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Abstract

This article examines the impact of customer reward programs on the
competitive outcome in duopolistic markets. We argue that loyalty
discounts for repeat customers constitute a commitment device ben-
eficial to suppliers rather than customers. Analyzing a two-period
Bertrand model we show that the use of loyalty discounts makes it
possible for duopolists to attain the fully collusive outcome in both
periods. By offering generous loyalty discounts, the firms can credibly
commit to refrain from second period poaching given that they at-
tract enough customers in period one. Loyalty discounts invite firms
to collude in the first period.
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1 Introduction

Customer loyalty is one of the most important qualities that every company

strives to achieve. In recent years, the world’s marketing departments have

developed a huge variety of pricing schemes to promote customer loyalty.

For example, most supermarket chains in Switzerland have launched loyalty

cards that offer special advantages to consumers who have registered for a

customer program. By presenting their loyalty card at the checkout lane,

these customers are typically entitled to an allotment of shopping credits

that they can use for future purchases. Similar programs are also run by

credit card companies, hotel groups, and car rental agencies. The best-known

customer programs are the frequent-flyer programs of the major airlines. To

date, more than 350 million travelers registered in a frequent-flyer program

worldwide.1 However, loyalty-rewarding pricing schemes are not only used by

big companies. For instance, coffee shops and pizza deliveries use simple, but

effective punch cards to offer a free purchase to customers who have made a

certain number of purchases. Other firms rely on repeat purchase coupons:

they distribute a coupon along with their product which customers can use

to get a discount for their next purchase of the same product.2 Henceforth,

we will refer to a loyalty-rewarding pricing scheme as reward program.

A reward program is a promotional tool that offers a loyalty reward on

the basis of accumulated purchases from a firm. We observe many kinds

of loyalty rewards: some firms allow for lump sum or proportional price

discounts, other firms offer a free purchase of their products or services, and

again other firms offer free products or services from other firms in different

markets. Note, however, that reward programs are different from quantity

discounts because firms do not commit to future prices.

One of the main reasons why firms launch reward programs is to create

switching costs for consumers.3 The economic literature defines switching

1Data from webflyer.com; December 2009.
2Another example for a loyalty-rewarding pricing scheme is tour operators’ practice of

rewarding travel agents who resell package holidays.
3More sophisticated reward programs have also emerged as effective tools to collect

consumer data. For instance, loyalty cards from supermarkets feature a bar code or a
magnetic stripe that can be easily scanned and thereby creates a detailed shopping profile
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costs as the real or perceived costs that a consumer must incur when chang-

ing supplier but which he does not incur by remaining with the current sup-

plier.4 Reward programs perfectly fit this definition because a customer who

participates in such a program forfeits his loyalty reward if he changes the

supplier.5 This means that he incurs a cost in purchasing an otherwise identi-

cal product from a new supplier even if that product is sold at the same unit

price. Hence, reward programs generate switching costs that make otherwise

identical products heterogeneous ex post, and should therefore be treated as

a tool for “artificial” product differentiation.

As noted by Klemperer (1995), the most obvious effect of switching costs

is to give firms some market power over their existing customers. Once

the consumers have made an initial purchase, and thus built up switching

costs, then—from the perspective of any particular firm—the market becomes

segmented into two groups of customers with different price elasticities. The

cost of attracting a customer who has previously bought from a rival firm

increases because the price cut necessary to attract such a customer must

cover his switching costs. For a firm that cannot price discriminate between

first-time and repeat customers, this price cut might mean giving up more

profits on repeat customers than gaining on any additional customer. Hence,

if switching costs are large enough, each firm can improve unilaterally by

exploiting its existing customers. It is evident that the proper conditions,

when and to what extent a firm can benefit from switching costs, depend

on the details of the respective model. In the context of reward programs,

it turns out that a firm can only earn extra profits on existing customers

if also all the other firms run reward programs and have already attracted

customers.6 This gives the firms an incentive to compete less aggressively for

of the cardholder. This practice has been fiercely criticized by consumer organizations
arguing that the data and shopping information collected by loyalty cards violates the
privacy rights of consumers. For a critical discussion of supermarket reward programs
from a privacy perspective see Albrecht (2002).

4Surveys of the switching costs literature are by Klemperer (1995), NERA (2003), or
Farrell and Klemperer (2007).

5In the classification of Klemperer (1987), switching costs generated by reward pro-
grams are called artificial switching costs which arise entirely at firms’ discretion. Other
authors refer to this switching cost also as endogenous switching cost, so for instance
NERA (2003).

6On this point, switching costs generated by reward programs differ with other switch-

3



consumers who are not yet affiliated with a supplier since a higher market

share makes the competitors less aggressive for the future.

This paper contributes to a better understanding of how firms can benefit

from reward programs. We suggest that reward programs constitute a com-

mitment device for firms with the potential to facilitate price coordination.

The focus of the analysis is on reward programs offering lump sum loyalty

discounts. However, qualitative results carry over to proportional discounts

too.

A Brief Overview of the Model. We consider a simple two-period

Bertrand model. Two symmetric firms supply a homogeneous good at zero

marginal cost to a consumer population of mass one. Each consumer has

unit demand per period and a reservation price of one. It is evident that

in this competitive environment the firms earn zero profits in both periods

because of Bertrand competition with undifferentiated products. However,

we show that the introduction of reward programs allows the firms to attain

the fully collusive outcome in both periods.

The idea is the following. Both firms provide a repeat purchase coupon

along with the first-period product which consumer can use to get a minimum

lump sum loyalty discount on their second-period purchase from the same

supplier. The firms are free to increase their discount commitment after the

first period.7 A consumer will redeem his coupon in the second period if

the net price (regular price net of loyalty discount) charged by the current

supplier does not exceed the other firm’s regular price. This implies that

each firm could price up to its loyalty discount above the competitor’s price

without losing a single customer to the rival. Such a price increase, aimed

at exploiting existing customers, will henceforth be referred to as rip-off

strategy. However, a firm could also go for the whole market and cut its

ing costs. For example, if existing customers incur a transaction cost s when changing
supplier, then a firm can price up to the amount s above the competitor’s marginal costs
and earn a positive markup per existing customer, independent of the allocation of cus-
tomers.

7This assumption accounts for the often observed fact that firms enlarge the variety of
loyalty rewards in ongoing reward programs.
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price to attract the customers who have previously bought from the other

firm. Such a strategy will be named poaching strategy.

Poaching turns out to be less appealing for a firm with a big market share

and a high loyalty discount. Moreover, it actually turns out that rip-off is the

dominant strategy for firm i if its loyalty discount exceeds a certain thresh-

old which is given by the ratio of the competitor’s to firm i’s customers. By

offering a loyalty discount of one, firm i can signal its intention to abstain

from poaching, if the competitor grants it at least half the first-period mar-

ket. We will show that the firms use this self-commitment to coordinate on

the fully collusive outcome. The Pareto optimal Nash-equilibrium has both

firms setting the monopoly price in the first period and coordinating on a

loyalty discount higher or equal to one. This leaves the consumers indifferent

and prompts them to choose their supplier at random. In consequence, the

first-period market splits equally and both firms have rip-off as their domi-

nant strategy for the second period. As a result, the firms will exploit their

customers from the first period. The firms have no incentive to deviate since

they earn zero second-period profits if (at least) one firm has no customers

from the first period. This implies that any first-period price/discount pair,

with the price not exceeding the monopoly price, could be sustained as a

collusive equilibrium.

To sum up, our model suggests that repeat purchase coupons are a

commitment device beneficial to duopolists rather than customers. The

announcement of a generous loyalty discount is a credible commitment to

weaken competition in the future and enables price coordination in the cur-

rent period. Since the commitment value of such a loyalty discount is nil if

the committing firm fails to attract consumers, the firms intend to share the

market in the first period.

