latter condition is satisfied by assumption, as otherwise the households’ maximization

problem is not well defined. �

A.6 Proof of Proposition 7

Healthcare investment in the market equilibrium is inefficiently low if dU(s)/dh|h=h⋆ > 0

for all s ≥ 0, as this would imply that a marginal increase in healthcare expenditures

would increase the lifetime utility of all generations born at s ≥ 0. For an interior solution

F (h⋆) = 0. As a consequence, the condition is satisfied for all s ≥ 0 if

da

dh

(

1

x(p)
−

1

y(p)

)

+
dg(p)

dh

1

y(p)
> 0 . (A.17)
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As da/dh = dp/dh = −ψ and dg(p)/dh = dg(p)/dp · dp/dh, (A.17) holds if the inequality

given in the proposition is satisfied. �

A.7 Proof of Proposition 8

The individual household’s choice of optimal healthcare expenditures, as given in Proposi-

tion 1, remains unchanged by the new definition of the technological level of the economy.

As a consequence, the optimal level of healthcare in the steady state market equilibrium

equals h̄⋆ = 0 for σ ≥ 2. For σ < 2, we insert ā(h, p) = r̄(h)+p into the first-order condition

(13) and obtain

F̄ (h) ≡
σψ

(σ − 1) [(1− σ)r̄(h) + σρ+ p]
−

1

1− h
. (A.18)

Note that limh→1 F̄ (h) = −∞, as the first term remains finite27 and the second term diverges

to −∞ for h → 1. Thus, there exists an h̄⋆ with F̄ (h̄⋆) = 0 and dF̄ (h)/dh|h=h̄⋆ < 0 if

F̄ (h) > 0 for some h ∈ [0, 1). Otherwise the optimal level of healthcare equals h̄⋆ = 0.

�

A.8 Proof of Proposition 9

(i) Aggregate dynamics: Using equations (24) instead of (6), we derive the aggregate steady

state dynamics analogously to part (i) of the proof of Proposition 2. To derive the equation of

motion for the capital stock k(t) insert b(t) = k(t) and w̄(h, t) = (1−α)/[α(1−h)] · r̄(h)k(t).

(ii) Balanced growth path: The existence and uniqueness of a balanced growth path can be

shown as in part (ii) of the proof of Proposition 2. Replacing (1− δ − ν) in equation (A.6)

by r̄(h)/α + δ(1 − α)/α − ν yields ḡ(h, p) as given in the proposition. �

A.9 Proof of Proposition 10

Analogously to the proof of Proposition 7 the steady state level of healthcare expenditures

h̄⋆ is inefficiently high if ∂U(s)/∂h|h=h̄⋆ < 0 for all s ≥ 0. The equation corresponding to

equation (21) in the case of the general spillover specification reads

dU(s)

dh
=
c⋆(s, s, h)1− 1

σ

x̄(h, p)

[

F̄ (h) +
dā(h, p)

dh

(

1

x̄(h, p)
−

1

ȳ(h, p)

)

+
dḡ(h, p)

dh

(

1

ȳ(h, p)
+ s

)]

,

27 Note that (1−σ)r̄(h)+σρ+p > 0 for all p ∈ [pmax, pmax−ψ] is necessary for the household’s maximization
problem to be well defined.
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(A.19)

where ȳ(h, p) = r̄(h)+p− ḡ(h, p). For an interior level of healthcare expenditures F̄ (h) = 0.

Moreover, dā(h, p)/dh = dr̄(h)/dh+dp/dh < 0 and ȳ(h, p)− x̄(h, p) = σ[r̄(h)−ρ]− ḡ(h, p) >

0. Thus, ∂U(s)/∂h|h=h̄⋆ < 0 if dḡ(h, p)/dh|h=h̄⋆ < 0. �

A.10 Details on the numerical exercises

We use the original data set of Becker et al. (2005)28 and amend it by data on health

expenditures from 1960 and 2000. For the year 2000 the WHO29 provides data of healthcare

expenditures per GDP for all countries. Data for healthcare expenditures in 1960 is limited.

The OECD30 provides data on healthcare expenditures per capita in 1960 for some of their

members. In fact, complete data on healthcare expenditures is only available for North

America. Assuming the missing values to be zero, the data listed in Table 5 for healthcare

expenditures in 1960 is a lower bound for real healthcare expenditures. According to Becker

et al. (2005) income per capita is GDP per capita in 1996 international prices adjusted for

terms of trade (Penn World Tables 6.1). Data on life expectancy at birth is taken from the

World Bank Development Indicators. The average growth rate g∅ has been calculated from

income levels in 1960 and 2000. Accordingly, the average population growth rate ν has been

calculated from population data in 1960 and 2000. All regional aggregates are population

weighted sums of country data.

