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Abstract

This article investigates power and size of some tests for exogeneity of a binary explanatory

variable in count models by conducting extensive Monte Carlo simulations. The tests under

consideration are Hausman contrast tests as well as univariate Wald tests, including a new test

of notably easy implementation. Performance of the tests is explored under misspecification

of the underlying model and under different conditions regarding the instruments. The results

indicate that often the tests that are simpler to estimate outperform tests that are more de-

manding. This is especially the case for the new test.
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1 Introduction

This article is concerned with inference about endogeneity caused by a binary variable in count

data models. Unlike the case with a continuous endogenous regressor, such models cannot be

consistently estimated by two-stage residual-inclusion procedures, making it necessary to use other

estimation techniques. For instance, nonlinear instrumental variables estimation as introduced

by Mullahy (1997) is general enough to be applicable irrespective of the binary nature of the

endogenous regressor, and can therefore be used to conduct Hausman tests of endogeneity. If the

focus is solely on testing exogeneity, however, easily implementable two-stage residual-inclusion

also provides a valid test which was first proposed by Wooldridge (1997). Furthermore, if the

researcher is willing to introduce parametric assumptions about the error structure of the model

(Terza, 1998), significant efficiency gains might be exploited and alternative tests for exogeneity

can be implemented.

Despite its rather specific nature, estimation of count data models with a potentially endoge-

nous dummy variable is very common in the empirical economics literature, and with estimation

routines for this models becoming available in statistical software packages1 the number of appli-

cations is bound to increase further. Earlier examples of count data models with an endogenous

dummy variable include Windmeijer and Santos Silva (1997), who study the effect of a binary

measure of self-reported health on the number of physician consultations; Terza (1998) who inves-

tigates the impact of vehicle ownership on the number of recreational trips; and Kenkel and Terza

(2001) who analyze how physician advice affects the consumption of alcoholic drinks. To cite

just a few, more recent work studies whether educational attainment decreased women’s fertility

(Miranda, 2004), or if U.S. residence of mexican women influenced their relationship power as

measured by the number of less egalitarian responses to a questionnaire (Parrado, Flippen and

McQuiston, 2005). The model has also been used to test for possible endogeneity of the mecha-

nism to price initial public offerings (bookbuilding or auction) in a regression on the number of

buy recommendations for a company (Degeorge, Derrien and Womack, 2007). Quintana Garcia

and Benavides Velasco (2008) investigated if an increase of diversification in firm technology lead
1E.g., there are routines for both Mullahy’s (1997) NLIV/GMM estimator and Terza’s (1998) full information

maximum likelihood estimator in STATA. See Nichols (2007) and Miranda (2004), respectively.
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to a higher number of patents.

The model has also been the subject of more theoretically-oriented work, which developed

semiparametric procedures to estimate the model under less stringent assumptions (e.g. Romeu

and Vera-Hernandez, 2005; Masuhara, 2008); a Bayesian version of the model is analyzed in

Kozumi (2002). However, since the impact of these developments on applied work is more modest,

and given that the focus of this article is on tests for exogeneity that are relevant for applied

empirical practice, the analysis will be limited to exogeneity tests obtained under more widespread

–if more restrictive– model assumptions.

Below, various tests for exogeneity in a count data model with a binary endogenous regressor

are presented and their performance is compared in small and moderately-sized samples through

Monte Carlo simulation. This article is restricted to the just-identified case with one instrument.

As a benchmark, the Hausman test that contrasts efficient and consistent estimates is evaluated

against various univariate Wald tests based on an estimated parameter that captures the degree of

endogeneity. Among them, a new test of particularly easy implementation is presented. The tests

are assessed with regards to sensitivity to instrument strength and to mild and moderate model

misspecification of the data generating process. A key result of interest to practitioners is that,

overall, the two most easy-to-implement tests, including the new test, displayed very acceptable

empirical size and power properties among the presented tests, often outperforming the other

tests.

Frequently endogeneity tests are conceived as pretests to decide whether a model estimated

with an estimator that is consistent under endogeneity can be re-estimated with a more efficient

estimator that is only consistent under exogeneity. However, recent work by Guggenberger (2008)

in a linear IV model context demonstrates that using a Hausman pretest can be devastating for

inference on second stage tests. Thus, further simulations are performed to address the question

of how exogeneity pretests affect inference about the effect of the potentially endogenous binary

variable in count data models. Here, the results turn out to be less encouraging, as severe size

distortions suggest that researchers should refrain from using these exogeneity tests as pretests.

The rest of the article is organized as follows. Section 2 presents the model under consideration.

The tests for exogeneity are introduced in the next section. The design of the Monte Carlo
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experiment and its results are discussed in section 4, while section 5 contains some conclusions.

2 Count data regression models with a potentially endogenous

binary variable

The model considered here will be a model for a count dependent variable, y, whose mean,

conditional on a vector of observed explanatory variables x, a binary variable d and an unobserved

error component ε, is an exponential function of a linear index of (x, d, ε):

E(y|x, d, ε) = exp(x′β + βdd+ ε) (1)

Concentrating the analysis to this class of models means that the conclusions of this article are

relevant to a wide range of applied work, since both Poisson and Negative Binomial regression, the

two most extensively used count model estimators, fall by default into the class defined in (1)2.

Note that including the error term ε in the exponential function as opposed to additively outside

the function corresponds to the interpretation of ε as further variables that affect the expectation

of y (but that are unobservable to the econometrician) and should be treated symmetrically to

the observed variables3.

If the regressors x and the dummy variable d are statistically independent from ε, the condi-

tional expectation function (1) marginal of ε is

E(y|x, d) = exp(x′β + βdd) E[exp(ε|x, d)] = exp(x′β∗ + βdd), (2)

assuming that the mean of exp(ε) is constant and that x includes a constant first element, as then

β∗ is equal to β but with first element shifted by ln E[exp(ε)] (cf. Windmeijer and Santos Silva,

1997). Note that assuming zero correlation between regressors and errors as in the linear case is

not sufficient for (2) to hold, as this does not warrant that E[exp(ε)|x, d] = E[exp(ε)].

Equation (2) represents the case of exogeneity, and efficient estimation of the model depends

on the distribution of ε and of y|x, d, ε. For instance, with the latter being Poisson-distributed,
2Evidently, exponential conditional mean functions are not limited to count data, and many of the procedures

and results discussed here are in principle applicable to continuous data as well.
3An alternative justification for this representation is by means of the interpretability of the model in terms of

ceteris paribus marginal effects (cf. Winkelmann, 2008, p. 160).
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if ε is distributed as log-normal or exp-gamma, then the resulting models marginal of ε are the

Poisson-log-normal and the negative binomial regression model, respectively. However, because

of its robustness to distributional misspecification and easy implementation, it is very common to

give up full efficiency and estimate models satisfying (2) by Poisson pseudo maximum likelihood

(cf. Wooldridge, 1997), which yields consistent estimates of (β∗, βd) irrespective of the distribution

of ε. Nonlinear least squares estimation is also consistent, but is less frequently encountered in

the count data context as it neglects the count nature of the dependent variable. Consistency up

to the first element does not hold in general for nonlinear models but is a specific consequence of

the multiplicative separability of linear combinations in the exponential function.