Related Literature. To our knowledge, Banerjee and Summers (1987)

are the first who study reward programs as an endogenous decision to create

switching costs. They consider a two period duopoly model with homo-

geneous products where firms in the first period simultaneously announce

repeat purchase coupons and alternate in the price setting afterwards. Equi-

librium prices coincide with monopoly prices in both periods. The present
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setup is related to Banerjee and Summers (1987), but implements simulta-

neous instead of alternating price setting which changes the outcome signif-

icantly. The monopoly result is still an equilibrium, but it is not unique

anymore.

Caminal and Matutes (1990) and Kim, Shi, and Srinivasan (2001) focus

on differentiated duopoly models. They find that loyalty rewards are likely

to relax price competition, but the specific form of the reward program is

crucial. A more challenging result comes from Caminal and Claici (2007).

For a monopolistic competition model with a large number of firms they

show that reward programs are business stealing devices and, hence, have

pro-competitive effects. For a large number of firms the commitment value

with respect to rival firms is nil and firms will fail to collude. Caminal and

Claici (2007) also argue that loyalty programs are anti-competitive only if

the number of firms is sufficiently small and if firms are restricted to use

specific reward designs that involve low commitment value for consumers.

Our result goes in the same direction as Caminal and Matutes (1990) and

Kim et al. (2001). However, the effects become clearer and the statement

stronger since we have Bertrand competition with homogeneous products

and not competition with differentiated products à la Hotelling.

The remainder of the paper is organized as follows. Section 2 describes the

basic setup of the model. Sections 3, 4, and 5 solve the model. Section 6

contains a discussion of the results and some informal extensions. Section 7

concludes. Long proofs are relegated to the Appendix 7.

2 The Model

We consider a two-period price competition model where firms can imple-

ment a reward program. Two otherwise identical firms, A and B, produce

a homogeneous good at constant marginal cost. They distribute a coupon

along with their first-period products which the customers can use to obtain a

loyalty discount on their second period purchase. The good is non-storable.

We normalize the mass of the consumer population to one and the firms’

marginal cost to zero. Reservation prices are one and each consumer buys
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at most one unit per period. Firms make simultaneous decisions to choose

loyalty discounts and prices. The following figure illustrates the timing.

Figure 1: Timing

Period 1
Intermediate

Stage
Period 2

Firms set first
period prices p1

A

and p1
B
,

and minimum
loyalty discounts

δ◦
A
and δ◦

B

Prices and
discounts
revealed;
consumers’

buying decision
→ µA, µB

Observable
adjustment of
discounts:
δA ≥ δ◦

A
,

δB ≥ δ◦
B

Firms set second
period prices
p2
A
and p2

B
.

Prices revealed;
consumers’

buying decision.

In period 1, the firms set first-period prices p1A ≥ 0 and p1B ≥ 0 and commit

to minimum lump sum loyalty discounts δ◦A ≥ 0 and δ◦B ≥ 0.8 Then each

consumer makes his first-period purchase. Whenever both firms charge the

same price and offer identical minimum loyalty discounts, a fair coin is flipped

to decide which firm to purchase from. This assumption rules out that an

indifferent consumer would either always buy from firm A or always buy from

firm B. However, this assumption does not rule out that a consumer could

go for the firm with the lower first period price and/or the firm with the

higher minimum loyalty discount. The first period ends with the proportion

µA ≥ 0 of the consumers buying from firm A and the proportion µB ≥ 0

buying from firm B; µA + µB ≤ 1.

At the intermediate stage, both firms can upgrade their reward program

and commit to a higher lump sum discount δA ≥ δ◦A and δB ≥ δ◦B. These

discount commitments are binding in the sense that each firm must accept

its own coupons as means of payment. The upgrades are observable and

verifiable to both customers and firms.

In period 2, the firms set second-period prices p2A and p2B. Consumers

with the repeat purchase coupon compare their previous supplier’s net price

(regular price net of the lump sum discount) with the other firm’s regular

price. Indifferent consumers buy from their previous supplier. The firms

cannot distinguish between first time and repeat buyers but the consumers

8Note that the firms cannot (or do not want to) commit to future prices at this stage
of the game.
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can prove their loyalty by presenting the repeat purchase coupon at the

counter. Both firms and consumers are risk neutral and neither of them

discounts the future. Thus, a firm’s total expected profits at the beginning

of the game are just the sum of the expected profits in each period, i.e.,

ΠA = π1
A + π2

A and ΠB = π1
B +π2

B. A consumer’s total expected utility is the

sum of the expected utilities in each period.

3 Second-period Price Competition

We solve the model by backward induction. The solution of the second-

period subgame depends on the loyalty discounts δA and δB (defined at the

intermediate stage) and on the first-period market shares µA and µB. The

fraction 0 ≤ µA ≤ 1 of consumers has previously purchased from firm A and

has a repeat purchase coupon from firm A; the fraction 0 ≤ µB ≤ 1−µA has

previously purchased from firm B and has a coupon from firm B.

It is not necessary to solve the second-period subgame for any arbitrary

market allocation since there are only four ways the first period market can

split: no firm has consumers, firm A has all consumers, firm B has all con-

sumers, or both firms share the market equally. This simplification is a

consequence of the fact that in period one each consumer either prefers not

to buy, to buy from firm A, to buy from firm B, or flips a fair coin. Since

consumers are identical, the sum of the individual buying decisions must lead

to one of the following market allocations:9

(µA, µB) =
(
0, 0

)
,
(
1, 0

)
,
(
0, 1

)
, or

(
1/2, 1/2

)
.

Henceforth we shall refer to the allocation
(
0, 0

)
as zero-zero allocation, to the

allocations
(
1, 0

)
and

(
0, 1

)
as all-or-nothing allocations, and to the allocation(

1/2, 1/2
)
as fifty-fifty allocation.

It should be clear that the fifty-fifty allocation arises if firm A and B

both charge the same first-period price p1A = p1B ≤ 1 and offer identical

9Note that if each consumer individually and independently flips a fair coin to decide
whether to buy from firm A or from firm B, then the market share of customers buying
from either firm converges to 1/2 if the number of customers enlarge. That is, aggregation
wipes out the uncertainty resulting from the coin flips on the individual level.
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minimum loyalty discounts δ◦A = δ◦B ≥ 0. In this case, the firms are indistin-

guishable from each other and a fair coin is flipped. However, if prices and

minimum discounts are not the same, the analysis is not so straightforward.

A consumer’s expected utility at the outset of the game not only depends

on first-period prices but also on price expectations for the second period.

These price expectations, in turn, crucially depend on the consumer’s belief

about the outcome of the first-period market. As we will show in a next

step below, the zero-zero allocation and the all-or-nothing allocations lead to

fierce Bertrand competition in the second period. This implies that each con-

sumer’s expected second-period utility would be maximized if all consumers

were to buy from the same supplier in the first period. Anticipating this re-

sult, it is rational for each consumer to rely on a public coordination device.

If all consumers were to buy from the lower priced firm, everyone could ra-

tionally anticipate that an all-or-nothing allocation emerges and both firms

charge a net price of zero in the second period. A similar argument applies to

the case where the firms charge the same first-period price but offer different

minimum loyalty discounts. For this case the consumers are assumed to buy

from the firm offering the higher loyalty discount.

3.1 Zero-zero Allocation

We start the analysis of the second period with the zero-zero allocation.

Because no consumer has a repeat purchase coupon from the first period,

the firms compete with undifferentiated products. Therefore, a zero-profit

Bertrand equilibrium will arise. This motivates the first proposition.

Proposition 1. Any second-period subgame that starts after the zero-zero

allocation,
(
µA, µB

)
=

(
0, 0

)
, has a unique Nash-equilibrium. The equi-

librium prices are p2A
∗

= 0 and p2B
∗

= 0, leading to equilibrium profits

π2
A = π2

B = 0.