Table 5 shows the calculation results for seven world regions (E&CA: Europe and Central

Asia, EA&P: East Asia and Pacific, LA&C: Latin America and the Caribbean, ME&NA:

Middle East and North Africa, NAM: North America, SASIA: South Asia and SSA: Sub-

Saharan Africa). NAM (exo) denotes a hypothetical North America in which no healthcare

expenditures are undertaken and increases in longevity solely stem from a decrease in pmax.

To estimate the sensitivity of our results with respect to the missing data on healthcare

expenditures in 1960, Table 6 shows the same calculations for the seven world regions but

with rather high estimates on the healthcare expenditures in 1960. We observe that our

results are robust to reasonable changes in the healthcare expenditures.

28 Available at http://www.aeaweb.org/aer/data/mar05_data_becker.zip.
29 Available at http://www.who.int/gho/en/.
30 Available at http://puck.sourceoecd.org.
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Region E & CA EA & P LA & C ME & NA NAM NAM (exo) SASIA SSA

inc.(1960) 6810.37 1316.87 3459.36 1935.13 12379.8 12379.8 892.08 1470.48

inc.(2000) 18280.6 5866.24 7161.46 5524.89 32880.2 32880.2 2345.84 1573.02

T (1960) 67.99 42.05 56.26 47.89 69.89 69.89 44.04 40.55

T (2000) 76.22 70.71 70.46 68.94 77.25 77.25 62.73 46.02

h(1960) 1.64% 1.03% 0% 0% 3.91% 0% 0% 0%

h(2000) 6.02% 4.05% 4.97% 4.03% 9.77% 0% 3.12% 4.84%

r 3.70% 4.58% 3.33% 3.87% 3.69% 3.69% 3.74% 2.32%

ν 0.71% 1.64% 2.24% 2.54% 1.14% 1.14% 2.22% 2.73%

g∅ 2.47% 3.73% 1.82% 2.62% 2.44% 2.44% 2.42% 0.17%

g⋆(1960) 2.46% 3.69% 1.80% 2.59% 2.44% 2.44% 2.38% 0.15%

g⋆(2000) 2.47% 3.78% 1.84% 2.66% 2.45% 2.45% 2.45% 0.19%

ĝ 2.65% 5.10% 2.25% 3.47% 2.57% 2.65% 3.30% 0.4%

∆U/U(1960) 45.82% 137.92% 41.83% 75.95% 43.25% 46.29% 71.04% 8.09%

∆UT /∆U 15.16% 53.91% 35.12% 45.74% 11.24% 17.06% 47.43% 75.32%

∆Ug/∆U 0.69% 3.26% 2.29% 3.02% 0.67% 0.64% 3.19% 7.74%

∆Up/∆U 14.47% 50.65% 32.89% 42.72% 10.57% 16.43% 44.24% 67.58%

Table 5: Numerical results for all seven world regions.

Region E & CA EA & P LA & C ME & NA NAM SASIA SSA

h(1960) 3.0% 1.5% 2.0% 1.5% 3.91% 1.0% 2.0%

h(2000) 6.02% 4.05% 4.97% 4.03% 9.77% 3.12% 4.84%

r 3.70% 4.58% 3.33% 3.87% 3.69% 3.74% 2.32%

ν 0.71% 1.64% 2.24% 2.54% 1.14% 2.22% 2.73%

g∅ 2.47% 3.73% 1.82% 2.62% 2.44% 2.42% 0.17%

g⋆(1960) 2.46% 3.69% 1.80% 2.59% 2.44% 2.38% 0.15%

g⋆(2000) 2.47% 3.78% 1.84% 2.66% 2.45% 2.45% 0.19%

ĝ 2.67% 5.10% 2.28% 3.49% 2.57% 3.31% 0.44%

∆U/U(1960) 46.50% 138.30% 42.79% 76.84% 43.25% 71.62% 8.45%

∆UT/∆U 16.39% 54.04% 36.57% 46.37% 11.24% 47.85% 76.38%

∆Ug/∆U 0.68% 3.25% 2.19% 3.00% 0.67% 3.17% 7.43%

∆Up/∆U 15.71% 50.78% 34.38% 43.36% 10.57% 44.68% 68.95%

Table 6: Sensitivity analysis with respect to healthcare expenditures in 1960.
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