For continuous elements of x, the parameters β have the interpretation of (semi-)elasticities

with respect to the conditional expectation function (CEF), i.e. for the kth regressor

∂E(y|x, d)/E(y|x, d)
∂xk

= βk

while for discrete regressors, as for instance the binary variable of interest here, direct inter-

pretation of the coefficients is only suitable as an approximation to the discrete partial effect

exp(βd)− 1. Note that for both marginal and discrete partial effects as well as for predictions of

CEF, inconsistent estimation of the first element of β is inconsequential4.

The binary variable d is endogenous in model (1) whenever it is not statistically independent

from ε and, thus, the second equality in (2) does not hold. Estimation of the model neglecting en-

dogeneity yields inconsistent estimates of all parameters, even when the regressors are orthogonal.

To pin down the source of this dependence one can recur to modelling d as

d =


1 if z′γ ≥ v

0 if z′γ < v
(3)

where z is a vector of observable variables, possibly including at least some elements from x,

and the unobserved error component v follows some joint distribution with ε from (1). Terza

(1998) proposed to specify the distribution of (ε, v)′ conditional on the exogenous variables (x, z)
4While the partial effects do not depend on the first element of β, predictions of CEF are consistent because

x′β̂∗ is consistent for x′β + ln E[exp(ε)].
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as bivariate normal according to ε

v

 ∣∣∣x, z ∼ Normal

 0

0

 ,
 σ2 ρσ

ρσ 1


 (4)

which defines a probit model for (3). Also, statistical dependence is captured entirely by the

correlation parameter ρ ∈ [−1, 1] which yields independence whenever ρ = 0. Thus, the hypothesis

of exogeneity can be stated as H0 : ρ = 0 with alternative H1 : ρ 6= 0 corresponding to endogeneity.

3 Tests for exogeneity

The most widely used test for exogeneity is probably the Hausman test, since it is applicable in a

vast number of situations. In the context of the model discussed here, it has the advantage that it

does not require assumption (4). After shortly discussing Hausman tests, the exposition will turn

to univariate Wald tests, first presenting two tests based on Terza’s (1998) full information max-

imum likelihood estimator and a more general two-stage method of moments estimator. Finally,

two tests of particularly easy implementation are discussed, which also rely on estimation in two

stages: a new test based on a first order approximation to the method of moments estimator and

a residual inclusion estimator.

3.1 Hausman contrast tests

The Hausman test (Hausman, 1978) in its most general form contrasts two estimates obtained

from different estimators. In the case of endogeneity, one of the estimators is consistent under

both the null hypothesis (exogeneity) and the alternative (endogeneity) while the second estimator

is inconsistent under the alternative but efficient (relative to any linear combination of the two

estimators) under the null hypothesis. Then, denoting by β̂C the consistent estimate and by β̂E

the efficient one, the Hausman test statistic is

h = (β̂E − β̂C)′[Var(β̂C)−Var(β̂E)]−1(β̂E − β̂C) ∼ χ2
j

with the degrees of freedom of the χ2 distribution, j, being equal to the dimension of the β-vectors

involved in h.
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An early application of a Hausman test to count data models with endogeneity is provided by

Grogger (1990), who suggested calculating the corresponding test statistic with estimates from

Poisson ML and a nonlinear instrumental variables (NLIV) estimator based on an additive error

to the CEF. However, this estimator is inconsistent under a multiplicative error defined implicitly

as exp(ε) in (1) (Dagenais, 1999; Terza, 2006), and Mullahy’s (1997) GMM estimator is therefore

more appropriate to estimate β̂C . In the just-identified case studied here, this estimator is the

NLIV based on the residual function r ≡ y exp(−x′β − βdd) − 1 which, given an appropriate

instrument z, implies the moment condition

E(r|z) = E[exp(ε)− 1|z] = 0

Thus, writing the NLIV estimate of βd as β̂NLIVd and the corresponding Poisson PML estimate

as β̂PPML
d , a Hausman test for exogeneity can be based on the test statistic

h1 =
(β̂PPML
d − β̂NLIVd )2

Var(β̂NLIVd )−Var(β̂PPML
d )

∼ χ2
1 (5)

Sometimes this Hausman test is implemented by additionally including all elements of β in the

contrast, but both Creel (2004) and Chmelarova (2007) find that h1 outperforms the full-β-version

of the test in finite samples.

The denominator of h1 results as a special case of the variance of a difference of estimates

when the minuend is the efficient estimator, as then Cov(βE , βC) = V ar(βE) (Hausman, 1978).

There are two routes of potentially improving on h1. The first would be to specify the distribution

of ε and then calculating the corresponding ML estimator. For instance, if (4) holds, the model

for y conditional on observables is a Poisson-log-normal (PLN) mixture. As the PLN estimator

is efficient relative to the Poisson estimator in this model, a Hausman test statistic calculated by

substituting the PPML estimates by PLN equivalents could perform better:

h2 =
(β̂PLNd − β̂NLIVd )2

Var(β̂NLIVd )−Var(β̂PLNd )
∼ χ2

1

A second procedure in the vein of Weesie (1999) and Creel (2004) is to estimate Cov(βE , βC)

directly instead of relying on the simplification under asymptotic efficiency5. This implies to
5Creel’s (2004) approach is optimal GMM, while Weesie (1999) does not use a second step weighting matrix.

Clearly, in the just identified case under consideration both amount to the same as the choice of the weighting

matrix does not affect the estimates.
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rewrite the two optimization problems of the Poisson PML and the NLIV as a joint problem by

stacking PPML’s first order conditions and the moment conditions of NLIV. The resulting test

statistic is

h3 =
(β̂PPML
d − β̂NLIVd )2

Var(β̂PPML
d ) + Var(β̂NLIVd )− 2Cov(β̂PPML

d , β̂NLIVd )
∼ χ2

1

If the errors follow a bivariate normal distribution, all three tests are asymptotically equivalent.

If not, h2 is inconsistent, but h1 and h3 retain their consistency. The performance of the two

additional variants relative to h1 is less clear in finite samples. For h3 the potential gains depend

crucially on the small sample properties of the covariance estimator. Likewise, for h2 to outperform

h1 the higher precision of PLN relative to Poisson – which is an asymptotic result – needs to be

visible enough in finite samples.