3.2 All-or-nothing Allocations

Next we focus on the all-or-nothing allocations. Without loss of generality

suppose that each consumer has a repeat purchase coupon from firm A and
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nobody a coupon from firm B. The firms simultaneously set p2A and p2B to

maximize their second period profits

π2
A

(
p2A, p

2
B

)
=

{
p2A − δA
0

if p2A − δA ≤ min {p2B, 1}, and
otherwise,

and

π2
B

(
p2A, p

2
B

)
=

{
p2B
0

if p2B < p2A − δA and p2B ≤ 1, and
otherwise.

This non-cooperative price game has the unique zero-profit Nash-equilibrium(
p2A

∗
, p2B

∗)
= (δA, 0). The result is based on the fact that firm B has no

customers from the first period. At any combination of prices (p2A, p
2
B) where

firm A earns positive profits, firm B has an incentive to cut its price to

slightly below p2B
′
= p2A − δA to attract the entire market. Proposition 2

generalizes the result.

Proposition 2. Any second-period subgame that starts after the all-or-

nothing allocation,
(
µi, µj

)
=

(
1, 0

)
, has a unique Nash-equilibrium. The

equilibrium prices are p2i
∗
= δi and p2j

∗
= 0, with i, j ∈ {A,B} and i 6= j,

leading to equilibrium profits π2
A = π2

B = 0.

3.3 Fifty-fifty Allocation

In the following we will analyze the subgames that start after the fifty-fifty

allocation. Half the consumers have a repeat purchase coupon from firm A

and qualify for the discount δA on the next purchase from A; the remain-

ing consumers have a coupon from firm B and qualify for the discount δB

from B. Because the firms cannot distinguish between first-time and repeat

customers, it is impossible to specially target the customers who have previ-

ously bought from the other firm. Consequently, each firm can only charge

one price to all consumers.

By charging a price p2A > min{p2B, 1} + δA, firm A prices itself out of

the market: at such a high price the customers qualified for the discount

δA either switch to firm B or leave the market. Conversely, by charging

p2A < min{p2B − δB, 1}, firm A also attracts the customers qualified for the

10



discount δB and serves all consumers. The analoge is true firm B. For

arbitrary δA ≥ 0 and δB ≥ 0 the profit functions of firm A and B are

therefore given by

π2
i

(
p2A, p

2
B

)
=





p2i − δi/2 if p2i < p2j − δj and p2i ≤ 1,

(p2i − δi) /2 if p2j − δj ≤ p2i ≤ min
{
p2j , 1

}
+ δi, and

0 otherwise;

with i, j ∈ {A,B} and i 6= j. Figure 2 shows the profit distribution graphi-

cally for different combinations of prices p2A and p2B.

Figure 2: Profits after fifty-fifty allocation

π2

A = p2A − δA/2

π2

B
= 0

π2

A =
(

p2A − δA
)

/2

π2

B
=

(

p2
B

− δB
)

/2

π2

A = 0

π2

B
= p2

B
− δB/2

p2A

p2B

δA 1 1+δA

δB

1

1+δB

0

p2B = p2A + δB

p2B = p2A − δA

It is well known that in such a differentiated product environment a pure-

strategy Nash-equilibrium might not exist due to a price cycle à la Edge-

worth. At every price combination (p2A, p
2
B) where firm B profitably serves

all consumers, firm A (which makes zero profits because its price is too high)

would like to lower its price and win back its customers from the first pe-

riod. Then, at every price combination (p2A, p
2
B) where firm A serves only its

customers from the first period, it can unilaterally improve by either charg-

ing p2A
′
= min{p2B, 1}+ δA in order to exploit its previous customers (rip-off

strategy), or cutting its price to slightly below min{p2B−δB , 1} to also attract

the consumers who have previously bought from firm B (poaching strategy).
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By applying the latter strategy to the price p2B = 1+ δB (the maximum price

firm B is willing to charge), firm A expects almost 1/2 in profits on new

customers, against the loss of δA/2 in the rip-off profits on repeat customers.

Hence, for firm A never to have the incentive to poach, it must be the case

that δA ≥ 1. The analog is true for firm B.

As a result, the non cooperative price setting game that starts after the

fifty-fifty allocation has a pure strategy Nash-equilibrium only under the con-

dition that δA ≥ 1 and δB ≥ 1. This condition implies that the forgone profits

by cutting the price to A’s existing customers always exceed the additional

profits gained by poaching from B, and vice versa. Hence, firm A and B can

act as a monopolist on their respective customer base and set p2A
∗
= 1 + δA

and p2B
∗
= 1 + δB. They earn π2

A = π2
B = 1/2 in second period profits.

Conversely, if the condition δA ≥ 1 and δB ≥ 1 is not satisfied, firm A

could guarantee itself only the profits π̃2
A = min{δB/4, 1/2} by charging the

price p̃2A = δA+min{δB/2, 1}. Firm B never undercuts p̃2A since this leads to

negative profits. In analog, firm B could charge p̃2B = δB+min{δA/2, 1} which
is good for the profits π̃2

B = min{δA/4, 1/2}. However, the price combination

(p̃2A, p̃
2
B) is not a Nash-equilibrium, as both firms have an incentive to increase

their price. We will show in the Appendix that the firms can expect better

profits by using fully mixed strategies. Proposition 3 summarizes the results.

Proposition 3. Any second-period subgame that starts after the fifty-fifty

allocation,
(
µA, µB

)
=

(
1/2, 1/2

)
, has a unique Nash-equilibrium either in

pure or in mixed strategies:

a) Given δA ≥ 1 and δB ≥ 1, the pure strategy equilibrium prices are

p2A
∗
= 1+ δA and p2B

∗
= 1+ δB leading to equilibrium profits π2

A = π2
B = 1/2.

b) Given δA < 1 and δB < 1, there exists unique mixed pricing (given in

the Appendix) leading to expected nonnegative equilibrium profits

π2
A(δA, δB) < 1/2 and π2

B(δA, δB) < 1/2 with ∂π2
A/∂δA > 0 and ∂π2

B/∂δB > 0.

c) Given δi ≥ 1 and δj < 1 with i, j ∈ {A,B} and i 6= j, there exists

unique mixed pricing (given in the Appendix) leading to expected equilibrium

profits π2
i = (1 + δj) /4 and π2

j = 1/2.
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4 Adjustment of Loyalty Discounts

Propositions 1 to 3 fully characterize the outcome of the second period. We

now focus on the intermediate stage where the first-period market allocations

have already emerged and the firms consider a discount increase to δA ≥ δ◦A
and δB ≥ δ◦B respectively.

Note that Propositions 1 and 2 indicate that both firms earn zero second-

period profits if (at least) one firm has failed to attract customers in the

first period. Since this result applies to any combination of δA and δB, it is

useless to increase the loyalty discount after the zero-zero allocation or an

all-or-nothing allocation.

A converse result applies to the fifty-fifty allocation. Using weak domi-

nance, it is always optimal for firm A to increase its discount commitment

to δA
∗ = 1 whenever δ◦A < 1 and δ◦B < 1, and to leave δ◦A unchanged oth-

erwise. The analog is true for firm B. The reason for this result follows

from Proposition 3 which implies that ∂π2
A/∂δA > 0 and ∂π2

B/∂δB > 0 if

δA < 1 and δB < 1; and ∂π2
A/∂δA = 0 and ∂π2

B/∂δB = 0 otherwise. The

next proposition summarizes the subgame-perfect equilibrium outcome of the

intermediate stage.

Proposition 4. Given that the first-period game has resulted in the fifty-fifty

allocation and the firms are committed to low minimum loyalty discounts

δ◦A < 1 and δ◦B < 1, the firms increase their discount commitments at the

intermediate stage to δA
∗ = 1 and δB

∗ = 1. Otherwise, the discount commit-

ment stay unchanged at δA
∗ = δ◦A and δB

∗ = δ◦B.

