Delfgaauw, Josse; Dur, Robert

Working Paper
Signaling and Screening of Workers' motivation

CESifo Working Paper, No. 1099

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Delfgaauw, Josse; Dur, Robert (2003) : Signaling and Screening of Workers' motivation, CESifo Working Paper, No. 1099, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/76516

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
SIGNALING AND SCREENING OF WORKERS’ MOTIVATION

Abstract

This paper develops a model in which workers to a certain extent enjoy working. We examine the implications of workers’ intrinsic motivation for optimal monetary incentive schemes. We show that motivated workers work harder and, for a given level of effort, are willing to work for a lower wage. When people differ in their motivation to work at a particular firm, the profits of the firm depend on its capability to attract and select highly motivated workers. We show that when the firm has all the bargaining power and workers face application cost, the firm needs to commit to a minimum wage offer in order to attract workers. A higher minimum wage increases the probability to fill the vacancy, but decreases the expected average quality of job applicants, as it induces lower motivated workers to apply. The optimal level of the minimum wage depends on whether or not the firm can observe the motivation of the applicants. If applicants can credibly signal their motivation, a minimum wage not only helps to attract workers, but also to select the best-motivated worker among the job applicants.

JEL Classification: D82, J31, J42, M51, M52.

Keywords: signaling and screening models, intrinsic motivation, monetary incentive schemes, wage posting, minimum wage, worker selection.

Josse Delfgaauw
Tinbergen Institute
Roetersstraat 31
1081 WG Amsterdam
The Netherlands
delfgaauw@few.eur.nl

Robert Dur
Erasmus University Rotterdam
Department of Economics
H 7-21, P.O. Box 1738
3000 DR Rotterdam
The Netherlands
dur@few.eur.nl

We thank Bruno Frey, Otto Swank, Harry Verbon, and participants of the 2002 Annual Meeting of the European Public Choice Society for useful comments. We gratefully acknowledge financial support from NWO, KNAW and VSNU through a Vernieuwingsimpuls grant.
1 Introduction

Economic models of worker behaviour typically assume that people dislike working. Hence, in order to induce workers to exert effort, employers must provide external incentives. Employers have different means to increase workers’ effort. For instance, the introduction of pay-for-performance devices will induce employees to work harder. Equivalently, closer monitoring of workers’ effort, accompanied by sanctions (e.g. dismissal) in case of shirking, will also result in higher effort.

Empirical research suggests that the standard neoclassical view of worker behaviour is often too narrow. Agell and Lundborg (1999) report results of a survey among managers in Swedish manufacturing and conclude that ”much recent theorizing about effort and incentives is potentially misplaced [because] most managers appear to ascribe a more important motivational role to psychological and sociological factors than to economic sticks and carrots” (p. 25). Interviews with US managers by Bewley (1998) yield corresponding results. Rather than monetary incentives, managers emphasize that work should be interesting and stimulating, that workers should feel involved in decision-making, and that workers’ achievements are noticed and appreciated. One Swedish manager responded that ”people work hard as long as they have fun”.

Surveys among employees also indicate that monetary rewards are of much less importance for job satisfaction and workers’ effort than postulated in economic analysis. For instance, in a 1977 survey of the US labour force, half of the respondents agreed with the statement that ”what I do at work is more important to me than the money I earn”, and more than 90 percent stated that they put in more effort into their job than required (Quinn and Staines, 1979). Even though we should be cautious (or even suspicious) about stated preferences, the results of these surveys suggest that a large part of the labour force is motivated at work by more than just monetary rewards (Baron, 1988).

The observation that workers may provide effort for non-pecuniary reasons has two important implications. First, monetary incentive schemes designed to motivate a ’standard neoclassical worker’ may be suboptimal. Second, when people differ in their motivation, the performance of a firm may become dependent on its capability to select the ’best motivated’ candidate among job applicants.

This paper relaxes the standard assumption in the economic literature that people dislike working to study these issues. We develop a model in which workers to a certain extent like to exert effort at the workplace. Hence, people like their job, not only because they get paid, but also because they enjoy working. Whereas this type of motivation is virtually absent in mainstream economics, scholars outside economics often have a much broader view on people’s motivations. Psychologists, in particular, have argued that
people undertake many activities without expecting an extrinsic reward. ‘Intrinsic motivation’ is considered to be of major importance for human behaviour (see e.g. DeCharms, 1968, Deci, 1971, and Furnham, 1990).

People may be intrinsically motivated to work for different reasons. One might simply like to undertake certain activities. The activities which are intrinsically valued, and hence the evaluation of intrinsic qualities of different jobs, may vary across people. A motivated veterinary surgeon is not likely to be motivated to work as a butcher. Intrinsic motivation is not related to persons, but to combinations of certain people and certain jobs.

Intrinsic motivation may also be related to ‘self-esteem’, broadly defined as how people think about themselves. Thus, people may be intrinsically motivated to work (or to refrain from shirking), because it makes them think better about themselves. Self-esteem may be enhanced by working or refraining from shirking in general, but it may also be related to particular kind of jobs. For instance, workers in hospitals may feel that they contribute to a goal which is considered to be ‘good’. Dixit (2002) notes that organisations that serve an idealistic or ethical purpose may be particularly attractive for people who share these goals. Obviously, which goals are considered to be ‘good’ may differ among individuals.

Regardless of the precise reason for the enjoyment of or satisfaction from work, the baseline is that people can derive utility from working. The presence of intrinsically motivated workers has important implications for firms. Motivated people probably work harder, which increases output. And because people derive utility from the job, they may be willing to work for a lower wage. People will take job satisfaction into account when deciding on whether to accept or reject a wage offer. A higher wage at another job may not compensate for the loss of intrinsic qualities of the job.

We develop a model in which workers are heterogeneous in their intrinsic motivation to work at a particular firm. Working at the firm has some unique trait which is valued differently by different workers, giving the firm monopsony power. We study two issues. First, we examine the implications of workers’ intrinsic motivation for optimal monetary incentive schemes. We extend a standard incentive wage model and show that — in line with Dixit (2002) — motivated workers work harder and, for a given level of effort, are

1 The kind of intrinsic motivation that we focus on in this paper differs from an intrinsic motivation to behave reciprocally, as studied by Akerlof (1982) and Falk et al. (1999), or intrinsic feelings of altruism towards one’s colleagues or boss, which is studied by Rotemberg (1994). These concepts of intrinsic motivation are less related to a specific job than the one we focus on. Workers in our model have an action-oriented motivation: They find exerting effort enjoyable. Francois (2000) and Glazer (2002) study incentive pay when workers value the firm’s output.

2 The idea that workers accept a lower wage in return for a job with intrinsic qualities can be found in e.g. Hansmann (1980), Preston (1989), Frank (1996), and Rose-Ackerman (1996). Recent empirical evidence is provided by Leete (2001), Frey, Kucher, and Stutzer (2001), and Frey and Kucher (2002).
willing to work for a lower wage. The higher the firm’s bargaining power, the more it can extract the motivational rents from the worker. When the firm has sufficient bargaining power, a better motivated worker brings about higher output and, under a mild condition, lower wage cost. We also show that when the firm has a decreasing returns to effort production technology, monetary incentives are weaker, the more motivated its workers.3

Second, we examine how the firm can attract and select highly motivated workers to fill a vacancy. We assume that each worker has positive probability to observe the vacancy. The workers who observe the vacancy decide whether or not to apply, taking application cost into account. When each applicant’s motivation is observable to the firm, and the firm has all the bargaining power, none of the workers applies for the vacancy. Each worker anticipates that the firm extracts all rents of motivation, leaving the worker with the sunk application cost. This result is known as the Diamond paradox (Diamond, 1971; see also Mortensen and Pissarides, 1999). When the firm can not observe the motivation of the workers, none of the workers applies either. The intuition is simple. Consider the incentive to apply for the job for the least motivated worker among all potential applicants. The firm will never offer a wage that compensates this worker for his application cost. Hence, the least motivated worker optimally decides not to apply. Knowing this, a slightly higher motivated worker applies neither, and so on and so forth. As in Akerlof’s lemon market, the market collapses. In Akerlof’s model, the existence of bad types drives the good types out of the market (Akerlof, 1970). Interestingly, in our model, it is the withdrawal of the bad types from the market that drives out the good types.