3.2 Wald tests

There are alternatives to the Hausman contrast test for exogeneity. For instance, in the linear

IV model, estimating a reduced form for the endogenous variable in order to obtain residuals

which can be plugged into the structural equation leads to an asymptotically equivalent test for

endogeneity (Hausman, 1978). Monte Carlo simulations in Chmelarova (2007) show that Wald

versions of the Hausman test often have better properties than the contrast version under a series

of different conditions. However, the endogeneity in count data models in Chmelarova (2007)

concerns continuous regressors, so that the residual inclusion technique is consistent. Residual

inclusion in the framework discussed presently with an endogenous dummy, on the other hand,

yields inconsistent estimates6. Nevertheless, a number of consistent Wald tests are available.

First, Wooldridge (1997) suggests that while the procedure yields inconsistent estimates, the

test based on residual inclusion is consistent. Second, if one is willing to impose (4) and a distri-

butional assumption for y|x, d, ε, one can recur to Terza’s (1998) maximum likelihood estimator,

which explicitly estimates the correlation coefficient of the bivariate normal distribution so that
6Terza, Basu and Rathouz (2008) show that residual inclusion in nonlinear models is inconsistent in general.

Discussions of consistency of residual inclusion in Poisson PML models with continuous endogenous regressors and

inconsistency with binary regressors can be found inter alia in Wooldridge (1997) and Winkelmann (2008).
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the hypothesis ρ = 0 can be tested directly. Relaxing the distributional assumption on the depen-

dent variable still allows to estimate a scaled version of ρ based on (4), which can be used to test

for endogeneity. Last, related to an idea expressed by Greene (1995, 1998) for sample selection in

count data models, one can derive a test based on the inclusion of an inverse Mills ratio term in

the structural equation. While the second strategy yields consistent estimates for βd under the

alternative, the first and last do not. Their advantage, however, lies in their easy implementation,

since only a standard Poisson regression is needed to carry out these tests.

Full information maximum likelihood and two-stage method of moments estimation

Assuming that (4) holds and that y|x, d, ε follows a Poisson distribution with expectation (1), max-

imum likelihood estimation of the joint model proceeds by maximizing the sample log-likelihood

function L(βd, β, γ, ρ, σ) =
n∑
i=1

log f(yi, di|xi, zi), with f(·) denoting the probability density func-

tion, which given the assumptions is equal to (Terza, 1998)

f(y, d|x, z) =
∫ ∞
−∞

f(y|d, x, z, ε) × f(d|x, z, ε) × f(ε|x, z) dε

=
∫ ∞
−∞

exp(λ)λy(y!)−1 × Φ∗(ε)d(1− Φ∗(ε))1−d × σ−1φ(ε/σ|x, z) dε,

where λ ≡ exp(x′β + βdd + ε) and Φ∗(ε) ≡ Φ
(
z′γ+ ρ

σ
ε√

1−ρ2

)
; Φ(·) and φ(·) denoting the cdf and pdf

of the standard normal distribution, as usual. While the expression for f(y, d|x, z) has no closed

form solution, it is possible to approximate it through Gauss-Hermite quadrature. Given the ML

estimate ρ̂, the null hypothesis H0 : ρ = 0 is tested constructing the t-statistic

t1 =
ρ̂− 0
s.e.(ρ̂)

∼ N(0, 1) (6)

with s.e.(ρ̂) indicating any usual asymptotically valid ML standard error of ρ̂.

Terza (1998) also suggested a two stage estimation of this model which leaves f(y|d, x, z, ε)

unspecified. While the relaxation of assumptions is rather moderate as bivariate normality of

the errors is maintained, the gains of such a procedure lie mostly in increased computational
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stability7. Consider (1) under assumption (4):

E(y|x, d) = exp(x′β + βdd) E(exp(ε)|x, d)

= exp(x′β + βdd) exp

(
σ2
ε

2

)[
d

Φ(θ + z′γ)
Φ(z′iγ)

+ (1− d)
1− Φ(θ + z′γ)

1− Φ(z′γ)

]
≡ exp(x′β∗ + βdd)ψ(θ, γ; z)

with θ = σρ. To estimate this model in stages, first a probit regression is performed to obtain

estimates of γ, so that in a second stage estimation optimization proceeds with respect to (β, βd, θ).

Terza’s (1998) suggestion is to implement the second stage as nonlinear least squares (NLS), or

as nonlinear weighted least squares (NWLS) if the researcher wishes to incorporate a priory

knowledge of the distribution of y|d, x, z, ε.

In the present work, however, the second stage estimation will also be implemented as a

Poisson pseudo-ML regression, i.e., estimates of (β, βd, θ) are obtained by maximizing a pseudo-

log-likelihood function of the Poisson distribution with expectation λ̃ ≡ exp(x′β∗+βdd)ψ(θ, γ̂; z).

This estimation strategy represents a compromise between NLS and NWLS, in the sense that

it is bound to be more efficient for count data than NLS since it takes account of the inherent

heteroskedasticity characteristic of count data8, while it avoids the computational difficulty of the

more efficient NWLS procedure.

With an estimate of θ, the pertinent t-statistic of the test with null hypothesis H0 : θ = 0 is

t2 =
θ̂ − 0
s.e.(θ̂)

∼ N(0, 1) (7)

Inverse Mills ratio inclusion

It is possible to approximate the estimation of the two-stage method described above without

the need of estimating a Poisson regression with mean λ̃, which in general requires some extra

programming as standard econometric software usually only allow to specify variables entering a
7An important aspect of leaving f(y|d, x, z, ε) unspecified is that it broadens the class of models this estimator

is applicable to to other non-counts exponential CEF models. See, for instance, Egger et al. (2008) who apply such

a model to bilateral trade.
8The argument for Poisson pseudo-MLE against NLS is presented extensively by Santos Silva and Tenreyro

(2006) in the context of non-count exponential CEF models.
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linear index in the exponential function. The starting point of this approximation is again (1)

under assumption (4), which written separately for the two possible outcomes of d is

E(yi|xi, di = 1) = exp(x′iβ
∗ + βddi)

Φ(θ + z′iγ)
Φ(z′iγ)

= exp(x′iβ
∗ + βd)Q1 and

E(yi|xi, di = 0) = exp(x′iβ
∗)

1− Φ(θ + z′iγ)
1− Φ(z′iγ)

= exp(x′iβ
∗)Q0,

Taking logarithms of the endogeneity bias correction terms Q0 and Q1 allows to write them as

part of the linear index in the exponential function. Furthermore, the first order Taylor series

expansion of logQ0 and logQ1 around θ = 0 is

logQ1 ≈ θ
φ(z′iγ)
Φ(z′iγ)

and logQ0 ≈ θ
−φ(z′iγ)

1− Φ(z′iγ)
,

so that the second stage of the former estimator can be approximated by estimating a Poisson

pseudo-ML regression with expectation

E(y|x, d) ≈ exp(x′β + βdd+ θm), with m = d
φ(z′γ)
Φ(z′γ)

+ (1− d)
−φ(z′γ)

1− Φ(z′γ)

and replacing m with a consistent estimate m̂ obtained with probit estimates γ̂9. This lends itself

to a new test for exogeneity: If ρ = 0 the approximation is exact, so that the pseudo-ML estimates

of θ will be consistent under the null hypothesis of exogeneity and the test statistic t2 in (7) can

be used.