5 First-period Price Competition

In this section, we analyze the first-period game. At the outset of period one

both firms simultaneously decide on their first-period price and the minimum

loyalty discount, that is they set the nonnegative price/discount pairs (p1A, δ
◦
A)

and (p1B, δ
◦
B). Consumers observe these offers and come up with their first-

period buying decision. In doing so, they also rely on price expectations

for the second period. This makes the decision process quite complicated

since the price expectations depend on beliefs about the outcome of the
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first-period game. Nevertheless, buying from the firm with the lower first-

period price turns out to be a rational consumption strategy. As mentioned

earlier, a consumer’s second-period utility will be maximized if all consumers

were to buy from the same supplier in the first period. Therefore, if all

consumers buy from the lower priced firm in the first period, everyone can

rationally anticipate that both firms would charge a net price of zero in

the second period. A similar argument applies to the case where the firms

charge the same price, but offer different minimum loyalty discounts. This

suggests the following coordination device. First, consumers shall coordinate

on the firm charging the lower first-period price. Second, if prices coincide,

consumers shall coordinate on the firm with the higher minimum loyalty

discount.10 However, if both prices and discounts coincide, it is not possible

to coordinate on a firm and each consumer individually flips a fair coin.

Given this coordination device we are able to show:

Proposition 5. Any nonnegative price/discount pair (p1, δ◦) with p1 ≤ 1 and

δ◦ ≥ 0 constitutes a symmetric Nash-equilibrium (p1A
∗
, δ◦A

∗) = (p1B
∗
, δ◦B

∗) =

(p1, δ◦) to the first-period game. Furthermore, there are no other Nash-

equilibria.

Proof. First, note that no firm ever charges a price greater than one since

this would lead to zero first-period demand and (due to Propositions 1 and 2)

to zero second-period profits. Then, with no loss of generality, suppose that

firm A sets 0 ≤ p1A ≤ 1 and δ◦A ≥ 0. If firm B exactly matches (p1A, δ
◦
A), it

comes to the fifty-fifty allocation and the firms share in a cooperative outcome

in the second period. Due to Propositions 3 and 4, B’s profits will be:

ΠB = π1
B + π2

B = p1A/2 + 1/2.

If on the other hand firm B deviates from (p1A, δ
◦
A), it gets π

2
B = p1A in first-

period profits and no profits afterwards (since we have already shown that

if at least one firm starts without customers from the first period, second-

period profits must be zero). From this follows that it is the best response

10Actually it is not important whether the consumers coordinate on the firm with the
higher or the lower loyalty discount. However, one might argue that common sense suggests
to buy from the firm with the higher discount.
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for firm B to set the same price and the same loyalty discount as firm A.

Therefore, any price/discount pair (p1, δ◦) with p1 ≤ 1 and δ◦ ≥ 0 can be

implemented as a symmetric Nash-equilibrium. �

As always if there are multiple Nash-equilibria, it is natural to ask which of

them, if any, is the most reasonable solution. Although there is no conclusive

answer to this question, we can partially dissolve the problem by assuming

that the firms only coordinate on Nash-equilibria with p1A
∗
= p1B

∗
= 1. This

assumption can be justified by a Pareto optimality argument: by coordi-

nating on a first-period price/discount pair (1, δ◦), the firms attain the fully

collusive outcome in both periods. In addition, it seems plausible that the

firms coordinate on a minimum loyalty discount δ◦A = δ◦B ≥ 1 as this makes it

unnecessary to increase the discount commitment at the intermediate stage.

Proposition 6. The two-period price competition model with loyalty dis-

counts has the following most preferred Nash-equilibrium outcome: in the

first period, the firms simultaneously set (p1A
∗
, δ◦A

∗) = (p1B
∗
, δ◦B

∗) = (1, δ◦∗)

with δ◦∗ ≥ 1, at the intermediate stage, they choose δ∗A = δ∗B = δ◦∗, and,

finally, in the second period they charge p2A
∗
= p2B

∗
= 1+ δ◦∗. This allows the

firms to attain the fully collusive outcome in both periods. Total profits are

ΠA
∗ = ΠB

∗ = 1.

6 Discussion

The present model characterizes loyalty discounts as a powerful instrument

for price coordination. In the absence of loyalty discounts, both firms would

earn zero profits because of Bertrand competition with undifferentiated prod-

ucts. Conversely, the possibility to grant loyalty discounts allows the firms to

attain the fully collusive outcome in both periods. The reason for this result

is that loyalty discounts create switching costs which make it more difficult

to attract customers who have previously bought from the rival firm. To

be more specific, firm A must charge significantly below B’s regular price

if it wants to poach customers from B. However, since price discrimination

is not possible, firm A must also charge the same price to all its existing

customers and, moreover, must grant them the promised loyalty discount.
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Depending on the market allocation and the values of the discount offers,

the forgone profits by cutting the price to A’s existing customers may exceed

the additional profits gained by poaching from B. This phenomenon makes

it possible to use loyalty discounts as a self-commitment device to less aggres-

sive pricing. With a discount higher than one, each firm can credibly commit

to refrain from second-period poaching provided that it succeeds in attract-

ing at least half the first-period market. Together with the fact that no firm

would earn positive second-period profits if at least one of them has no exist-

ing customers, this provides both firms with the right incentives to coordinate

their first-period pricing. The best they can do is to charge the monopoly

price and to coordinate on a minimum loyalty discount δ◦A
∗ = δ◦B

∗ ≥ 1. In

consequence, the market splits and each firm will act as a monopolist on its

own respective market.

Up to this point we have looked at loyalty discounts within a two-period

duopoly model. In the following we will discuss the robustness of our results

along several dimensions. We consider in turn the effect of an increase in

the number of firms, an increase in the number of periods, allowing for new

consumers, and the possibility of entry.

More firms. Consider the case with N firms. It is straightforward to

show that the second-period subgame will end in a zero-profit equilibrium if

at least one firm has no customers from the first period. That is, in order

to attain positive second-period profits, the firms will have to coordinate

on a first-period price/discount pair that splits the market equally. Since

in a symmetric equilibrium no firm shall expect more than 1/N in second-

period profits, it is impossible for more than two firms to attain the fully

collusive outcome in the first period. The intuition is simple. Suppose that

all N > 2 firms charge the monopoly price p1 = 1. Then, firm i has an

incentive to cut its price since it can immediately gain (N − 1) /N in first-

period profits against the loss of 1/N in second-period profits. Hence, the

collusive price must be lower than 1/ (N − 1) to prevent undercutting. It can

easily be checked that all the definitions forN = 2 have natural extensions for

N > 2. The most preferred equilibrium outcome has each firm charging the
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first-period price p1
∗
= 1/ (N − 1) and offering a minimum loyalty discount

δ◦ ∗ ≥ N − 1. Each firm earns 1/ (N − 1) in total profits.

More periods. There are two different ways of extending the model to

T > 2 periods. One useful extension is to assume that the firms only give

out T period coupons and that a consumer must buy in T − 1 periods from

the same firm to get a loyalty discount in period T .11 It is quite evident

that if any firm fails to attract consumers in any period there will be no

cooperation for the rest of the game. This property enforces cooperation in

all T periods. The outcome of the extended model is similar to the standard

two period model.

Another extension is to assume that the consumers stay in the market

for T periods and get with each purchase a discount coupon for the next

period. It should be clear that in the two firm case both firms earn zero

profits in period T (the last period) if at least one firm has no customers

from period T −1. From this follows by a backward induction argument that

it is a dominant strategy for both firms to cooperate in any previous period.

The Pareto optimal equilibrium outcome has both firms coordinating on the

t-th period price/discount pair (pt
∗
, δt

∗
), with pt

∗
= 1+ δt−1 and δt

∗ ≥ 1 for

t = 1, . . . , T and δ0
∗
= 0. Each firm earns T/2 in total profits.

New consumers. The basic model assumes that consumers are identical

and stay in the market for two periods. Given this assumptions, both firms

have the right incentives to offer high loyalty discounts which makes it possi-

ble to exploit repeat customers in the second period. It turns out, however,

that allowing for some new consumers who buy only in the second period

has an important impact on the equilibrium outcome. New consumers rein-

force the tradeoff between the loyalty inducing effect of larger discounts and

the adverse effect of higher gross discount prices on sales to new customers.