We argue that, both with observable and with unobservable motivation, the firm can attract applicants by making a credible commitment to pay at least a certain wage. This minimum wage ensures that (some of the) workers obtain part of the rents of their motivation, which compensates for the application cost, thereby resolving the Diamond paradox. When motivation of applicants is observable to the firm, the firm hires the worker with the highest motivation among those who applied. The profit-maximising level of the minimum wage is determined by the trade-off between wage cost and the probability of filling the vacancy. When motivation is unobservable, there is an additional selection effect. A higher minimum wage decreases the expected average quality of job applicants, as it induces lower motivated workers to apply. Hence, the probability that a high motivated worker is selected decreases. However, if applicants can credibly signal their motivation to the firm, a commitment to a minimum wage gives them an incentive to

3 In our model, it is always in the firm’s interest to provide monetary incentives even when workers are highly motivated. This is not the case when external incentives crowd out intrinsic motivation. Frey (1997) discusses various reasons why external incentives may be harmful to a worker’s intrinsic motivation. See also Kreps (1997). Benabou and Tirole (2003) develop formal models to study crowding out effects of external rewards.
reveal their motivation, which eliminates the selection effect.

The paper is organised as follows. Section 2 discusses some related literature. Section 3 examines the implications of workers’ intrinsic motivation for optimal monetary incentive schemes. In Section 4 we study how the firm can attract and select highly motivated workers to fill a vacancy, assuming that the firm can only offer a fixed wage. Section 5 generalises the results of Section 4 to the case of optimal monetary incentive schemes, as studied in Section 3. Section 6 concludes.

2 Related Literature

Our analysis builds on signaling and screening models of the labour market. A seminal paper in this field is Spence (1973), and a recent survey of this large and still growing literature is Riley (2001). Most studies focus on screening of workers’ abilities. When the firm’s profit increases in the ability of a worker, but it cannot observe workers’ abilities, the firm wants to induce workers to signal their ability. Education may be a means to credibly signal ability to the firm. Education is costly to the worker, but the higher a worker’s ability, the lower his cost of education. The firm can create a compensation scheme which sorts out the high-ability workers by offering high wages for people with high education and low wages for people with low education. As in our model, firms must commit to pay high wages to induce workers to signal.

The setup of our model is closely related to the ability-models. The higher motivated a worker is for a job, the higher output, like in the ability-models. Hence, firms prefer to hire the highest motivated applicant. An important difference between the ability-models and our model is that motivation not only affects the worker’s productivity, but also his willingness to work. A higher motivated worker is willing to exert a given level of effort for a lower wage. This gives workers an incentive to conceal their motivation.

Janssen (2002) has recently argued that when the demand for high ability workers is limited, an increase in the supply of high ability workers may increase their wage. The intuition is that a higher supply reduces a worker’s chance to get the job. Hence, to induce the workers to incur the cost of signaling, the firm must increase its wage offer. Janssen’s model departs from the standard screening model by assuming that the firm has monopsony power. The firm faces several job applicants, among which it chooses. This is also an important feature of our model. The standard model considers the case of one worker and two firms, see Cho and Kreps (1987).

Most of our analysis focuses on the case where workers’ motivation is unobservable to the firm. Hence, our model is a principal-agent model where the agent (the worker) has private information. Benabou and Tirole (2003), by contrast, focus on the case where the principal has private information.
about the attractiveness of the job to workers. The choice of the wage scheme by the principal may then signal his private knowledge to the worker. As a result, extrinsic rewards may either crowd in or crowd out intrinsic motivation. Besley and Ghatak (2003) analyse the role of mission choice in a model where principals and agents are heterogeneous in mission preferences. An agent is better motivated to work for an organisation of which the mission is more in line with his preferences. A well-matched combination of mission and agent type reduces the need for external incentives. As in our model, the stronger the intrinsic motivation of the agent, the weaker the external incentives. In contrast to our paper, agents’ intrinsic motivations are perfectly observable to the principal.

Our work is also related to the job search literature, in particular to directed search models. A central theme in this part of the literature is the existence of coordination failures. Multiple firms open vacancies and workers decide to which firms they send an application. More than one worker may apply for a vacancy, while other vacancies remain unfilled (see e.g. Burdett, Shi, and Wright, 2001). If firms are heterogeneous, firms that face high cost of leaving a vacancy unfilled offer higher wages (Montgomery, 1991). As workers send an application with higher probability to firms that offer higher wages, firms increase their probability of filling the vacancy by posting a higher wage, as in our model. Another common element is that workers base their application decision on the probability of getting the job, which depends on the expected total number of applicants for this job. Shi (2002) develops a model with high-tech and low-tech firms and two types of workers. High-tech firms set high wages, and attract both high and low skilled workers. Low-tech firms pay lower wages, and attract only low skilled workers. In our model, we have multiple types of workers, but only one ‘high-tech’ firm, which therefore has monopsony power over the ‘high-skilled’ workers.

Closest to our paper is Handy and Katz (1998). They study a model in which potential employees differ in both ability and motivation. While the firm can test for an applicant’s ability, it can not distinguish motivated from unmotivated workers. Handy and Katz show that to promote self-selection among potential employees, the firm has an incentive to commit itself to pay a low wage. By committing to pay a low wage, the firm is certain that a job applicant is a motivated worker. Our analysis differs from theirs in various respects, of which two are crucial. First, we assume that the firm can not draw on an infinitely large pool of applicants consisting of all types of workers. While the firm would like to hire the worker in the economy who is most motivated for the job, it can not be certain that this worker has observed the vacancy and, hence, is in the pool of job applicants. This implies that a commitment to pay the lowest possible wage (the wage which is acceptable only to the most motivated worker in the economy) might not be optimal for the firm. The reason is that it precludes hiring a worker
who is somewhat less motivated when the highest motivated worker in the economy is not available. Hence, the firm would like to induce workers with different — albeit high — levels of motivation to apply for the job. Second, we show that Handy and Katz’s result depends on the assumption that application costs are zero. When application costs are positive, a maximum wage is of no use whereas a minimum wage helps to attract and select highly motivated workers.

3 Optimal Monetary Incentive Schemes for Motivated Workers

This section explores the implications of workers’ intrinsic motivation for the optimal design of monetary incentive schemes. The literature usually assumes a worker’s utility function of the form:

\[U[w(e), e] \]

where utility is concave in income \((U_1 > 0, U_{11} < 0)\), income depends on effort according to the wage scheme \(w(e)\), and the cost of exerting effort is convex \((U_2 < 0, U_{22} < 0)\). We introduce intrinsic motivation by adding a third argument to the utility function:

\[U[w(e), e, \gamma_i e] \]

where \(\gamma_i \in [0, \bar{\gamma}]\). \(\gamma_i\) measures the degree to which worker \(i\) is intrinsically motivated, which varies between different kinds of jobs. The positive utility derived from effort is assumed to be concave in \(e\) \((U_3 > 0, U_{33} < 0)\). Hence, apart from an indirect effect of effort on income through the wage scheme, utility first increases in effort and then, starting from some level depending on the value of \(\gamma_i\), starts decreasing, see Figure 1. Depending on the level of \(e\), total utility derived from exerting effort may be positive or negative. For convenience, we assume that all cross-derivatives are zero:

\[U_{ij} = 0 \]

for all \(i \neq j\).

The firm’s profit depends on the effort of the worker:

\[\pi = q(e) - w(e) \]

Profit is the difference between the value of the output generated by the effort of the worker, \(q(e)\), and the wage cost. The production function has decreasing returns to worker’s effort, \(q'(e) > 0\) and \(q''(e) < 0\).