Residual inclusion

While a glance at the pertinent literature shows that many resarchers are comfortable with as-

sumption (4), the test proposed in Wooldridge (1997) is consistent under weaker distributional

assumptions as it does not require bivariate normality. It does, however, in contrast to the Wald

tests considered so far, require instruments.

The residual inclusion estimation procedure consists in including residuals from the reduced

form equation for the endogenous variable in the linear index of the second stage exponential

CEF. The two key assumptions for consistency of this technique are independence of the reduced

form residuals from the instruments and linearity of the CEF of ε given v. The linear CEF con-

dition holds if, as considered so far, the error terms are bivariate normally distributed. However,
9This technique has also been used by Angrist (2001) to approximate a Tobit MLE.
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independence of the residuals from the instruments is unlikely to hold in the binary case. Nev-

ertheless, as pointed out by Wooldridge (1997), the procedure is still valid to test for exogeneity,

since under the null hypothesis of d being exogenous the two assumptions on the errors need not

hold as then the CEF reduces to (2). I.e., while the procedure does not yield consistent estimates,

it does provide a valid Hausman-type Wald test for endogeneity.

Starting with assumption (4), the CEF of ε given v is E(ε|v) = θv, with θ = σρ as before.

Therefore, it is always possible to write ε = θv+ error, with this error being independent of v by

construction. Thus, the suggested test would proceed by replacing ε in (1) with θv + error and

conditioning y on x, d and v (instead of ε). That is, estimating

E(y|x, d, v) = exp(x′β + βdd+ θv)

by Poisson pseudo-ML, using v̂ = d − Φ(z′γ̂) for the unobserved v, where estimates for γ could

be obtained from a probit regression or, alternatively, from other models for binary dependent

variables such as the linear probability model, which would produce residuals v̂ = d− z′γ̂. Again,

the null hypothesis of exogeneity is expressed as θ = 0 and the test statistic t2 can be used.

4 A Monte Carlo simulation study

To assess finite sample properties of the tests discussed in the previous sections, a Monte Carlo

simulation experiment is conducted. Bearing in mind the known limitations of such an approach,

special care has been placed on addressing a variety of issues concerning the performance of the

tests under different conditions, such as moderate misspecification and unavailability of instru-

ments, as well as suitability of the tests for pretesting. All programming has been written in

GAUSS, pseudo-random number generators and other subroutines used were taken from GAUSS’

libraries; code and a supplementary appendix containing more extensive results are available from

the author on request.

4.1 Experimental design

Every reported simulation proceeded by drawing a random sample of size n from two independent

standard normally distributed variables, x and z. Next, the errors ε and v were drawn from some
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joint distribution having 0 expectations and variance of v equal to 1. The endogenous binary

variable, d was formed according to

d = 1(γzz + γxx+ v ≥ 0)

with 1(·) denoting the indicator function. Then, the conditional expectation of the count depen-

dent variable y was constructed as

λ = exp(−1 + 0.5x+ d+ ε)

so that, finally, y was obtained by random sampling from some count data distribution with

expectation λ. Here the effect of the dummy on the expectation of y is exp(1)− 1 ≈ 1.71 which

might seem above what can be expected in some empirical applications, but adherence to the

unit coefficient on d can be defended on the grounds of comparability to other studies10. Sample

sizes (n) considered were 200, 500 and 1’000. Results for larger samples are not reported as then

differences between tests even out quickly and they converge to their asymptotic limits. Smaller

samples, on the other hand, were not investigated as microeconometric applications of this model

with less observations are unlikely to be encountered in practice. Most Monte Carlo simulations

were replicated 10’000 times, the significantly more computing-intensive routines for the tests

based on full information maximum likelihood (FIML) estimates were performed with 2’000 and

1’000 replications. All tests were performed at a nominal significance level of 5%. Different data

generating processes were obtained by varying the values of the vector γ, the joint distribution of

the errors and the distribution of y|x, d, ε.

By assigning different values to γ, the strength of the instrument was manipulated. While

in the linear IV model the concentration parameter provides an unequivocal summary measure

of instrument strength (cf. Stock, Wright and Yogo, 2002), there is no generic equivalent for

nonlinear models. Trivially, the impact of the instrument is affected by the proportion of the

variance of (γzz + γxx + v) explained by γzz. Note that a given ratio can be obtained by either

changing the variance of the error v with respect to the given variance of (γzz + γxx), or by
10Monte Carlo studies of count data models with unit coefficient on endogenous variables include Creel (2004),

Romeu and Vera-Hernandez (2005) and Chmelarova (2007).

12



altering the relation Var(γzz)/Var(γxx) with given relation of Var(γzz + γxx) to Var(v). While

the two interventions amount to the same in the linear model, here results might differ.

The pdf f(y|x, d, ε) was set to be either Poisson with mean λ or Negative Binomial I with

mean λ and variance 2λ. With the exception of the test based on full information maximum

likelihood, all tests should be invariant to the overdispersion introduced by the Negative Binomial

I variant. The baseline specification for the error distribution was the bivariate normal distribution

given in (4) with values of ρ ranging from 0 to 0.95 for most experiments. To assess sensitivity

to misspecification of (4), (ε, v) were also generated from a bivariate Gaussian copula with an

exponential Gamma marginal distribution for ε and a standard logistic marginal for v, inducing

a Negative Binomial model for y conditional on observables and a logit model for d. Finally, the

tests were conducted with the errors following the same exp-Gamma and logistic marginals but

with joint distribution determined through the Frank copula.

A table containing the descriptions of the precise data generating processes that were used in

producing the results discussed below can be found in the appendix (cf. Table 6).