Offering a high loyalty discount needs not necessarily be the best way to

proceed if new consumers enter in the second period.

11Examples for such coupons include punch cards offered by coffee bars and pizza de-
liveries.
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In the following we will extend the standard model to an overlapping

generations model with three periods. The first generation of consumers

enters in period one and leaves after period two; the second generation enters

in period two and leaves after period three. First generation consumers

obtain repeat purchase coupons in period one and use them in period two;

second generation consumers obtain coupons in period two and use them in

period three. Suppose that both generations are exactly the same as the

consumer population in the standard model. Then, there will be one unit of

demand in period one, two units of demand in period two and one unit of

demand in period three.

The overlapping generations model turns out to have multiple equilibria.

However, the fully collusive outcome is not attained in any equilibrium. The

intuition is as follows. In the second period, there are two generations of

consumers on the market: old consumers (first-generation consumers) with a

repeat purchase coupon and young consumers (second-generation consumers)

without a coupon. Given that a repeat purchase coupon qualifies for a pos-

itive loyalty discount it is easy to see that the second-period price must be

higher than one if the firms wish to extract the full surplus from old con-

sumers. This, however, means that the young generation will not buy at all.

Hence, monopoly profits are not to be realized if the old consumers are en-

titled for positive loyalty discounts. On the other hand, however, monopoly

profits are not to be realized without loyalty discounts either. In this case

there are two generations of consumers on the second-period market and none

of them qualifies for a loyalty discount. If firm A charges the monopoly price

p2A = 1, firm B can immediately gain profits of almost 1 by undercutting,

against the expected loss of 1/2 in third period profits.

There is a fundamental dilemma with overlapping generations. Offering

a high loyalty discount to old consumers in the second period implies that

the profits on repeat customers will be unattractively low if the price is set

to keep young consumers in the market. On the other hand, however, it

is also unfavorable to price young customers out of the market since this

reduces third period profits to zero. Hence, in the overlapping generations

model it is costly to increase loyalty discounts. The optimal discount for first
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generation customers is determined by the conflicting interests of exploiting

repeat customers and trying to capture new consumers in the second period.

The symmetric Pareto optimal equilibrium has both firms offering the loyalty

discounts δ1A
∗
= δ1B

∗
= 1/4 to first generation consumers, and δ2A

∗
= δ2B

∗
=

δ2
∗ ≥ 1 to second generation consumers. The equilibrium prices increase

over the three periods: p1A
∗
= p1B

∗
= −1/4, p2A

∗
= p2B

∗
= 1, and p3A

∗
= p3B

∗
=

1 + δ2
∗
. It is most notable that the firms accept a negative markup in the

first period. This reflects the value of locked in fist generation customers in

the second period. Each firm earns 5/4 in total profits.

Entry. The consequence of potential entry on the equilibrium outcome de-

pends on the timing assumption. To begin with, consider the case with two

incumbents and an entrant considering to enter in the second period. If en-

try is free, Bertrand competition will drive all firms’ second-period profits

to zero since the situation of the entrant is the same as that of an estab-

lished firm without customers. On the other hand, if costs of entry are

0 < s < 1, incumbents can deter entry by charging the second-period net

price p2i − δi ≤ s. This, however, erodes the fully collusive outcome in the

first period. The maximum first-period price that can be sustained as collu-

sive price is p1
∗
= s. That is, each incumbent earns s in total profits if entry

is possible in the second period.

Next consider the case where entry is also possible in the first period.

Suppose that incumbents have already coordinated on the price/discount pair

(p1, δ◦) and that the fully informed entrant may enter before consumers come

up with their first-period buying decision. Then, the entrant’s expect total

profits are p1/3+1/3−s if it matches (p1, δ◦), and p1 − s if it undercuts. From

this follows that any first-period collusive price p1 < min {3s− 1, s} deters

entry. However, entry deterrence might be too expensive for incumbents. In

an entry deterring equilibrium, each incumbent earns s/2 in second-period

profits and min {3s− 1, s} /2 in first period profits. In the Pareto optimal

equilibrium with N = 3, however, each firm earns 1/2 in total profits. As a

result, it is not optimal to deter entry if s ≤ 1/2.
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To summarize the discussion: While the second-period monopoly re-

sult is robust against an increase in the number of firms, the first-period

monopoly result is not. If there are more than two firms in the market, the

collusive first-period price must be lower than the monopoly price. This, how-

ever, does not change the result that loyalty discounts constitute a powerful

instrument for price coordination among oligopolists. The same conclusion

holds true for an increase in the number of periods. However, if we allow for

some consumers who buy only in the second but not in the first period, the

equilibrium outcome changes significantly. The discussion shows that the

average loyalty discount is lower in an overlapping generations framework

than in the standard model. Finally, it turns out that loyalty discounts have

not the power to deter entry if the costs of entry are small.

7 Conclusion

The present model characterizes reward programs as a powerful instrument

for price coordination in a highly competitive environment. Our analysis

demonstrates that firms achieve otherwise unattainable cooperative outcomes

in finite period games by creating switching costs through loyalty programs.

The focus of the paper lies on reward programs offering lump sum discounts

to repeat customers. We analyze a simple two-period Bertrand model with

two duopolists providing a repeat purchase coupon along with their first

period product. Consumers can use this coupon to obtain a minimum loyalty

discount on the second-period purchase from the same supplier. The offer of

a large minimum discount turns out to be an invitation to the other firm to

collude on pricing. The reason behind the result is that the discount offer will

become a credible self-commitment to refrain from second-period poaching,

given that the competitor is willing to share the first-period market. In

anticipation of a zero-profit result that will arise otherwise, the firms have

the right incentives to coordinate on the same first period price: the market

splits and each firm will act as monopolist on its own respective market in

the second period.

At first sight one might expect that the second-period monopoly result

leads to vigorous competition for market shares in the first period. The na-
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ture of switching costs, however, leads to an opposite conclusion. In contrast

to models where switching costs are paid for by consumers (e.g. Klemperer,

1995), in our model the switching costs are paid for by firms. Consequences

are that a duopolist can only earn extra profits on repeat customers if the

other duopolist has repeat customers as well. This provides the strong incen-

tives to share the initial market. Hence, it seems quite safe to conclude that

reward programs constitute a commitment device beneficial to competitors

rather than consumers.

Appendix

Proposition 3 states that any subgame that starts after the fifty-fifty allo-

cation has a unique Nash-equilibrium either in pure or in mixed strategies.

The proof of this result breaks up into three Lemmas. For notational reasons

we will write pA and pB instead of p2A and p2B for second-period prices; and

πA and πB instead of π2
A and π2

B for expected second-period profits.

Lemma a). Given δA ≥ 1 and δB ≥ 1, the pure strategy equilibrium prices

are pA
∗ = 1+δA and pB

∗ = 1+δB leading to equilibrium profits πA = πB = 1/2.

Proof. A pure-strategy Nash-equilibrium is the nonnegative price combina-

tion (pA
∗, pB

∗) such that, for a given pB
∗, firm A chooses pA

∗ to maximize

πA and, for a given pA
∗, firm B chooses pB

∗ to maximize πB.

Remember that profits are given by

πi (pA, pB) =





pi − δi/2 if pi < pj − δj and pi ≤ 1,
(pi − δi) /2 if pj − δj ≤ pi ≤ min {pj , 1}+ δi, and
0 otherwise,

(1)

with i, j ∈ {A,B} and i 6= j, and suppose that (pA
∗, pB

∗) is a Nash-

equilibrium. Then, it must be satisfied that pA
∗ = min{pB∗, 1}+ δA since for

any price pA
∗ 6= min{pB∗, 1}+δA firm A could unilaterally improve by charg-

ing the rip-off price pA
′ = min{pB, 1} + δA. The analog is true for firm B.