4 See e.g. Rasmussen (1989) and Lazear (1995).
5 Without significant loss of generality, we introduce intrinsic motivation as a third argument in the utility function - and not as a modification of the second argument - for ease of exposition.
6 Constant, or even increasing, marginal positive utility from effort does not affect the results as long as optimal effort is finite (i.e., we abstract from ‘workaholics’). We also assume \(U_3 > -e\gamma U_{33}\), a condition that will be discussed below.
In this section, we assume that the firm observes the worker’s motivation \(\gamma \) and has all the bargaining power. The firm sets wage cost as low as possible, but the wage must meet the worker’s participation constraint:

\[
U[w(e), e, \gamma_i e] \geq U^\text{out} \equiv U(b, 0, 0)
\]

where \(U^\text{out} \) is the outside option of the worker. We assume that the worker’s alternative to employment at this firm is living on an unemployment benefit \(b \). More generally, the outside option of the worker would take into account expected job opportunities at other firms. This could imply that the outside option of a worker is dependent on a worker’s motivation \(\gamma_i \) in as far as other firms may offer jobs with the same kinds of intrinsic qualities. This would weaken our argument that motivated workers are willing to work for a lower wage. In a related paper, we analyse the effects of competition in the labour market for intrinsically motivated workers (Delfgaauw and Dur, 2002). There, we show that competition leads to higher wages, stronger incentives, and higher productivity. In this paper, we abstract from outside job opportunities. We thus focus on situations where the firm has (sufficient) monopsonistic power, as in Janssen (2002).

The worker’s optimal amount of effort is found by maximising the utility function (1) to \(e \):

\[
\max U \rightarrow w'(e)U_1(\cdot) + U_2(\cdot) + \gamma_i U_3(\cdot) = 0
\]

In the optimum, the worker’s (financial and motivational) marginal benefits of effort equal the marginal cost of effort.

The firm maximises profits. Since the firm has all the bargaining power, it sets the worker’s total compensation such that it leaves no rents to the
worker. Though the firm does not directly control the worker’s effort \(e \), it can design a monetary incentive scheme that induces the worker to exert the optimal level of effort.\(^7\)

\[
\max \pi \quad \text{s.t. } U(\cdot) \geq U^{\text{out}} \quad \rightarrow \quad q'(e) - w'(e) = 0 \tag{5}
\]

In the optimum, the marginal product equals marginal wage cost.

First-order conditions (4) and (5) imply that if the firm sets the wage scheme optimally, the worker’s marginal utility of effort, apart from the effect of extra effort on his income, is negative. Hence, people stating that they enjoy every aspect of their work (“my work is my hobby”) are simply exerting too little effort (or, in other words, their wage scheme is suboptimal). Note also that (4) and (5) imply that monetary incentives are stronger, the less motivated is the worker (i.e., \(w'(e) \) is larger, the lower \(\gamma_i \)). Important for this result is our assumption that \(q''(e) < 0 \). With constant returns to effort \([q''(e) = 0] \), the optimal reward per unit of effort \(w'(e) \) equals the marginal product of effort \(q'(e) \), which is constant when \(q''(e) = 0 \).

The firm sets total compensation to the worker such that it leaves no rents to the worker. In the optimum, the firm creates a compensation scheme which induces the worker to choose the level of effort defined by (4) and (5) at the lowest cost to the firm, implying that the worker ends up with a total utility of \(U = U^{\text{out}} \), defined by (3).

Intrinsic motivation has two important effects. First, the higher \(\gamma \), the higher the maximum wage the firm is willing to offer. Stated differently, given the level of the wage, it is more profitable to the firm to hire a worker who is better motivated. The maximum wage the firm is willing to offer is the wage which would leave the firm with zero profit:

\[
w(e) = q(e) \tag{6}
\]

Since marginal productivity \(q'(e) \) is positive, we have to show that \(e \) increases in \(\gamma \). Applying the implicit function theorem to (4) results in:

\[
\frac{de}{d\gamma} = \frac{U_3(\cdot) + e\gamma U_{33}(\cdot)}{-\partial^2 U(\cdot)/\partial e^2} \tag{7}
\]

where \(\partial^2 U(\cdot)/\partial e^2 < 0 \) is the second-order condition to the worker’s optimisation problem (4). Effort increases in a worker’s motivation if \(U_3 > -e\gamma U_{33} \).

We assume that this condition holds: it is unlikely that a better motivated worker works less hard because he enjoys working already so much. More effort implies more output. Hence, the maximum wage the firm is willing to offer increases in the worker’s motivation.

\(^7\)When neither effort nor production is verifiable, the firm cannot induce workers to provide optimal effort. We deal with this case at the end of this section.
Second, given the level of effort, intrinsic motivation affects the wage the firm needs to offer to meet the worker’s participation constraint. We show that for constant $e = \hat{e}$, the minimum wage for which the worker is willing to work decreases in γ. Applying the implicit function theorem to (3) results in:

$$\frac{dw(\hat{e})}{d\gamma} = -\frac{\hat{e}U_3(\cdot)}{U_1(\cdot)} < 0$$

(8)

The expression in (8) is always negative: Given the level of effort, a worker who is better motivated for the job needs to be compensated less.

In general, the effect of motivation on total wage compensation is ambiguous. A higher motivated worker needs to be compensated less for each unit of effort. However, he exerts more effort than lower motivated workers, implying that the total wage may be increasing in motivation. In appendix 1 we prove that $\frac{dw(\cdot)}{d\gamma} < 0$ if the following condition holds:

$$eU_3(\cdot) > -[U_2(\cdot) + \gamma U_3(\cdot)] \frac{de}{d\gamma}$$

(9)

The right-hand side of this inequality denotes the net increase in disutility due to the higher level of effort. The left-hand side is the increase in motivational utility derived from all effort the worker exerts, because of the higher motivation. If, in the new optimum, the increased pleasure of working is higher than the burden of the additional effort, workers with high motivation need less financial compensation than lower motivated workers.

Higher motivation thus has two effects: the firm is willing to offer a higher wage, while, given the level of effort, the worker is willing to accept a lower wage. Motivation therefore increases the joint surplus of the worker and the firm. When the firm has all the bargaining power, it can extract all rents from the motivation of the worker by adjusting the compensation scheme. Furthermore, if condition (9) is satisfied, higher motivated workers will be offered lower wages, even though they are more productive.\(^8\) This may give workers an incentive to conceal their motivation in job interviews. Section 4 addresses this problem.

Both effects of intrinsic motivation are also present in the case of a fixed wage. When the firm is unable or unwilling to use incentive wages,\(^9\) the optimal level of effort of the worker is given by (4) with $w'(e)$ equal to zero.

\(^8\)Allowing for a more equal distribution of bargaining power between the firm and the workers need not affect this result. As long as the firm has sufficient bargaining power, the wage of the worker decreases in motivation, provided that condition (9) holds. See Appendix 2.

\(^9\)One reason why firms may refrain from providing monetary incentives to motivated workers is high monitoring cost, see Weiss (1990, pp. 73-76). In case of multiple tasks, monetary incentives may crowd out facets of tasks which are hard to observe by facets of tasks which are more easily observed (Holmström & Milgrom, 1991). Alternatively, monetary incentives may crowd out intrinsic motivation, see the references in footnote 3.
The effect of intrinsic motivation on effort is still given by (7). Effort and thus output increase in the worker’s motivation. This is also clear from Figure 1: a worker’s optimal effort with a fixed wage is given by the top of the curve, which moves to the right, the higher is γ. Hence, the maximum fixed wage the firm is willing to offer increases in the worker’s motivation. Moreover, the minimum fixed wage a worker is willing to accept decreases in motivation. By using first-order condition (4), we can rewrite condition (9) to:

$$eU_3(\cdot) > w'(e)U_1(\cdot) \frac{de}{d\gamma} \tag{10}$$

In case of a fixed wage, $w'(e) = 0$, condition (10) always holds. Therefore, the higher motivation, the higher the direct utility from effort, and the lower the wage needs to be in order to meet the participation constraint of the worker.

4 Attracting and Selecting Motivated Workers

This section examines how a firm can attract and select highly motivated workers to fill a vacancy. We consider three cases: One where the firm can observe the motivation of the applicants, one where it can not, and one where workers decide whether or not to signal their motivation. To focus on the distributional conflict between the firm and the worker, we abstract from monetary incentives and assume that the firm offers a base salary only. Allowing for monetary incentives does not affect the results qualitatively, which we show in Section 5, but it distracts attention from our main results.