The next subsection discusses empirical size and power of the proposed tests under ideal

assumptions on the data generating process, i.e. with assumption (4) holding. Next, the discussion

centers on the tests that theoretically are able to identify exogeneity in the absence of instruments,

assessing the goodness of their performance under this condition in the simulations. Results

under misspecification of the data generating process are considered next, and the section closes

considering the effect on the empirical size of tests on β̂d after using endogeneity tests as pretests

to choose between estimators for the model.

4.2 Empirical size and power

The first three columns of table 1 contain simulation results for the empirical size of different tests

for exogeneity with nominal size 5%. The table shows results for three different sample sizes of

200, 500 and 1’000 observations. The coefficients of the reduced form equation, γx and γz were

set to
√

0.5 each, so that the ratio Var((γzz + γxx)/Var(v) equalled 1. With 10’000 replications,

a 95% confidence interval for the estimated size of tests is [0.05 ± 1.96
√

0.05× 0.95/10′000] ≈
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[0.046, 0.054].11

The first three rows contain the rejection frequencies of the exogeneity hypothesis for the

Hausman tests with test statistics h1, h2 and h3 discussed previously. The test that contrasts

PPML estimates with the NLIV estimates (H1) performs better than the two other Hausman

tests. While underrejecting the true null hypothesis with 200 observations, H1 displays correct

size for larger samples, while H2, which uses PLN estimates instead of PPML, underrejects slightly

even for the largest sample. The test H3, which attempts to improve on H1 by estimating

the covariance from the data instead of relying on the asymptotic simplification, has a serious

underrejection problem for all sample sizes considered. Since estimated coefficients and their

standard errors are the same as in H1, it follows that underrejection must be due to upward bias

in the estimation of Cov(βPPML
d , βNLIVd ). These results on the Hausman tests are opposite in

sign to previous findings concerning continuous endogenous regressors (Creel, 2004; Chmelarova,

2007), were Hausman contrast tests tend to overreject H0. As for results on power, Table 1

displays rejection frequencies of the false null hypothesis under ρ = 0.2 (columns 4 to 6) and

ρ = 0.5 (columns 7 to 9). The performance of H1 and H2 are practically indistinguishable. This

implies that there might be very small or even no gains at all from implementing H2 instead of

the more robust H1, even under an ideal DGP for H2.

– Table 1 about here –

Turning to the Wald tests, results are presented for tests based on the FIML estimates (FIML),

two-stage method of moments estimates implemented via NLS (TSM NLS) and PPML (TSM

PPML), as well as for the new test derived from the inverse Mill’s ratio inclusion (IMRI) and

the test based on the residual inclusion procedure (RI). The TSM tests are based on two-stage

adjusted standard errors. For IMRI and RI, results are presented separately for tests using regular

standard errors and two-stage adjusted standard errors (IMRI-TSA and RI-TSA). Thus, IMRI

and RI are tests which virtually can be implemented by the practitioner in a matter of seconds,

while the two-stage adjustment might take more time as it generally requires a minimum of custom

programming.
11The corresponding confidence interval for 2’000 replications is approximately [0.405,0.595].
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Considering the empirical size of the Wald tests with samples of 200 observations, most of

them overreject the null hypothesis by 2 to 4 percentage points, with the exception of FIML and

IMRI-TSA, whose rejection frequencies are not significantly different from 5%. With increasing

sample size, the other tests also gradually tend to the nominal size. As the results make evident,

using two-stage adjusted standard errors improves noticeably the empirical size of the IMRI and

RI tests in small to moderate samples, although the IMRI-TSA standard errors seem to be a

little bit too large leading to slight underrejection in some cases. The TSM NLS test is the

only one to overreject clearly even with sample size 1’000. It also performs comparatively poorly

with respect to power. As expected, FIML has the largest power in this setting where it is the

efficient estimator, followed by the TSM PPML and IMRI(-TSA) tests. The RI(-TSA) tests are

comparable in power to the H1 Hausman test12.

The DGP in Table 1 implied that Var(γzz)/Var(γzz + γxx+ v) = 0.25, i.e., that the variance

of the instrument determines one quarter of the total variance of the linear combination that

determines d. Now, consider a change in instrument strength. By specifying a DGP which leaves

γz =
√

0.5 as before, but with γx =
√

1.5, the fraction of the variance explained by the impact

of the instrument, γzz, with respect to the whole systematic variance, Var(γzz + γxx), falls from

0.5 to 0.25, while the systematic variance relative to the error variance, Var(v), doubles. Taken

together, the new instrument is weaker since Var(γzz)/Var(γzz+γxx+v) ≈ 0.167. How does this

change affect power and size of the tests? Comparing the columns with sample size 500 in Table

1 with columns labelled (2) in Table 2 gives an idea. While the Hausman and residual inclusion

tests suffer severe power loss, TSM PPML and the inverse Mills ratio inclusion tests are barely

affected. Figure 1 details the circumstance graphically by plotting the power functions of H1, TSM

PPML, IMRI-TSA and RI-TSA over the support of ρ for both DGPs. The difference in power

grows with increasing absolute value of ρ and is over 20 percentage points at the extremes. The

reason for this difference is that Hausman and residual inclusion tests rely only on the dependence

between the instrument and the endogenous variable, which in this experiment was significantly
12Some authors prefer to use what is called size-corrected power to make comparisons across tests. Here, no

size-corrected power is presented, since the question addressed is how these tests work in practice and which are

useful under given characteristics of the data generating process.
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weakened. Meanwhile, tests as TSM PPML and IMRI seem to be able to compensate this loss

with the increased variance of the systematic part which allows them to exploit more fully their

functional form assumption.

– Figure 1 about here –

The remaining columns in Table 2, labelled (1) and (3), show rejection frequencies of the null

hypothesis for further instrument strength scenarios. Here Var(γzz + γxx) is reset to unity as in

Table 1, and only the fraction of it due to Var(γzz) is modified to 0.25 (1) and 0.75 (3), inducing a

weaker and stronger instrument, respectively. The results show that only IMRI-TSA and RI-TSA

reach appropriate size in the weak instrument case. In the scenario with the strong instrument,

results are very similar to Table 1, with FIML capitalizing on its efficiency, followed by a more

equalized middle field including H1, TSM PPML and their approximations IMRI and RI. TSM

NLS and H2 display markedly lower power, and H3 again falls prey to its strong underrejection

problem.

– Table 2 about here –

Monte Carlo simulation studies always raise questions concerning the specificity of their results.