From this follows that the price combination (1 + δA, 1 + δB) is the only can-

didate for a pure-strategy Nash-equilibrium. At this price combination, both

firms serve only repeat customers and earn 1/2 in second-period profits and
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no firm can gain by raising its price because a higher net price for repeat

customers would exceed the reservation value. However, for (1 + δA, 1 + δB)

to be a Nash-equilibrium, it must also be satisfied that no firm can improve

by cutting its price to slightly below 1, in which case it earns almost 1/2 in

profits on new customers against the loss of δA/2 and δB/2, respectively, in

profits on repeat customers. This condition holds for δA ≥ 1 and δB ≥ 1

only, which completes the proof of Lemma a). �

Lemma b). Given δA < 1 and δB < 1, there exists unique mixed pric-

ing leading to expected nonnegative equilibrium profits πA(δA, δB) < 1/2 and

πB(δA, δB) < 1/2 with ∂πA/∂δA > 0 and ∂πB/∂δB > 0.

Proof. The following cumulative distribution function Fi(·), when employed

by firm A and B simultaneously, constitutes a unique mixed-strategy Nash-

solution.

Fi

(
pi
)
=





0, for pi < pi,

1− 2πj

pi
, pi ≤ pi ≤ pj − δj ,

1− 2πj

pj−δj
, pj − δj ≤ pi < pj + δi,

1− 2πj−pi+δi+δj
pi−δi

, pj + δi ≤ pi < pi,

1, pi ≤ pi,

with i, j ∈ {A,B}, i 6= j; where pi = 2πj is the lowest price charged by firm i

and pi = min
{
pi + δi + δj , 1 + δi

}
the highest; πj , denoting the expected

profits of firm j, are given as follows:

πj =





2δi+(
√
5−1)δj
4

, for 0 ≤ δj ≤ min
{
(
√
5−1)(1−δi)

2
,
2−(1+

√
5)δi

2

}
,

1+δi+(1−δi)
(

δj−
√

(1+δj)
2+4δi

)

4δi
,

(
√
5−1)(1−δi)

2
< δj <

(2−δi)
2−2

2−δi
,√

(1+δi)
2+4δj−(1−δi)

4
,

2−(1+
√
5)δi

2
< δj <

4−δi−
√

δ2i +8

2
,

δi−δj+
√

(δi−δj)
2+8(δi+δj)

8
, max

{
(2−δi)

2−2
2−δi

,
4−δi−

√
δ2i +8

2

}
≤ δj < 1.

We proof this result by construction and derive the stated solution by exam-

ining the sufficient conditions a mixed strategy equilibrium must satisfy.12

12The outline of the proof follows Shilony (1977) who offers a game-theoretic hypothesis
to account for the phenomenon of price dispersion.
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The assumptions made during the process of construction are proved to be

necessary.

Suppose that firm i employs the cdf Fi(·) as its mixed strategy and firm

j employs the cdf Fj(·), with i, j ∈ {A,B} and i 6= j. Let pi and pj be

the lowest, and pi and pj the highest price in the support of Fi and Fj ,

respectively. Given that Fi is continuous at pi = pj − δj , firm j expects the

following profits by charging the price pj :

E [πj (pj, Fi)] = (1− Fi(pj − δj))
pj − δj

2
+ (1− Fi(pj + δi))

pj
2

Since in a mixed equilibrium all firms must be indifferent between all the

prices they are willing to charge, Fi must satisfy, for almost every pj in the

support of Fj , that E [πj (pj , Fi)] = πj . This yields the difference equation

(1− Fi(pj − δj)) (pj − δj) + (1− Fi(pj + δi)) pj = 2πj (2)

which Fi must satisfy at almost every point pi ∈ [pi, pi], such that Fi is

continuous at pi = pj−δj . We shall find such a cdf whose support is contained

in an interval not larger than δi + δj . Later one we will prove that there are

no solutions with a wider range.

Bounding the supports. Note that for δi < 1 and δj < 1 both firms are

basically interested in poaching customers from the competitor. From this

follows that pi < pj − δj and pj < pi − δi. Together, this implies for the

support of Fi and Fj

δi/2 ≤ pi < pj − δj ≤ pj + δi < pi ≤ 1 + δi, and

δj/2 ≤ pj < pi − δi ≤ pi + δj < pj ≤ 1 + δj,
(3)

where the lower and upper bounds follow from equation (1).

Defining Fi. For pi + δj ≤ pj < pj, it applies that pj + δi ≥ pi and so

Fi(pj + δi) = 1. Equation (2) becomes (1− Fi(pj − δj)) (pj − δj) = 2πj from

which we get

Fi(pj − δj) = 1− 2πj

pj−δj
for pi + δj ≤ pj < pj ,

or Fi(pi) = 1− 2πj

pi
for pi ≤ pi < pj − δj .

(4)
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For pj ≤ pj < pi − δi, it applies that pj − δj < pi and so Fi(pj − δj) = 0.

Equation (2) simplifies to pj − δj + (1− Fi(pj + δi)) pj = 2πj from which we

get

Fi(pj + δi) = 1− 2πj−pj+δj
pj

for pj ≤ pj < pi − δj ,

or Fi(pi) = 1− 2πj−pi+δi+δj
pi−δi

for pj + δi ≤ pi < pi.
(5)

Finally, for pj − δj ≤ pi < pj + δi, the cdf has to be flat because at any price

in this range firm i sells only to its customers from the first period and can

unilaterally improve by increasing the price to p̃i = pj + δi. Together with

(4) and (5) we get the following cdf:

Fi

(
pi
)
=





0, for pi < pi,

1− 2πj

pi
, pi ≤ pi ≤ pj − δj ,

1− 2πj

pj−δj
, pj − δj ≤ pi < pj + δi,

1− 2πj−pi+δi+δj
pi−δi

, pj + δi ≤ pi < pi,

1, pi ≤ pi.

(6)

This equation defines Fi for any price pi. There are three candidates for a

discontinuity: pi, pj + δi, and pi. To share the properties of a cdf, equation

(6) must be continuous from the right (which is already satisfied) and non-

decreasing in pi. This demands

0 ≤ x = 1− 2πj

pi
to rule out a negative jump at pi, (7)

1− 2πj

pj−δj
≤ 1− 2πj−pj+δj

pj
to rule out a negative jump at pj + δi, (8)

and 1− 2πj−pi+δi+δj
pi−δi

≤ 1 to rule out a negative jump at pi. (9)

In the following we show that Fi may only have a discontinuity at point pi.

No jump at pi. By charging the price p̃j = pi + δj , firm j only attracts

repeat customers and earns π̃j =
pi
2
≤ πj. Together with 2πj = (1 − x)pi,

from (7), this yields pi ≤ (1 − x)pi which has the unique solution x = 0.

Hence, a jump at pi is ruled out and we get, using (6),

pi = 2πj. (10)

Since the analoge is true for Fj , it applies pj = 2πi.
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No prices outside the support of Fj. To be a solution, Fi must satisfy

the condition that it does not pay for firm j to charge p̃j < pj or p̃j > pj.

For p̃j > pj, this demands, using (2),

(1− Fi(p̃j − δj)) (p̃j − δj) ≤ 2πj, ∀p̃j > pj . (11)

Assume that pj−δj < pj+δi. Then, for small deviations, the point p̃j−δj lies

in the flat segment of Fi. This means that inequality (11) can be simplified to
2πj

pj−δj
(p̃j − δj) ≤ 2πj ∀p̃j > pj , which is obviously impossible because πj > 0.

Thus, for a deviation to p̃j > pj to be unprofitable it must be the case that

pj = 1 + δj whenever pj − δj < pj + δi. Moreover, we have to distinguished

two cases: a) pj − pj = δi + δj and b) pj − pj < δi + δj .

Case a) pj − pj = δi + δj .