4.1 Setup of the Model

A firm has one vacancy, and posts a ‘help-wanted’ ad. As in the previous section, the firm has all the bargaining power. However, we assume that the firm can credibly commit to pay at least a certain wage by posting a base salary w_{min} in the ad. Workers differ in their intrinsic motivation $\gamma \in [0, \bar{\gamma}]$ to work at this firm, while their outside options are identical, U^{out}. There is a discrete number of worker types in the economy, with n_{γ_i} workers of type γ_i. Denote by N_{γ_i} the total number of workers with motivation equal to or higher than γ_i:

$$N_{\gamma_i} = \sum_{\gamma \geq \gamma_i} n_{\gamma} \tag{11}$$

Each worker has probability μ to observe the ad, $0 < \mu < 1$. One reason for $\mu < 1$ could be that not all workers read the newspaper every day. As a result, the firm is uncertain about the composition of the group of potential
applicants. If a worker decides to apply, she incurs application cost C_{10}.

Following the results from the previous section, worker i’s indirect utility function can be written as $U(\gamma_i, w)$, with properties $U_{\gamma}(\cdot) > 0$ and $U_{w}(\cdot) > 0$, and profits of the firm as $\pi(\gamma_i, w)$, with properties $\pi_{\gamma}(\cdot) > 0$ and $\pi_{w}(\cdot) < 0$. Since condition (9) is always satisfied in case of a fixed wage, the minimum wage offer a worker is willing to accept decreases in motivation. That is, if $\gamma > \gamma'$, then $U(\gamma, w) = U(\gamma', w')$ implies that $w < w'$.

4.2 Observable Motivation

Suppose the firm can observe the level of intrinsic motivation of each applicant. The sequence of events is as follows:

1. The firm posts a ‘help-wanted’ ad, in which it can credibly commit to a minimum wage.

2. The workers who observe the ad decide whether or not to apply. If a worker applies, she incurs cost C_{11}.

3. The firm observes the types of all applicants, selects one applicant, and makes her a wage offer w.

4. The applicant accepts or rejects. Rejection results in zero profits.

We first consider the case where the firm has not committed to a minimum wage at stage 1. We solve the model by backward induction. The optimal strategy of each worker at stage 4 is simple: Accept if and only if $U(\gamma_i, w) \geq U_{\text{out}}$. Application costs are sunk at this stage. As profits increase in the worker’s motivation, the firm optimally selects the highest motivated worker among the applicants. The optimal wage offer is such that $U(\gamma, w) = U_{\text{out}}$. This strategy of the firm at stage 3 makes that no worker applies at stage 2. Each worker anticipates that the firm extracts all rents of her motivation, leaving the worker with the sunk application cost. This result is known as the Diamond paradox (Diamond, 1971; see also Mortensen and Pissarides, 1999).\footnote{Note that if $C = 0$, all workers who observe the ad apply. The firm selects the highest motivated worker and offers her the wage that exactly meets her participation constraint, as described in Section 3.}

To give workers an incentive to apply, the firm must make a credible commitment not to extract all rents from their motivation. It can do so by putting a minimum wage w_{min} in the ad at stage 1. If the minimum wage is sufficiently high, some worker types have positive expected benefits from applying. Since $\pi_{\gamma}(\cdot) > 0$, the firm still selects the highest motivated worker

\footnote{Instead of $\mu < 1$, we could also assume that C is a random variable which differs among workers. Important for the results is that the firm faces some uncertainty about the composition of the group of applicants.}
from the pool of applicants at stage 3. If the lowest wage that this worker would accept is below the minimum wage, the minimum wage is binding. Otherwise, the firm offers the wage that makes the worker indifferent between accepting and rejecting. However, as above, these workers optimally do not apply. Hence, the firm always offers \(w_{\text{min}} \).

At stage 2, worker \(i \) applies if the expected benefits from applying are positive. Obviously, if a certain worker type has positive expected benefits from applying, all workers with higher motivation also have positive expected benefits from applying. A worker of type \(\gamma_i \) applies if and only if:

\[
f(\gamma_i)[U(\gamma_i, w_{\text{min}}) - U^{\text{out}}] - C \geq 0
\]

where \(f(\gamma_i) \) is the expected probability for a worker of type \(\gamma_i \) to be selected by the firm and \(U(\gamma_i, w_{\text{min}}) \) is the utility that the worker obtains if she accepts offer \(w_{\text{min}} \). \(f(\gamma_i) \) is determined by the distribution of worker types:

\[
f(\gamma_i) = (1 - \mu)^{N_{\gamma_i} - n_{\gamma_i}} \sum_{x=0}^{n_{\gamma_i} - 1} \left[\frac{1}{1+x} \left(\frac{n_{\gamma_i} - 1}{x} \right) \mu^x (1 - \mu)^{n_{\gamma_i}-1-x} \right]
\]

where \(N_{\gamma_i} \) is given by (11). The first term is the probability that all workers with \(\gamma > \gamma_i \) do not observe the ad. If any of these workers applies, then worker \(i \) will not be selected by the firm. The second term gives the probability that worker \(i \) is selected from all applicants of the same type. This probability is the function \(\frac{1}{1+x} \), where \(x \) is the number of applicants with motivation \(\gamma_i \) besides worker \(i \), which follows a binomial distribution.

The firm sets the minimum wage such that expression (12) holds with equality for the least motivated worker type that it wants to apply. Denote this worker type by \(\gamma_{\text{min}} \). As argued above, if \(w_{\text{min}} < w_{\text{min}}' \), then \(\gamma_{\text{min}} > \gamma_{\text{min}}' \). Expected profits are given by:

\[
E[\pi(\gamma, w_{\text{min}})] = \sum_{\gamma \geq \gamma_{\text{min}}} F(\gamma)\pi(\gamma, w_{\text{min}})
\]

where

\[
F(\gamma) = (1 - \mu)^{N_{\gamma} - n_{\gamma}}[1 - (1 - \mu)^{n_{\gamma}}]
\]

is the probability that \(\gamma \) is the highest level of motivation among the applicants, and \(\pi(\gamma, w_{\text{min}}) \) is the accompanying level of profit. Suppose the firm increases the minimum wage from \(w_{\text{min}} \) to \(w_{\text{min}}' \) such that \(\gamma_{\text{min}} \) decreases by one worker type to \(\gamma_{\text{min}}' \). This leads to the following change in expected profits:

\[
\Delta E[\pi] = E[\pi(\gamma, w_{\text{min}}')] - E[\pi(\gamma, w_{\text{min}})]
= \sum_{\gamma \geq \gamma_{\text{min}}'} F(\gamma)\pi(\gamma, w_{\text{min}}') - \sum_{\gamma \geq \gamma_{\text{min}}} F(\gamma)\pi(\gamma, w_{\text{min}})
\]
which can be written as:

$$\Delta E[\pi] = F(\gamma'_{\min})\pi(\gamma'_{\min}, w'_{\min}) + \sum_{\gamma \geq \gamma_{\min}} F(\gamma)[\pi(\gamma, w'_{\min}) - \pi(\gamma, w_{\min})] \ (16)$$

Increasing the minimum wage leads to a higher probability of filling the vacancy, as an additional worker type, γ'_{\min}, has an incentive to apply after observing the ad. This is reflected by the first term. However, if some worker with motivation higher than γ'_{\min} observes the vacancy, the increase in the minimum wage only leads to additional cost, as this worker would have applied at the lower minimum wage as well. This is described by the second term.

The firm sets the minimum wage such that $0 \leq \gamma_{\min} \leq \bar{\gamma}$. Starting from the minimum wage at which only workers of type $\bar{\gamma}$ apply, a local optimal minimum wage can be found by increasing the minimum wage until the sign of $\Delta E[\pi]$ turns negative. In general, this local optimum need not be a global optimum, as a very large n_{γ} or very small $[\pi(\gamma, w'_{\min}) - \pi(\gamma, w_{\min})]$ can change the sign of $\Delta E[\pi]$ from negative into positive. However, if $n_{\gamma} = n$ for all γ and $[\pi(\gamma, w'_{\min}) - \pi(\gamma, w_{\min})]$ is constant in w_{\min}, both the (positive) first term and the (negative) second term of (16) decrease in w_{\min}, implying that $E[\pi(\gamma, w_{\min})]$ is concave in w_{\min}. Then, there exists only one local and global optimum. Corner solutions cannot be excluded. It is possible that the optimal γ_{\min} is either 0 or $\bar{\gamma}$.