To check that the presented results are not due to the particular choice of DGP, some sensitivity

analysis has been conducted. First, orthogonal regressors are far from realistic in the social

sciences. A further worry is the marginal distribution of the endogenous dummy, as in practice

outcomes with 1 and 0 are often not balanced. Also, one may wonder if the tests are sensitive to

a reduction of the effect of the dummy on the count variable. Finally, TSM and IMRI are based

on the null hypothesis θ = 0, with θ = σρ. Their positive performance could partly be due to the

fact that in the shown DGP σ = 1 and so θ = ρ. To address these concerns, separate simulations

were carried out with Corr(x, z) = 0.5, E(d|x, z) = 0.2, βd = 0.1 and σ =
√

2 (not reported). As

it turns out, most results are by and large invariant to these alternatives. The exceptions are H1

and RI’s reduced power when the regressors are correlated, as well as H1’s when βd is small. This

latter finding is not surprising given that H1 is based on the contrast of estimates of βd.
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4.3 Identification by functional form

Having observed the performance of FIML, TSM PPML and IMRI-TSA under reduced impact

of the instrument (cf. Fig.1), a natural question is whether identification can be achieved by

functional form alone, prescind from any instrument z. To this end, the DGP is specified as before,

but setting γz = 0 and maintaining γx =
√

0.5. Results are shown in Table 3 in columns labelled

(1) for sample sizes of 500 and 2’000 observations. The results prove to be rather discouraging, as

both FIML and TSM PPML display empirical sizes that render the tests useless13. IMRI-TSA’s

overrejection is not as pronounced, but the test lacks power in this setup. The exercise is repeated

in columns (2) by strongly increasing the variance explained by the systematic part. To this end,

γx is set to
√

2. However, little change is evident in the results for sample size 500. In the

entries corresponding to the larger sample, on the other hand, some improvement is noticeable

for TSM PPML and IMRI-TSA, the latter’s overrejection being only mild and showing increased

power. Having empirical applications in mind, nevertheless, it seems that results from columns

(1) represent a more realistic setting regarding instrument strength, so that the presence of an

instrument in the DGP seems to be necessary for testing in finite samples.

– Table 3 about here –

4.4 Results under distributional misspecification

When specifying a parametric model, a natural concern relates to the robustness to distributional

misspecification. In the context of count data, for instance, the overdispersion precluded from

a Poisson distribution has been a major preoccupation which has led a portion of the empirical

work to opt for the negative binomial regression model. Although under exogeneity the pseudo

maximum likelihood properties of the Poisson model warrant consistency of the estimator, in the

model with endogenous binary variable presented here, FIML, TSM and IMRI are inconsistent if

ε and v are not normally distributed. Moreover, in general, Terza’s (1998) FIML estimator yields
13Monfardini and Radice (2008) investigate exogeneity testing with no instruments in the bivariate probit model,

which is related to the model under consideration through the bivariate normality assumption. The present results

are in line with theirs, as they report high overrejection rates for Wald tests. They find likelihood ratio tests to

have appropriate empirical size.
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inconsistent estimates whenever f(y|x, d, ε) does not follow a Poisson distribution. However,

Romeu and Vera-Hernandez (2005) show that in the case of the conditional distribution being

Negative Binomial type I (NegBinI), the FIML estimator remains consistent, suggesting that so

does the FIML test14. The first two columns in Table 4 illustrate the performance of selected

tests under the baseline DGP from Table 1 but with the modification y|x, d, ε ∼ NegBinI with

expectation λ as before, and variance 2λ. Only IMRI-TSA displays correct size. FIML overrejects

quite severely, while TSM PPML does less so, but has noticeably less power than in the baseline

case. H1 underrejects and ranks as the least powerfull among the compared tests.

To assess sensitivity of test size to the crucial assumption of bivariate normality, a DGP is

implemented where the errors (ε, v) are independent and follow marginal distributions different

from the normal. The chosen distributions are the exp-Gamma(1,1) for ε, which combined with

a Poisson distribution for y conditional on observables and ε, yields a NegBinI distribution for y

conditional on observables only; and a logistic distribution for v, scaled as to have unit variance,

which gives a logit model for d. It might be argued that these modifications represent rather

moderate departures from the distributional assumptions. However, there are at least two reasons

for considering such a scenario. First, as mentioned before, there is a large body of empirical

literature that uses NegBin and logit models, which consequently must imply either that there

exists a large number of real-world problems where assuming negative binomial and logit processes

is sensible, or that said literature’s distributional assumptions are wrong. The former reason

might find wider approval. Second, if the researcher has a strong belief in some form of significant

departure from normality of the errors which goes beyond exp-Gamma or logit, she might as well

opt to model this explicitly. Further, one might be interested in the performance of the tests

under mild misspecification, since tests that do not conform to one’s expectations even under

these circumstances might as well be regarded as useless in view of the inherent uncertainty faced

with respect to the ‘true’ data generating process. In other words, rather than her assumptions

coinciding exactly with reality, all the applied econometrician might hope is that her assumptions

14Corollary 1 in Romeu and Vera-Hernandez (2005) establishes consistency of (β̂, β̂d) excluding the constant

element, which is shifted. The estimate ρ̂ is inconsistent for ρ but equals 0 whenever ρ does, securing consistency

of the exogeneity test.
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approximate the underlying data generating process reasonably well.

– Table 4 about here –

Setting these concerns apart and considering the results of this analysis as shown in the

third column in Table 4, the tests do present some minor size distortions, with H1 and IMRI-

TSA underrejecting, and TSM PPML and RI-TSA overrejecting H0. FIML’s overrejection is

more substantial. In order to analyze empirical power of the tests under non-normal marginals,

dependence between the errors is induced by random sampling from copula functions. Columns

4 and 5 in Table 4 show rejection frequencies of the null hypothesis of exogeneity when the

errors’ joint distribution is generated from a bivariate Gaussian copula with exp-Gamma and

logistic marginals, with dependence parameter θGC equal to 0.2 and 0.5, respectively. Note that

θGC , although having the same domain, is not a correlation coefficient as in the bivariate normal

distribution, and thus comparisons to other tables are not valid. However, both columns reproduce

the familiar pattern of the more parametric tests outperforming the supposedly more robust ones.

Also, RI-TSA, which displayed power comparable to H1, clearly surpasses H1 in this setting. The

last two columns in Table 4 contain results obtained by letting the joint distribution of the errors

be determined by a Frank copula with the same non-normal marginals as before. The Frank

copula induces positive dependence between the variables through the parameter θFC ∈ (0,∞),

with independence resulting as a special case when θFC = 0. The parameter is set to 1 in the

sixth column and to 10 in the seventh column in Table 4. While for the weaker dependence power

between the tests is rather similar, differences are considerably more pronounced for the case of

stronger dependence. The ranking of the tests is almost the same as with the Gaussian copula,

except for FIML falling back to third place. On the whole, these results seem to indicate that

the tests relying on the bivariate normality assumption might perform equally well in non-normal

settings as the other tests. Furthermore, IMRI-TSA’s actual type I error seems never to be larger

than the level determined by the nominal size.
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4.5 Exogeneity tests as pretests: A cautionary note

By far the most common use of tests for exogeneity is probably as pretests in order to choose be-

tween estimates. If a test rejects exogeneity, then estimates are obtained from an estimator that is

consistent under endogeneity; while if the tests fails to reject the exogeneity hypothesis, estimates

can be calculated from an estimator that is efficient under exogeneity, although inconsistent if the

true DGP entails endogeneity. Thus, inference about a parameter of interest is conditional on the

outcome of the exogeneity pretest.