Note that this condition implies pj − δj = pj + δi which means that Fi has

no flat middle range. Moreover, since prices are bounded above, pj ≤ 1+ δj ,

this also implies that pj = 2πi ≤ 1 − δi. To avoid deviations to p̃j > pj we

then require, using (5) and (11):

2πj − p̃j + δi + 2δj
p̃j − δi − δj

(p̃j − δj) ≤ 2πj , ∀p̃j > pj.

The left-hand side is decreasing in p̃j and so it is enough to check for

p̃j = pj = pj + δi + δj = 2πi + δi + δj . This yields

2πj − 2πi + δj
2πi

(2πi + δi) ≤ 2πj, or

(2πj − 2πi + δj) (2πi + δi) ≤ 4πiπj . (12)

Next, to rule out p̃j < pj we want, using (2),

p̃j − δj + (1− Fi(p̃j + δi)) pj ≤ 2πj, ∀p̃j < pj,

which, for pj − pj = δi + δj , is

p̃j − δj +
2πj

p̃j + δi
p̃j ≤ 2πj , ∀p̃j < pj
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The left-hand side is increasing in p̃j and so it is enough to check for p̃j = pj = 2πi.

This yields

2πi − δj +
2πj

2πi + δi
2πi ≤ 2πj , or

4πiπj ≤ (2πj − 2πi + δj) (2πi + δi) . (13)

Equations (12) and (13) give a necessary condition for πi and πj , such that

2πi ≤ 1− δi, which implies that pj − pj = δi + δj :

4πiπj = (2πj − 2πi + δj) (2πi + δi) . (14)

Equation (14) also implies that inequality (8) holds with equality. This means

that Fi has no jump at point pj + δi.

Case b) pj − pj < δi + δj .

Due to the fact that pj − pj = δi + δj may only apply if 2πi ≤ 1− δi, it must

now be the case that 2πi > 1 − δi. Moreover, we need not to worry about

deviations to p̃j > pj since, as mentioned earlier, it must now be the case

that pj = 1 + δj . To rule out deviations to p̃j < pj we then require

p̃j − δj + (1− Fi(p̃j + δi)) pj ≤ 2πj, ∀p̃j < pj.

Note that for small deviations the point p̃j + δi lies in the flat segment of Fi

and so we want, using (6),

p̃i − δj +
2πj

pj − δj
p̃j ≤ 2πj , ∀pj < pj.

The left-hand side is increasing in p̃j and so it is enough to check for p̃j = pj = 2πi.

Together with pj = 1 + δj this then yields the inequality

2πi − δj + 2πj2πi ≤ 2πj ,

4πiπj ≤ 2πj − 2πi + δj . (15)

We still need to rule out a negative jump at pj + δi = 2πi + δi. Simplifying

condition (8), which rules out such a jump, we therefore require

2πj − 2πi + δj ≤ 4πiπj . (16)
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Equations (15) and (16) together give a necessary condition for πi and πj ,

such that 2πi > 1− δi, which implies that pj − pj < δi + δj :

4πiπj = 2πj − 2πi + δj , (17)

Similar to case a), equation (17) implies that inequality (8) holds with equal-

ity and so a jump at pj + δi is ruled out.

Solving for profits. Condition (14) and (17) imply that we require

4πiπj = (2πi − 2πj + δi) (2πj + δj) for 2πj ≤ 1− δj , (18)

4πiπj = (2πi − 2πj + δi) for 2πj > 1− δj , (19)

4πiπj = (2πj − 2πi + δj) (2πi + δi) for 2πi ≤ 1− δi and (20)

4πiπj = (2πj − 2πi + δj) for 2πi > 1− δi. (21)

First, solving (18) and (20) simultaneously for 2πj ≤ 1− δj and 2πi ≤ 1− δi

yields

πi =
2δj+(

√
5−1)δi
4

πj =
2δi+(

√
5−1)δj
4

for 0 ≤ δj ≤ min
{
(
√
5−1)(1−δi)

2
,
2−(1+

√
5)δi

2

}

which implies that the cdfs Fi and Fj are continuous everywhere and have

no flat segments.

Second, solving (19) and (20) for 2πj > 1− δj and 2πi ≤ 1− δi yields

πi =

√
(1+δB)2+4δi−(1−δj)

4

πj =
1+δi+(1−δi)

(

δj−
√

(1+δj)
2+4δi

)

.

4δi

for
(
√
5−1)(1−δi)

2
< δj ≤ (2−δi)

2−2
2−δi

which implies that the cdf Fi has no flat segment, but is discontinuous at

1 + δi where it exhibits a jump of size 2πj − 1 + δj > 0; the cdf Fj has a flat

segment, but no discontinuity point.

Third, solving (18) and (21) simultaneously for 2πj ≤ 1−δj and 2πi > 1− δi

yields

πi =
1+δj+(1−δj)

(

δi−
√

(1+δi)
2+4δj

)

4δj

πj =

√
(1+δA)2+4δj−(1−δi)

4

for
2−(1+

√
5)δi

2
< δj ≤

4−δi−
√

δ2i +8

2
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which implies that the cdf Fi has a flat segment and no discontinuity point,

while the cdf Fj has no flat segment but is discontinuous at point 1+δj where

it exhibits a jump of size 2πi − 1 + δi > 0.

Finally, solving (19) and (21) simultaneously for 2πj > 1−δj and 2πi > 1− δi

yields

πi =
δj−δi+

√
(δi−δj)

2+8(δi+δj)

8

πj =
δi−δj+

√
(δi−δj)

2+8(δi+δj)

8

for max
{

(2−δi)
2−2

2−δi
,
4−δi−

√
δ2i +8

2

}
< δj < 1

which implies that the cdfs Fi and Fj are discontinuous at the points 1+δi and

1+δj , where they exhibit a jump of size 2πj−1+δj > 0 and 2πi−1+δi > 0,

respectively; moreover, both cdfs have a flat segment.

No wider range than δi+δj. To complete the proof of Lemma b) we have

to show that there are no solutions with pi−pi > δi+δj and/or pj−pj > δi+δj .

To establish a contradiction, suppose that pi−pi ≤ δi+δj and pj − pj > δi + δj .

Then, both equations (4) and (5) define the cdf Fi for the range pj + δi ≤
pi < pj − δj . Since for Fi to be a cdf these definitions must coincide, we want

1− 2πj

pi
= 1− 2πj − pi + δi + δj

pi − δi
for pj + δi ≤ pi < pj − δj

which is impossible.

Now suppose that pi − pi > δi + δj, and pj − pj > δi + δj . Then, for

pi − δi ≤ pj < pj it applies that that Fi(pj + δi) = 1 and the difference

equation (2) becomes (1− Fi(pj − δj)) (pj − δj) = 2πj . From this we get

Fi(pi) = 1− 2πj

pi
for pi − δi − δj ≤ pi < pj − δj. (22)

Similarly, for pj ≤ pj < pi + δj it applies that Fi(pj − δj) = 0 from which

we get, using (2),

Fi(pi) = 1− 2πj − pi + δi + δj
pi − δi

for pj + δi ≤ pi < pi + δi + δj. (23)

Both (22) and (23) define the cdf Fi in the range pj + δi ≤ pi < pj − δj . This

is a contradiction that completes the proof of Lemma b). �
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Lemma c). Given δi ≥ 1 and δj < 1, with i, j ∈ {A,B} and i 6= j,

there exists unique mixed pricing leading to expected equilibrium profits πi =

(1 + δj) /4 and πj = 1/2.

Proof. With no loss of generality, assume that δA ≥ 1 and δB < 1. Then, the

following cumulative distribution functions FA

(
·
)
and FB

(
·
)
, when employed

by firm A and B simultaneously, constitute a unique mixed-strategy Nash-

solution:

FA

(
pA

)
=





0

1− 2πB−pA+δA+δB
pA−δA

1

for pA < 1+2δA+δB
2

1+2δA+δB
2

≤ pA < 1 + δi
1 + δA ≤ pA

FB

(
pB

)
=





0

1− 2πA

pB

1− 2πA

1

for pB < 1+δB
2

1+δB
2

≤ pB ≤ 1
1 ≤ pB < 1 + δB
1 + δB ≤ pB

πA = 1+δB
4

denotes the expected profits for firm A; and πB = 1
2
denotes the

expected profits for firm B.