4.3 Unobservable Motivation

When the firm can not observe the types of the applicants, it randomly selects one applicant and makes her a wage offer. As in the previous subsection, we assume that when the wage offer is rejected, the firm ends up with zero profits.\(^{12}\)

Consider first the case where the firm has not committed to a minimum wage. The beliefs of the firm about the distribution of applicants’ types are crucial in determining the optimal wage offer. Suppose that the firm believes that there exists some γ_{l} such that only workers with $\gamma_{i} \geq \gamma_{l}$ apply after observing the vacancy. Let w_{l} be the wage such that $U(\gamma_{l}, w_{l}) = U^{out}$. Given the firm’s beliefs, its optimal wage offer w is such that $w_{l} \leq w \leq w_{l}$. Hence, workers of type γ_{l} optimally decide not to apply as the wage offer does not compensate them for the application cost. This, in turn, reduces the firm’s optimal wage, which removes the incentives of workers with slightly

\(^{12}\)A more general set-up of the game would allow the firm to make a wage offer to another applicant (or a better wage offer to the same worker) after a rejection. While this would reduce the probability to end up with an unfilled vacancy, it may increase the rents that have to be left to the hired worker. Workers may wait for a next (higher) wage offer at the risk that an other applicant accepts one of the firm’s next offers. Allowing for multiple wage offers will also affect the decision to apply. We leave this for future research.
higher motivation to apply. As this holds for any γ_l (including $\bar{\gamma}$), the market collapses, as in Akerlof’s lemon market. In Akerlof’s model, the existence of bad types drives the good types out of the market (Akerlof, 1970). Interestingly, in our model, it is the withdrawal of the bad types from the market that drives out the good types.

Again, the firm needs to commit to a minimum wage in order to attract applicants. Suppose the firm puts minimum wage w_{min} in its ad. Clearly, this will also be the firm’s actual offer. It follows that a worker of type γ_i applies if and only if:

$$g(\gamma_i)[U(\gamma_i, w_{\text{min}}) - U_{\text{out}}] - C \geq 0$$

(17)

where $g(\gamma_i)$ is the expected probability for a worker with motivation γ_i to be randomly selected by the firm after applying. This probability is $\frac{1}{1 + v}$, where v is the number of applicants besides worker i. v is a random variable which follows a binomial distribution. It is easily verified that:

$$g(\gamma_i) = \sum_{v=0}^{N\gamma_i-1} \left[\frac{1}{1 + v} \left(\binom{N\gamma_i}{v} \right) \mu^v (1 - \mu)^{N\gamma_i - 1 - v} \right]$$

(18)

The firm sets the minimum wage such that expression (17) holds with equality for the least motivated worker type, γ_{min}, that it wants to apply. Expected profits of the firm are given by:

$$E[\pi(\gamma, w_{\text{min}})] = \sum_{\gamma \geq \gamma_{\text{min}}} G(\gamma) \pi(\gamma, w_{\text{min}})$$

(19)

where $G(\gamma)$ is the probability that the firm selects an applicant with motivation γ. This probability is $\frac{S}{S + Z}$, where S is the number of applicants of type γ and Z the number of applicants with a different type of motivation. Both S and Z follow a binomial distribution, and their joint distribution is given by:

$$P(S = s, Z = z) = P(S = s)P(Z = z)$$

$$= \binom{n_\gamma}{s} \mu^s (1 - \mu)^{n_\gamma - s} \binom{N\gamma_{\text{min}} - n_\gamma}{z} \mu^z (1 - \mu)^{N\gamma_{\text{min}} - n_\gamma - z}$$

where the first equality follows from the observation that the two random variables S and Z are independently distributed. Hence, $G(\gamma)$ is described

13Offering a higher wage could only be optimal if the firm believed that the least motivated applicants would reject offer w_{min}. However, these workers anticipate that they will not be compensated for the application cost and, hence, optimally decide not to apply. As in the absence of a commitment, the firm’s beliefs are unsustainable.
by:

\[G(\gamma) = \sum_{s=1}^{n_{\gamma}} \sum_{z=0}^{N_{\gamma_{\min}} - n_{\gamma}} \frac{s}{s + z} \binom{n_{\gamma}}{s} \mu^{s}(1-\mu)^{n_{\gamma}-s} \left(\frac{N_{\gamma_{\min}} - n_{\gamma}}{z} \right) \mu^{z}(1-\mu)^{N_{\gamma_{\min}} - n_{\gamma}-z} \]

The summation over \(s \) starts at \(s = 1 \), because \(G(\gamma) = 0 \) if none of the workers with motivation \(\gamma \) observes the ad. Note that \(P_{\gamma_{\min}} \geq \gamma \) \(G(\gamma) < 1 \), as there may be no applicant at all, which happens with probability \((1-\mu)^{N_{\gamma_{\min}}} \).

Suppose the firm increases the minimum wage from \(w_{\text{min}} \) to \(w'_{\text{min}} \), such that \(\gamma_{\min} \) decreases by one worker type to \(\gamma'_{\min} \). This reduces the probability to select an applicant with motivation \(\gamma \) to:

\[G'(\gamma) = \sum_{s=1}^{n_{\gamma}} \sum_{z=0}^{N_{\gamma'_{\min}} - n_{\gamma}} \frac{s}{s + z} \binom{n_{\gamma}}{s} \mu^{s}(1-\mu)^{n_{\gamma}-s} \left(\frac{N_{\gamma'_{\min}} - n_{\gamma}}{z} \right) \mu^{z}(1-\mu)^{N_{\gamma'_{\min}} - n_{\gamma}-z} \]

Since \(N_{\gamma'_{\min}} > N_{\gamma_{\min}} \) by definition, \(G'(\gamma) < G(\gamma) \) for all \(\gamma \in [\gamma_{\min}, \gamma'] \). Intuitively, the probability that a worker of a certain type is selected decreases if the number of worker types that apply increases. As the increase of the minimum wage gives relatively low motivated workers an incentive to apply, the expected quality of the selected applicant decreases. This selection effect imposes an additional cost of increasing the minimum wage compared to the case where motivation is observable.\(^{14}\) As before, the increase in the minimum wage decreases the probability that nobody applies, as \(\sum_{\gamma \geq \gamma'_{\min}} G'(\gamma) > \sum_{\gamma \geq \gamma_{\min}} G(\gamma) \).

The increase in the minimum wage from \(w_{\text{min}} \) to \(w'_{\text{min}} \) leads to the following change in expected profits:

\[\Delta E[\pi] = E[\pi(\gamma, w'_{\text{min}})] - E[\pi(\gamma, w_{\text{min}})] \]

\[= \sum_{\gamma \geq \gamma'_{\min}} G'(\gamma) \pi(\gamma, w'_{\text{min}}) - \sum_{\gamma \geq \gamma_{\min}} G(\gamma) \pi(\gamma, w_{\text{min}}) \]

which can be rewritten as:

\[\Delta E[\pi] = G'(\gamma'_{\min}) \pi(\gamma'_{\min}, w'_{\text{min}}) + \sum_{\gamma \geq \gamma_{\min}} \left[G'(\gamma) \pi(\gamma, w'_{\text{min}}) - G(\gamma) \pi(\gamma, w_{\text{min}}) \right] \]

The first term gives the probability of selecting a worker with motivation \(\gamma'_{\min} \) and the accompanying profits. The second term indicates that by

\(^{14}\)If \(C = 0 \), the firm need not to commit to a minimum wage to attract applicants. However, the selection effect makes that the firm might want to commit to a maximum wage, in order to reduce the number of relatively low motivated workers in the pool of applicants, as in Handy and Katz (1998). Note also that a maximum wage is of no use when \(C > 0 \).
increasing \(w_{\text{min}} \) to \(w'_{\text{min}} \), each worker type \(\gamma \geq \gamma_{\text{min}} \) has a lower probability to be selected, and, given a selected worker type, the profit of the firm is lower as a result of the wage increase. This expression is negative, since
\[G'(\gamma) < G(\gamma) \]
for all \(\gamma \in [\gamma_{\text{min}}, \bar{\gamma}] \) and \(\pi(\gamma, w'_{\text{min}}) < \pi(\gamma, w_{\text{min}}) \).