The pretests or first stage tests to be considered are the exogeneity tests discussed so far, H1,

FIML, TSM PPML, IMRI-TSA and RI-TSA. If the pretest fails to reject the null hypothesis, the

model is estimated by Poisson MLE and a (second stage) two-tailed t-test with null hypothesis

H0 : βd = 1 is conducted. Given rejection of exogeneity in the first stage test, the second stage

test of H0 : βd = 1 is performed with NLIV estimates if the pretest was either H1 or RI-TSA.

For TSM PPML and IMRI-TSA pretests, second stage tests are calculated with TSM PPML

estimates, while FIML pretests use FIML estimates in the second stage15. In the DGP, the true

βd is left at 1 throughout all simulations, so that empirical rejection frequencies measure the finite

sample size of the second stage test.

– Table 5 about here –

Inspection of the results displayed in Table 5 suggests that the use of pretests for exogeneity

leads to severe size distortions unless ρ = 0. Moreover, the overrejection is increasing over the

range of ρ shown in the table, except for FIML. The reason for this is that for weaker levels

of correlation, the weak power of the pretests leads to second stage tests being performed with

Poisson ML estimates whose bias for low ρ is sufficiently small as to not always reject H0. Loosely

speaking, as ρ increases, the bias in βd increases faster than the power of the pretests, leading to

higher rejection frequencies for all tests. Eventually, all second stage tests’ overrejection lowers,

but except for FIML the turning point is after ρ = 0.5.

It is clear from the estimated rejection frequencies which are nowhere near the nominal size,

that inference on structural parameters after pretesting in this model is likely to lead to false
15Second stage tests do not use RI-TSA and IMRI-TSA estimates as these are inconsistent unless ρ = 0.
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results and should thus be avoided. It should be stressed, however, that the pernicious effect of

pretesting is due to interpreting the failure to reject exogeneity as that the variable in question is

exogenous (absence of endogeneity). Obviously, exogeneity tests can be used to provide empirical

evidence of the presence of endogeneity. This can be important in its own right, as for putting

theories to test, and it can also provide ex-post empirical confirmation for a-priori concerns about

potential endogeneity.

5 Conclusions

In this article some tests for exogeneity of a binary variable in count data regression models,

including the new IMRI test, were examined for their finite sample properties through Monte Carlo

simulations. The behavior of the tests under correct distributional specification was analyzed

subjecting them to different sample sizes and levels of instrument strength. Test performances

under data generating processes with no instrumental variables were reported, as well as under

distributional misspecification. Finally, the use of these tests as pretests was assessed. Based on

the results of the Monte Carlo experiments, a number of conclusions can be drawn which might

provide some guidance for empirical practice.

The Hausman test which contrasts Poisson ML and NLIV estimates (H1) performs better

than the other more refined versions based on Poisson-log-normal estimates (H2) or on estimation

of the covariance between estimates (H3). Tests based on residual inclusion (RI) represent a very

easy to implement alternative to H1, which in most scenarios display power comparable to H1,

while outperforming Hausman contrast tests with respect to empirical size.

The other more parametric Wald tests which are based on the bivariate normality assumption

generally present higher power than the Hausman tests, even in settings where they misspecify

the DGP. The FIML test generally achieves the highest power of the tests. The more robust

approximation to FIML, TSM, works well when it is implemented through PPML instead of

NLS, achieving power almost as high as FIML. The first order approximation to FIML, inverse

Mills ratio inclusion (IMRI), exhibits slightly lower power than TSM PPML, but still performs

favorably compared to H1.
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On the whole, therefore, these results suggest that using the simpler RI and IMRI tests comes

at virtually no cost in terms of test performance. Using two-stage adjusted standard errors

noticeably improves the empirical size of the tests in smaller samples. Moreover, these tests

show the best performances of all tests in the smallest samples and under the weakest instrument

strength levels that were used in the simulations.

Two caveats have to be considered when testing for exogeneity. The first relates to the absence

of exclusion restrictions in the DGP. Only with large samples and a very strong instrument does

IMRI-TSA come close to the nominal test size, the other tests perform worse. This suggests that

there is little hope to test for endogeneity in practice if the structural model does not include any

instruments.

The second issue concerns the use of these tests as pretests. In line with Guggenberger’s

(2008) finding of severe size distortions conditional on Hausman pretests in the classical linear

model, large overrection rates render pretesting futile in the present count data model. The

higher power of the Wald pretests clearly is not enough to result in acceptable second stage sizes.

Therefore, practitioners are well advised to avoid using these tests as pretests. However, given that

theoretical concerns about endogeneity have led a researcher to implement an estimation procedure

that accounts for this, endogeneity tests can be used to obtain ex-post empirical evidence of these

concerns having been justified.
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Table 1: Rejection frequencies of tests for exogeneity - The effect of sample size

ρ = 0 ρ = 0.20 ρ = 0.50
Sample size: 200 500 1000 200 500 1000 200 500 1000

Hausman contrast tests
H1 0.0365 0.0459 0.0517 0.0672 0.1168 0.2019 0.1796 0.4423 0.7451
H2 0.0287 0.0371 0.0432 0.0583 0.1050 0.1798 0.1708 0.4223 0.7239
H3 0.0038 0.0060 0.0084 0.0097 0.0265 0.0534 0.0363 0.1902 0.4788

Wald tests
FIML 0.0540 0.0635 0.0640 0.0670 0.1600 0.2750 0.2070 0.6605 0.9160
TSM NLS 0.0893 0.0728 0.0627 0.0668 0.0638 0.0799 0.0790 0.1997 0.4376
TSM PPML 0.0739 0.0616 0.0561 0.0766 0.1079 0.1806 0.2046 0.4616 0.7620
IMRI 0.0750 0.0603 0.0573 0.1047 0.1309 0.1958 0.2798 0.4971 0.7570
RI 0.0814 0.0605 0.0554 0.1060 0.1240 0.1706 0.2445 0.3964 0.5963
IMRI-TSA 0.0509 0.0441 0.0420 0.0748 0.0999 0.1578 0.2188 0.4287 0.7043
RI-TSA 0.0711 0.0566 0.0535 0.0945 0.1192 0.1667 0.2272 0.3863 0.5931

Notes: Number of replications = 10’000 (FIML: 2’000 replications). Nominal test size = 0.05.