In analogy to the proof of Lemma b), suppose that firm A employs the cdf

FA(·) as its mixed strategy and firm B employs the cdf FB(·). Let pA and

pB be the lowest, and pA and pB the highest price in the support of FA and

FB, respectively. To be a solution, FA must satisfy the difference equation

(1− FA(pB − δB)) (pB − δB) + (1− FA(pB + δA)) pB = 2πB (24)

at almost every point pA ∈ [pA, pA], such that FA is continuous at pA = pB − δB;

similarly, FB must satisfy the difference equation

(1− FB(pA − δA)) (pA − δA) + (1− FB(pA + δB)) pA = 2πA (25)

at almost every point pB ∈ [pB, pB], such that FB is continuous at pB = pA − δA.

Bounding the supports. Given δA ≥ 1 and δB < 1, firm A has no

incentive to poach, but firm B is potentially interested in poaching. From
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this follows that pA = pB + δA ≥ pB − δB and pB < pA − δA. Together, this

implies for the support of FA and FB

pB − δB ≤ pA = pB + δA < pA and

pB < pA − δA ≤ pB ≤ pA + δB.

Defining FA. For pB ≤ pB < pA − δA it applies that FA(pB − δB) = 0.

Equation (24) simplifies to pB−δB+(1− FA(pB + δA)) pB = 2πB, from which

we get

FA(pB + δA) = 1− 2πB−pB+δB
pB

for pB ≤ pB < pA − δA,

or FA(pA) = 1− 2πB−pA+δA+δB
pA−δA

for pB + δA ≤ pA < pA.

This yields the cdf for firm A:

FA

(
pA

)
=





0, for pA < pA = pB + δA,

1− 2πB−pA+δA+δB
pA−δA

, pB + δA ≤ pA < pA,

1, pA ≤ pA.

(26)

There are two candidates for a discontinuity: pA = pB + δA, and pA. To

share the properties of a cdf, FA must be continuous from the right (which

is already satisfied) and non-decreasing in pA. This demands

0 ≤ 1− 2πB−pB+δB
pB

to rule out a negative jump at pB + δA, (27)

and 1− 2πB−pA+δA+δB
pA−δA

≤ 1 to rule out a negative jump at pA. (28)

Defining FB. For pB + δA ≤ pA ≤ pA it applies that FB(pA + δB) = 1.

Equation (25) simplifies to (1− FB(pA − δA)) (pA − δA) = 2πA from which

we get

FB(pA − δA) = 1− 2πA

pA−δA
for pB + δA ≤ pA ≤ pA,

or FB(pB) = 1− 2πA

pB
for pB ≤ pB ≤ pA − δA.

Moreover, note for pA − δA ≤ pB < 1 + δB, FB has to be flat because in this

range firm B sells only to repeat customers and so can unilaterally improve

by increasing its price to p̃B = 1 + δB. From this follows that pB = 1 + δB.
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Firm B’s cdf is given as follows.

FB

(
pB

)
=






0, for pB < pB,

1− 2πA

pB
, pB ≤ pB ≤ pA − δA,

1− 2πA

pA−δA
, pA − δA ≤ pB < 1 + δB,

1, 1 + δB ≤ pB.

(29)

There are two candidates for a discontinuity: pB, and pB = 1 + δB. To

share the properties of a cdf, FB must be continuous from the right (which

is already satisfied) and non-decreasing in pB. This demands

0 ≤ x = 1− 2πA

pB to rule out a negative jump at pB, (30)

and 1− 2πA

pA−δA
≤ 1 to rule out a negative jump at 1 + δB. (31)

No jump of FB at the point pB. By charging the price p̃A = pB + δA,

firm A only attracts repeat customers and earns π̃A =
pB
2

≤ πA. Together

with 2πA = (1 − x)pB, from (30), this yields pB ≤ (1 − x)pB which has the

unique solution x = 0. Hence, a jump at pB is ruled out and we get

pB = 2πA.

No prices outside the supports. Obviously, the firms must not have an

incentive to charge a price outside of their support. We therefore require

(1− FA(p̃B − δB)) (p̃B − δB) + (1− FA(p̃B + δA)) p̃B ≤ 2πB,

for all p̃B < pB and p̃B > pB, and

(1− FB(p̃A − δA)) (p̃A − δA) + (1− FB(p̃A + δB)) p̃A ≤ 2πA,

for all p̃A < pA and p̃A > pA.

First note that firm B will not charge a price p̃B > pB because it is

already satisfied that pB = 1 + δB. Using (29) we know that firm A will not

charge a price p̃A > pA if 2πA

pA−δA
(p̃A − δA) ≤ 2πA. Since this inequality has no

solution for p̃A > pA it must be the case that pA = 1 + δA.
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To preclude firm B from charging a price p̃B < pB we then demand, using

(26), that 2p̃B − δB ≤ 2πB. This condition is satisfied for all p̃B < pB if it

holds for p̃B = pB. Hence we require

2pB − δB ≤ 2πB. (32)

Similarly, to preclude firm A from charging a price p̃A < pA, we demand,

using (29), that p̃A − δA ≤ 2πA. This condition is satisfied for all p̃B < pB

if it holds for p̃B = pB. Hence we require pA ≤ 2πA + δA which is already

satisfied since pA = pB + δA and pB = 2πA. Moreover, FA must not exhibit

a negative jump at pA = pB + δA. Using (27 we therefore require that

FA(pB + δA) ≥ 0, which yields

2pB − δB ≥ 2πB. (33)

Together with equation (32), this implies pB = 2πB + δB
2

which rules out

both a jump at pB + δA and deviations to p̃B < pB.

Finally, we can evaluate equation (25) at pB = 1+ δB which yields πB = 1/2.

From this follows that pB = 1+δB
2

, pA = 1+2δA+δB
2

, and πA = 1+δB
4

. This

completes the proof of Lemma c). �

32



Equilibrium outcome after fifty-fifty allocation. Lemmas a) to c)

characterize the equilibrium outcome of any subgame that starts after the

fifty-fifty-allocation. The expected profits πA and πB are summarized in

Table 1. It is straightforward to show that πA is nondecreasing in δA and

πB nondecreasing δB. Figure 3 depicts the different regions for the different

classes of Nash-equilibria.

Figure 3: Regions for different classes of Nash-equilibria
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Table 1: Expected profits after fifty-fifty allocation, with different loyalty discounts

Region πA πB

1
2δB+(

√
5−1)δA
4

2δA+(
√
5−1)δB
4 for 0 ≤ δB ≤ min

{
(
√
5−1)(1−δA)

2 ,
2−(1+

√
5)δA

2

}

2

√
(1+δB)2+4δA−(1−δB)

4

1+δA+(1−δA)
(

δB−
√

(1+δB)2+4δA
)

4δA

(
√
5−1)(1−δA)

2 < δB < (2−δA)2−2
2−δA

3
1+δB+(1−δB)

(

δA−
√

(1+δA)2+4δB
)

4δB

√
(1+δA)2+4δB−(1−δA)

4

2−(1+
√
5)δA

2 < δB <
4−δA−

√
δ2
A
+8

2

4
δB−δA+

√
(δA−δB)2+8(δA+δB)

8

δA−δB+
√

(δA−δB)2+8(δA+δB)

8 max
{

(2−δA)2−2
2−δA

,
4−δA−

√
δ2
A
+8

2

}
≤ δB < 1 and δA < 1

5 1
2

1+δA

4 δA < 1 and δB ≥ 1

6 1+δB

4
1
2 δA ≥ 1 and δB < 1

7 1
2

1
2 δA ≥ 1 and δB ≥ 1
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