The firm sets the minimum wage such that \(0 \leq \gamma_{\text{min}} \leq \bar{\gamma} \). A local maximum of the expected profit function can be found by increasing the minimum wage until \(\Delta E[\pi] \) turns negative. As in the previous subsection, this local optimal minimum wage need not be a global optimum. However, if \(n_\gamma = n \) for all \(\gamma \) and \([\pi(\gamma, w'_{\text{min}}) - \pi(\gamma, w_{\text{min}})] \) is constant in \(w_{\text{min}} \), both the first and the second term of (22) decrease in \(w_{\text{min}} \), implying that \(E[\pi(\gamma, w_{\text{min}})] \) is concave in \(w_{\text{min}} \). Then, there exists only one local and global maximum. Corner solutions are possible, it might happen that the optimal \(\gamma_{\text{min}} \) is either 0 or \(\bar{\gamma} \).

4.4 Motivation Can Be Signaled

Suppose that the firm can not observe the motivation of the applicants, but applicants can credibly signal their type to the firm.\(^{15}\) Obviously, when the firm does not commit to a minimum wage, none of the workers apply, as in the previous subsections. Each applicant anticipates that when she signals her type, the firm fully extracts all the rents of motivation, leaving the applicant with the sunk application cost. Because no applicant reveals her type to the firm, motivation remains unobservable. As we have seen in the previous subsection, this results in a complete breakdown of the market.

When the firm posts a minimum wage \(w_{\text{min}} \), each applicant signals her motivation to the firm. The intuition is that signaling increases a worker’s probability to get the job. Consider an applicant with motivation \(\tilde{\gamma} \) and suppose that all other applicants do not signal their motivation. If she signals, she is certain to get the job. If she does not signal, she only gets the job if she is randomly selected. Hence, she signals her type as signaling increases her probability to be selected by the firm. This also holds when other workers signal. Next, consider workers of the highest but one type of motivation, \(\gamma_h \). Signaling is of no avail when a worker of type \(\tilde{\gamma} \) is in the pool of applicants. However, if none of the workers of type \(\tilde{\gamma} \) apply, signaling is beneficial, as the firm prefers to select a worker of type \(\gamma_h \) if there are no workers of type \(\tilde{\gamma} \) available. Since workers have no information about the other applicants and signaling is costless, it is always in the interest of workers of type \(\gamma_h \) to signal their type. Analogously, all applicants have an incentive to signal their type so as to increase the probability to get the job.

It follows that a worker only gets the job if she is the highest motivated applicant, as in Subsection 4.1 where the firm could observe the motivation of the applicants. Hence, workers have the same incentives to apply as in

\(^{15}\)If signals are not credible, motivation remains unobservable, as all applicants would signal that they have motivation \(\tilde{\gamma} \).
Subsection 4.1, and the firm optimally sets the minimum wage at the same level.

5 Signaling and Screening with Optimal Monetary Incentive Schemes

This section shows that the results derived in Section 4 under the assumption of a fixed wage generalise to the case where the firm provides monetary incentives to the worker, as in Section 3.

Suppose the firm wants that only workers with motivation $\bar{\gamma}$ apply. Analogous to the previous section, the firm needs to commit to a minimum wage scheme in order to attract applicants, regardless of whether or not the firm can observe the motivation of the applicants. The firm has to commit to a minimum wage scheme that satisfies the following constraint:

$$p(\bar{\gamma}) \left\{ U [w(e), e, \bar{\gamma}e] - U^{out} \right\} - C \geq 0$$

where $p(\bar{\gamma})$ is the probability of a worker of type $\bar{\gamma}$ to get the job, given by (13) in case of observable motivation and by (18) in case of unobservable motivation, respectively. Optimal effort is again described by first-order conditions (4) and (5), with $\gamma_i = \bar{\gamma}$. Clearly, there exists many wage schemes that satisfy these conditions. One of these is depicted in Figure 2.

Figure 2 depicts the marginal product of effort $[q'(e)]$ and the marginal disutility from effort for three different types of workers. The latter curves
are obtained by rewriting the first-order condition for optimal effort of the worker (4) to:

\[w'_i(e) = -\frac{U_2(\cdot) + \gamma_i U_3(\cdot)}{U_1(\cdot)} \quad (23) \]

where \(i \in \{m, h, \bar{\gamma}\}, \gamma_m < \gamma_h < \bar{\gamma} \). Equation (23) describes for each level of effort the minimum reward the firm must provide to induce a worker of type \(\gamma_i \) to provide an additional unit of effort. Notice that when the firm creates an incentive scheme which follows (23) exactly, the worker is just compensated for his (net) disutility from effort. In order to give workers an incentive to apply, the firm has to make sure that a worker with motivation \(\gamma_{\min} = \bar{\gamma} \) ends up (in expected terms) with utility \(U^{out} \). Hence, the firm must offer a base salary \(B_{\gamma_{\min}} \) such that:

\[U(B_{\gamma_{\min}}, 0, 0) = U^{out} + \frac{C}{p(\gamma_{\min})} \quad (24) \]

An optimal minimum wage scheme which induces only workers with motivation \(\bar{\gamma} \) to apply thus consists of a base salary \(B_{\gamma_{\min}} \) given by (24) with \(\gamma_{\min} = \bar{\gamma} \), and a monetary incentive scheme which follows (23) up to the point where \(w'_{\bar{\gamma}}(e) = q(\cdot) \). Denote the accompanying level of effort by \(e_{\bar{\gamma}} \). The firm’s offer is:

\[B_{\bar{\gamma}} + \int_{0}^{e_{\bar{\gamma}}} w'_{\bar{\gamma}}(e)de \]

This minimum wage offer is just sufficient to induce workers with motivation \(\bar{\gamma} \) to apply. All other worker types have negative expected benefits from applying, and, hence, decide not to apply.

Now suppose the firm prefers to give the highest two types an incentive to apply, types \(\bar{\gamma} \) and \(\gamma_h \). As in the previous section, this implies that the firm has to leave a rent to workers of type \(\bar{\gamma} \). The firm optimally trades off the rents it has to leave in case the selected applicant appears to be a worker of type \(\bar{\gamma} \) and the effort exerted by a worker of type \(\gamma_h \). The profit maximising wage scheme which is acceptable to both types of workers is described by:

\[
\max_{e_h} P(\gamma_h) \left[q(e_h) - B_{\gamma_h} - w_h(e_h) \right] + P(\bar{\gamma}) \left[q(e_{\bar{\gamma}}) - B_{\gamma_{\bar{\gamma}}} - w_{\bar{\gamma}}(e_{\bar{\gamma}}) - \int_{e_h}^{e_{\bar{\gamma}}} w'_{\bar{\gamma}}(e)de \right] \quad (25)
\]