Table 2: Rejection frequencies of tests for exogeneity - The effect of instrument strength

ρ = 0 ρ = 0.20 ρ = 0.50
IV strength: (1) (2) (3) (1) (2) (3) (1) (2) (3)

Hausman contrast tests
H1 0.0283 0.0449 0.0584 0.0639 0.0936 0.1541 0.2206 0.3042 0.5954
H2 0.0248 0.0375 0.0413 0.0602 0.0826 0.1286 0.2194 0.2995 0.5560
H3 0.0072 0.0086 0.0040 0.0222 0.0277 0.0217 0.1091 0.1325 0.2223

Wald tests
FIML 0.0820 0.0620 0.0555 0.1305 0.1525 0.2015 0.4935 0.6095 0.7710
TSM NLS 0.0819 0.0862 0.0695 0.0622 0.0744 0.0799 0.1100 0.2080 0.2905
TSM PPML 0.0666 0.0683 0.0566 0.0960 0.1071 0.1256 0.3111 0.4382 0.5841
IMRI 0.0629 0.0640 0.0586 0.1009 0.1206 0.1528 0.3408 0.4543 0.6055
RI 0.0617 0.0633 0.0594 0.0951 0.0980 0.1494 0.2496 0.2665 0.5174
IMRI-TSA 0.0451 0.0484 0.0419 0.0779 0.0964 0.1168 0.2835 0.3984 0.5460
RI-TSA 0.0533 0.0581 0.0577 0.0848 0.0908 0.1468 0.2315 0.2544 0.5130

Notes: Number of replications = 10’000 (FIML: 2’000 replications). Nominal test size = 0.05. IV-strength

as detailed in text or Table 6.
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Table 3: Rejection frequencies of tests for exogeneity - Identification by functional form

(1) (2)
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

N=500
FIML 0.1565 0.1750 0.2640 0.1375 0.1775 0.4155
TSM PPML 0.1783 0.1960 0.2473 0.1179 0.1181 0.2585
IMRI-TSA 0.0729 0.0677 0.0860 0.0812 0.0838 0.2001

N=2000
FIML 0.2340 0.2950 0.5700 0.1630 0.3490 0.8640
TSM PPML 0.1643 0.1700 0.2990 0.0780 0.1438 0.6538
IMRI-TSA 0.0772 0.0714 0.1327 0.0610 0.1123 0.5546

Notes: Number of replications = 10’000 (FIML: 2’000 replications for N=500, 1’000

replications for N=2’000). Nominal test size = 0.05. IV-strength of columns (1) and

(2) as detailed in text or Table 6.

Table 4: Rejection frequencies of tests for exogeneity - Sensitivity to distributional assumptions

NegBin I Gaussian copula Frank copula
ρ = 0 ρ = 0.5 θ = 0 θGC = 0.2 θGC = 0.5 θFC = 1 θFC = 10

H1 0.0382 0.3321 0.0415 0.0647 0.2930 0.0856 0.5833
FIML 0.1035 0.5970 0.0470 0.1445 0.5870 0.0820 0.7245
TSM PPML 0.0608 0.3747 0.0596 0.1546 0.5859 0.1008 0.9197
IMRI-TSA 0.0451 0.6243 0.0400 0.1186 0.5359 0.0817 0.8317
RI-TSA 0.0582 0.5248 0.0582 0.1139 0.4404 0.0917 0.7064

Notes: Number of replications = 10’000 (FIML: 2’000 replications). Nominal test size = 0.05. Sample size

= 500. IV-strength as detailed in text or Table 6.
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Table 5: Empirical size of second stage tests of βd = 1 using pretests for exogeneity

(1) (2)
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

H1 0.0383 0.3596 0.5507 0.0409 0.3148 0.3960
FIML 0.0540 0.3565 0.3365 0.0520 0.3055 0.2270
TSM PPML 0.0516 0.3681 0.5327 0.0495 0.3326 0.4082
IMRI-TSA 0.0493 0.3584 0.4981 0.0471 0.3219 0.3877
RI-TSA 0.0366 0.3578 0.6069 0.0382 0.3187 0.4767

Notes: Number of replications = 10’000 (FIML: 2’000 replications). Nominal test

size = 0.05. Sample size = 500. IV-strength of columns (1) and (2) as detailed in

text or Table 6.

Table 6: Details on the DGP of Monte Carlo simulations

Table Columns Distribution of Distribution of (ε, v) Reduced form
y|x, d, ε parameters (γx, γz)

1 all Poisson(λ) BV N(0, 0, 1, 1, ρ) (
√

0.50,
√

0.50)

2 (1) Poisson(λ) BV N(0, 0, 1, 1, ρ) (
√

0.75,
√

0.25)
(2) Poisson(λ) BV N(0, 0, 1, 1, ρ) (

√
1.50,

√
0.50)

(3) Poisson(λ) BV N(0, 0, 1, 1, ρ) (
√

0.25,
√

0.75)

3 (1) Poisson(λ) BV N(0, 0, 1, 1, ρ) (
√

0.50, 0.00)
(2) Poisson(λ) BV N(0, 0, 1, 1, ρ) (

√
2.00, 0.00)

4 (1), (2) NegBin(λ, λ) BV N(0, 0, 1, 1, ρ) (
√

0.50,
√

0.50)
(3) Poisson(λ) ε ∼ expGamma(1, 1), (

√
0.50,

√
0.50)

v ∼ Logistic(0, 3/π)

(4), (5) Poisson(λ) Gaussian copula∗ (
√

0.50,
√

0.50)
(6), (7) Poisson(λ) Frank copula∗ (

√
0.50,

√
0.50)

5 (1) Poisson(λ) BV N(0, 0, 1, 1, ρ) (
√

0.50,
√

0.50)
(2) Poisson(λ) BV N(0, 0, 1, 1, ρ) (

√
0.25,

√
0.75)

∗ Marginal distributions of the copulae: ε ∼ expGamma(1, 1), v ∼ Logistic(0, 3/π).
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Figure 1: Empirical power of tests for exogeneity
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Notes: Sample size = 500. Nominal test size = 0.05. Reduced form parameters: Left panel (γx, γz) = (
√

0.5,
√

0.5);

right panel (γx, γz) = (
√

1.5,
√

0.5). Graphs based on 20 points ρ = 0, 0.05, 0.10, ..., 0.95. Values for negative ρ

mirrored symmetrically from corresponding positive points. Each point obtained from 10’000 replications.
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