where \(e_h \) is the level of effort a worker of type \(\gamma_h \) is induced to exert by this profit maximising scheme, and \(P(\gamma_h) \) and \(P(\bar{\gamma}) \) are the probabilities that a worker of type \(\gamma_h \) and a worker of type \(\bar{\gamma} \) are hired, given by (15) when motivation is observable and by (20) when motivation is unobservable, respectively. Base salary \(B_{\gamma_h} \) is implicitly given by (24) with \(\gamma_{\min} = \gamma_h \), and \(w_{\gamma_h}(\cdot) \) and \(w'_{\gamma}(\cdot) \) are described by (23) with \(\gamma_i = \gamma_{\min}, \bar{\gamma}, \gamma_h \), respectively. The first
term in brackets is the firm’s profit in case a worker of type γ_h is hired, which happens with probability $P(\gamma_h)$. In expected terms, the firm does not leave a rent to these workers. The first derivative to e_h of this term is equal to zero when e_h equals the optimal effort level of workers of type γ_h under full information, described in Section 3. The second term in brackets is the firm’s profit in case a worker of type $\bar{\gamma}$ is hired, which happens with probability $P(\bar{\gamma})$. To meet this worker’s individual rationality constraint, the firm must provide monetary incentives as if the worker is of type γ_h up to effort level e_h. Hence, the firm leaves a rent to workers of type $\bar{\gamma}$. Starting from effort level e_h, the firm just compensates workers of type $\bar{\gamma}$ for each additional unit of effort. The first derivative to e_h of the second term is always negative since $w'_h(e) > w'_{\bar{\gamma}}(e)$ for any e. Clearly, it is in the firm’s interest to set e_h lower than the optimal effort level under full information, which we derived in Section 3. The profit maximising wage scheme induces a worker of type γ_h to exert suboptimally low effort so as to reduce the rents which the firm has to leave in case the offer is made to a worker of type $\bar{\gamma}$. Workers of type $\bar{\gamma}$ are induced to exert an efficient level of effort, as in Section 3. The firm must, however, leave a rent to these workers. The optimal wage scheme which gives types $\bar{\gamma}$ and γ_h an incentive to apply is described by:

$$
B_{\gamma_h} + \int_0^{e_h} w'_h(e)de + \int_{e_h}^{e_{\bar{\gamma}}} w'_{\bar{\gamma}}(e)de
$$

(26)

Along the same lines, we can derive the optimal wage scheme when the firm wants to induce more worker types to apply. The lower γ_{\min}, the higher the base salary and the higher the incentive wage up to $e_{\gamma_{\min}}$ must be in order to give workers with motivation $\gamma \geq \gamma_{\min}$ an incentive to apply. The wage scheme is such that each worker type — except $\bar{\gamma}$ — exerts a suboptimal level of effort, so as to decrease the rents the firm has to leave to higher types. As in Section 4, the optimal wage scheme entails a trade-off between the probability to fill the vacancy, the rents left to workers, and, if motivation is unobservable, the expected quality of the selected worker. It is straightforward to show that the firm needs to commit to a sufficiently high base salary so as to attract applicants and to give them an incentive to signal their motivation.

6 Conclusion

In this paper we have studied a model in which workers differ in their intrinsic motivation to exert effort at the workplace. We have shown that higher motivated workers are more valuable to the firm, both in the presence and in

\[\text{For a similar result in a more general context see chapter 7 in Fudenberg and Tirole (1992).}\]
the absence of monetary incentives. In addition, higher motivated workers might be willing to work for a lower wage. When the firm has sufficient bargaining power, workers have no incentive to apply for a job at the firm. We have shown that a credible commitment to a minimum wage may solve this problem. Furthermore, if workers can choose between concealing and signaling their motivation, commitment to a minimum wage induces workers to signal. This leads to an optimal selection of workers. The optimal level of the minimum wage depends on the firm’s capability to observe the motivation of the applicants. When the firm observe motivation, the optimal minimum wage is determined by the trade-off between wage cost and the probability of filling the vacancy. If motivation is unobservable to the firm, a selection effect is added, as the presence of low motivated applicants decreases the probability that a higher motivated applicant is selected.

There are several ways in which the analysis could be extended. An interesting extension is to allow for two-sided uncertainty. Benabou and Tirole (2003) have recently studied optimal incentive schemes when the firm is better informed about the attractiveness of the job than the worker. While this is an appropriate assumption in a number of cases, we think there are many other cases in which the firm is much more uncertain about the motivation of an applicant than the applicant is about the intrinsic qualities of the job. Jobs are usually clearly defined, which gives an applicant the possibility to filter out a vacancy that fits her interest. For the employer, the applicant is usually a complete stranger.

Throughout we have assumed that the applicants’ outside opportunities are independent of the intrinsic motivation for the job. More generally, the outside option of the worker would take into account expected job opportunities, and their intrinsic qualities, at other firms. This could imply that the outside option of a worker is dependent on a worker’s motivation in as far as other firms may offer jobs with the same types of intrinsic qualities, which would weaken our argument that motivated workers are willing to work for a lower wage, see Delfgaauw and Dur (2002). However, when workers are sufficiently uncertain about future job opportunities at other firms, they may be reluctant to reject a wage offer which partially extracts their motivational rents.

Relatedly, some people may be more motivated than others, independent of the type of job. But referring to the example of the veterinary surgeon who will probably not be very motivated to work as a butcher, it is unlikely that people always have the same level of motivation, regardless of the job they have. And as long as not all people have the same relative differences in motivation between different jobs, there exists an efficient allocation of workers over jobs, along the same lines as the comparative advantage principle of Ricardo.
A Appendix 1

In this appendix we derive the condition under which the total wage compensation decreases in motivation. For this purpose, it is convenient to write the wage scheme as:

\[w(e) = q(e) + B \quad (A1) \]

Hence, in line with first-order condition (5), workers get their full marginal product, while the base salary \(B \) is such that the participation constraint of the worker is just satisfied:

\[U(w(e), e, \gamma e) = U(q(e) + B, e, \gamma e) = U^{out} \quad (A2) \]

By combining the optimal wage scheme (A1) and the first-order conditions for effort (4) and profit (5), it follows that the optimal level of effort is implicitly given by:

\[q'(e)U_1(\cdot) + U_2(\cdot) + \gamma U_3(\cdot) = 0 \quad (A3) \]

In Section 3, we derived the effect of a marginal change in \(\gamma \) on the optimal level of effort:

\[\frac{de}{d\gamma} = \frac{U_3(\cdot) + e\gamma U_{33}(\cdot)}{-\partial F/\partial e} > 0 \quad (A4) \]

where \(\partial F/\partial e < 0 \) is the second-order condition to the worker’s optimisation problem (A3). We are interested in the sign of \(\frac{dw(e)}{d\gamma} \). By using (A1), we can rewrite this to:

\[\frac{dw(e)}{d\gamma} = \frac{dq(e)}{d\gamma} + \frac{dB}{d\gamma} \quad (A5) \]

The first term on the right-hand side of this equation is simply:

\[\frac{dq(e)}{d\gamma} = q'(e)\frac{de}{d\gamma} \]

where \(\frac{de}{d\gamma} \) is given by (A4). The second term on the right-hand side of (A5) can be found by using the participation constraint (A2) and applying the implicit function theorem:

\[\frac{dB}{d\gamma} = -\frac{eU_3}{U_1} + \left[q'(e)U_1(\cdot) + U_2(\cdot) + \gamma U_3(\cdot) \right] \frac{de}{d\gamma} = -\frac{eU_3}{U_1} \]

where the term in square brackets is zero by first-order condition (A3) (the envelop theorem). Hence, we can rewrite (A5) as:

\[\frac{dw(e)}{d\gamma} = q'(e)\frac{de}{d\gamma} - \frac{eU_3(\cdot)}{U_1(\cdot)} = -\frac{[U_2(\cdot) + \gamma U_3(\cdot)] \frac{de}{d\gamma}}{U_1(\cdot)} - \frac{eU_3(\cdot)}{U_1(\cdot)} \]
where the second equality follows from (A3). Total wage compensation thus decreases in motivation if the following condition holds:

\[eU_3(\cdot) > -[U_2(\cdot) + \gamma U_3(\cdot)] \frac{de}{d\gamma} \]
(A6)

which is identical to condition (9) in the main text.

B Appendix 2

Suppose the wage results from a bargain between the firm and the worker, of which the outcome is described by the generalised Nash bargaining function. The worker’s bargaining power is denoted by \(\chi \), the firm has bargaining power \(1 - \chi \) (\(0 \leq \chi \leq 1 \)). Note that apart from the total compensation to the worker, the incentive scheme derived in Section 3 is optimal for both the firm and the worker. Denote the minimum wage for which the worker is willing to work by \(w_{\min}(\gamma) \). The maximum wage the firm is willing to offer is denoted by \(w_{\max}(\gamma) \). The wage that results from the bargaining is the minimum wage plus a proportion \(\chi \) of the total rents (the difference between the maximum and the minimum wage):

\[w = w_{\min}(\gamma) + \chi[w_{\max}(\gamma) - w_{\min}(\gamma)] \]

To examine the effect of \(\gamma \) on \(w \), we differentiate this function with respect to \(\gamma \):

\[\frac{dw}{d\gamma} = \chi w'_{\max}(\gamma) + (1 - \chi)w'_{\min}(\gamma) \]

In Section 3 we have shown that \(w'_{\max}(\gamma) > 0 \) and \(w'_{\min}(\gamma) < 0 \), provided that condition (9) holds. The wage decreases in motivation if:

\[\frac{\chi}{\chi - 1} < \frac{w'_{\min}(\gamma)}{w'_{\max}(\gamma)} \]

Hence, as long as \(\chi \) is sufficiently low, the wage decreases in the motivation of the worker.
References

1036 Peter Birch Sørensen, Neutral Taxation of Shareholder Income: A Norwegian Tax Reform Proposal, September 2003

1037 Roberta Dessi and Sheilagh Ogilvie, Social Capital and Collusion: The Case of Merchant Guilds, September 2003

1038 Alessandra Casarico and Carlo Devillanova, Capital-skill Complementarity and the Redistributive Effects of Social Security Reform, September 2003

1040 Michele Moretto, Paolo M. Panteghini, and Carlo Scarpa, Investment Size and Firm’s Value under Profit Sharing Regulation, September 2003

1041 A. Lans Bovenberg and Peter Birch Sørensen, Improving the Equity-Efficiency Trade-off: Mandatory Savings Accounts for Social Insurance, September 2003

1042 Bas van Aarle, Harry Garretsen, and Florence Huart, Transatlantic Monetary and Fiscal Policy Interaction, September 2003

1044 Thomas Stratmann, Tainted Money? Contribution Limits and the Effectiveness of Campaign Spending, September 2003

1045 Marianna Grimaldi and Paul De Grauwe, Bubbling and Crashing Exchange Rates, September 2003

1046 Assar Lindbeck and Dennis J. Snower, The Firm as a Pool of Factor Complementarities, September 2003

1047 Volker Grossmann, Firm Size and Diversification: Asymmetric Multiproduct Firms under Cournot Competition, September 2003

1048 Dan Anderberg, Insiders, Outsiders, and the Underground Economy, October 2003

1049 Jose Apesteguia, Steffen Huck and Jörg Oechssler, Imitation – Theory and Experimental Evidence, October 2003

1051 Carlos Fonseca Marinheiro, Output Smoothing in EMU and OECD: Can We Forego Government Contribution? A Risk Sharing Approach, October 2003

1053 Michael Artis, Is there a European Business Cycle?, October 2003

1055 Annette Alstadsaeter, Income Tax, Consumption Value of Education, and the Choice of Educational Type, October 2003

1056 Ansgar Belke and Ralph Setzer, Exchange Rate Volatility and Employment Growth: Empirical Evidence from the CEE Economies, October 2003

1057 Carsten Hefeker, Structural Reforms and the Enlargement of Monetary Union, October 2003

1058 Henning Bohn and Charles Stuart, Voting and Nonlinear Taxes in a Stylized Representative Democracy, October 2003

1059 Philippe Choné, David le Blanc and Isabelle Robert-Bobée, Female Labor Supply and Child Care in France, October 2003

1062 Henning Bohn, Will Social Security and Medicare Remain Viable as the U.S. Population is Aging? An Update, October 2003

1063 James M. Malcomson, Health Service Gatekeepers, October 2003

1064 Jakob von Weizsäcker, The Hayek Pension: An efficient minimum pension to complement the welfare state, October 2003

1065 Joerg Baten, Creating Firms for a New Century: Determinants of Firm Creation around 1900, October 2003

1066 Christian Keuschnigg, Public Policy and Venture Capital Backed Innovation, October 2003
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1067</td>
<td>Thomas von Ungern-Sternberg, State Intervention on the Market for Natural Damage Insurance in Europe</td>
<td>October 2003</td>
<td>1067</td>
</tr>
<tr>
<td>1068</td>
<td>Mark V. Pauly, Time, Risk, Precommitment, and Adverse Selection in Competitive Insurance Markets</td>
<td>October 2003</td>
<td>1068</td>
</tr>
<tr>
<td>1069</td>
<td>Wolfgang Ochel, Decentralising Wage Bargaining in Germany – A Way to Increase Employment?</td>
<td>November 2003</td>
<td>1069</td>
</tr>
<tr>
<td>1072</td>
<td>George Economides, Jim Malley, Apostolis Philippopoulos, and Ulrich Woitek, Electoral Uncertainty, Fiscal Policies & Growth: Theory and Evidence from Germany, the UK and the US</td>
<td>November 2003</td>
<td>1072</td>
</tr>
<tr>
<td>1073</td>
<td>Robert S. Chirinko and Julie Ann Elston, Finance, Control, and Profitability: The Influence of German Banks</td>
<td>November 2003</td>
<td>1073</td>
</tr>
<tr>
<td>1074</td>
<td>Wolfgang Eggert and Martin Kolmar, The Taxation of Financial Capital under Asymmetric Information and the Tax-Competition Paradox</td>
<td>November 2003</td>
<td>1074</td>
</tr>
<tr>
<td>1075</td>
<td>Amihai Glazer, Vesa Kanniainen, and Panu Poutvaara, Income Taxes, Property Values, and Migration</td>
<td>November 2003</td>
<td>1075</td>
</tr>
<tr>
<td>1076</td>
<td>Jonas Agell, Why are Small Firms Different? Managers’ Views</td>
<td>November 2003</td>
<td>1076</td>
</tr>
<tr>
<td>1077</td>
<td>Rafael Lalove, Social Interactions in Unemployment</td>
<td>November 2003</td>
<td>1077</td>
</tr>
<tr>
<td>1079</td>
<td>Josef Falkinger, Attention, Economies</td>
<td>November 2003</td>
<td>1079</td>
</tr>
<tr>
<td>1080</td>
<td>Andreas Haufler and Michael Pflüger, Market Structure and the Taxation of International Trade</td>
<td>November 2003</td>
<td>1080</td>
</tr>
<tr>
<td>1081</td>
<td>Jonas Agell and Helge Bennmarker, Endogenous Wage Rigidity</td>
<td>November 2003</td>
<td>1081</td>
</tr>
<tr>
<td>1083</td>
<td>Lars P. Feld and Gebhard Kirchgässner, The Role of Direct Democracy in the European Union</td>
<td>November 2003</td>
<td>1083</td>
</tr>
<tr>
<td>1084</td>
<td>Helge Berger, Jakob de Haan and Robert Inklaar, Restructuring the ECB</td>
<td>November 2003</td>
<td>1084</td>
</tr>
</tbody>
</table>
Lorenzo Forni and Raffaela Giordano, Employment in the Public Sector, November 2003

Ann-Sofie Kolm and Birthe Larsen, Wages, Unemployment, and the Underground Economy, November 2003

Lars P. Feld, Gebhard Kirchgässner, and Christoph A. Schaltegger, Decentralized Taxation and the Size of Government: Evidence from Swiss State and Local Governments, November 2003

Arno Riedl and Frans van Winden, Input Versus Output Taxation in an Experimental International Economy, November 2003

Nikolas Müller-Plantenberg, Japan’s Imbalance of Payments, November 2003

Jan K. Brueckner, Transport Subsidies, System Choice, and Urban Sprawl, November 2003

Nabil I. Al-Najjar, Luca Anderlini & Leonardo Felli, Undescribable Events, November 2003

Christian Keuschnigg and Soren Bo Nielsen, Taxes and Venture Capital Support, December 2003

Clemens Fuest and Thomas Hemmelgarn, Corporate Tax Policy, Foreign Firm Ownership and Thin Capitalization, December 2003

Laszlo Goerke, Tax Progressivity and Tax Evasion, December 2003

Luis H. B. Braido, Insurance and Incentives in Sharecropping, December 2003

Josse Delfgaauw and Robert Dur, Signaling and Screening of Workers’ Motivation, December 2003