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Abstract: The paper shows that, in some important respects, the differ-
ences between the Nash equilibrium and competing concepts such as the quantal-
response equilibrium are smaller than they appear. I start from the observation
that, in many experiments, parameter shifts that leave the Nash equilibrium un-
changed affect behavior. I explain the direction of change with a heuristic structural
approach, relying on properties such as strategic complementarities and increasing
differences. I justify the approach using existing comparative statics results for
the Nash equilibrium and new comparative statics results for the quantal response
equilibrium. Further, I show that the experimental observations can also be ratio-
nalized by a model of adjustment to change that does not rely on any equilibrium
concept. Finally, I relate the structural approach to equilibrium selection concepts.
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1 Introduction

Laboratory experiments have cast doubt on the predictive value of the Nash

equilibrium and its refinements. At least the joint hypothesis that monetary

payoffs are maximized and the Nash equilibrium is played is often in conflict

with the facts.1 Nevertheless, as argued by Samuelson (2005), even when

point predictions do not hold, comparative statics predictions may still be

borne out in the lab.2 However, in an insightful contribution, Goeree and Holt

(2001), henceforth GH, report the results of ten pairs of experiments where

the Nash equilibrium is the same in both cases, but nevertheless subjects

behave differently. Thus, not only the point predictions are wrong, but even

the comparative statics implication that behavior should not be affected by

the parameter change fails to hold.

GH and various companion papers provide explanations for some of the

observed deviations from Nash behavior in these experiments and in related

work.3 These explanations differ across experiments. In several cases, GH

appeal to the quantal response equilibrium (QRE) of Mc Kelvey and Pal-

frey (1995) which does not presuppose that players choose best responses to

the expected behavior of others, but allows for the possibility of errors. In

other examples, they argue that social preferences can explain the paradoxes.

Finally, in cases with multiple equilibria that are unchanged by the parame-

ter change, they show that selection theories, based on risk dominance and

potential maximization help to understand the observations.4

1For instance, subjects only rely on iterated elimination of dominated strategies to a
limited extent (Beard and Beil 1994). Deviations from the Nash prediction also occur
in games where social preferences matter, including public goods games (Ledyard 1995),
ultimatum games (Güth et al. 1982) and trust games (Fehr et al. 1993).

2Samuelson himself points out the limitations of his statement, mentioning bargaining

experiments of Ochs and Roth (1989) where the effects of the discount factor and the
length of the game are inconsistent with standard predictions.

3Related papers include Anderson et al. (2001, 2002), Capra et al. (1999), Goeree and
Holt (2005) and Goeree et al. (2003).

4Another promising approach to understanding the GH paradoxes was provided by
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This paper presents a unified explanation of the treatment effects in sev-

eral GH puzzles, without making any attempt to provide point predictions.

I start from a simple observation that has gone unrecognized in the liter-

ature: 6 of the 10 pairs of experiments analyzed by GH share important

structural properties. First, for suitable partial orders on strategy spaces

they are games with strategic complementarities (GSC): Both players’ best

responses are weakly increasing in the actions of the other player. Second,

an increasing difference condition (ID) holds: In one of the treatments (H),

for each initial strategy profile, the incremental payoff from increasing the

own action is weakly higher than in the other one (L). These two properties

combined give a clear intuition why players are likely to choose higher ac-

tions in H than in L. First, because incremental payoffs are higher in H than

in L, incentives to increase actions are higher in H for fixed behavior of the

other player. Second, if players accordingly believe that the opponents will

choose higher actions in game H, this reinforces the tendency to choose high

actions by GSC. Based on these two structural properties of the game, it is

therefore intuitive to predict that actions are weakly higher for H than for

L, even though direct calculation of Nash equilibria predicts no change.

Crucially, the direction of change in the six GH puzzles satisfying strategic

complementarities (SC) and ID is always predicted correctly in this fashion.

In addition, a similar structure-based prediction in another GH example that

is not a GSC is confirmed by the data.5 In the remaining three cases, this

heuristic structural approach does not yield the wrong predictions. It is

not applicable, because the games are too complex to allow for comparative

statics results that are based purely on the structural properties of the game.

The very fact that the structural approach is intuitive and provides cor-

rect predictions for 7 out of 10 GH examples (and many other similar experi-

ments) might be regarded as a sufficient justification for its use. Nevertheless,

Eichberger and Kelsey (2007) who appeal to ambiguity aversion to explain the deviations
from equilibrium behavior.

5This example (generalized matching pennies) is not a GSC, but is simple because the
parameter only enters the payoffs of one player.
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I offer several possible foundations. The first one is most closely related to

existing literature. According to well-known monotone comparative statics

results of Milgrom and Roberts (1990) and Vives (1990), the smallest and the

largest Nash equilibrium of a parameterized GSC satisfying ID are weakly

increasing in the parameter. Thus, by focusing on such general structural

properties rather than on the specific payoff functions, one can obtain the

weak comparative statics prediction identifying the direction of change pro-

vided there is any change at all. Whether the equilibrium changes, is not

part of the prediction: The result for the GH examples that the equilibrium

does not change is also consistent with such weak predictions. Thus, even

though players do not play the Nash equilibrium in every single game, the

(weak) comparative statics are predicted accurately by results that are based

on the general structural properties of the Nash equilibrium rather than on

the specific details. One reason why this is so may be that subjects are play-

ing the Nash equilibrium of some game belonging to a wider class with the

same structural properties. For instance, suppose actual payoffs result from

a perturbation of monetary payoffs (for instance, because players have social

preferences). The perturbation does not have to be small, as long as it does

not destroy the basic structural properties. Then, the Nash equilibrium of

the perturbed game still satisfies the weak comparative statics predicted by

the structural approach. As long as one is exclusively concerned with com-

parative statics rather than point predictions, the source of the perturbation

is irrelevant.

As another justification of the structural approach, I show that the QRE

satisfies the same weak comparative statics as the Nash equilibrium: In GSC

satisfying ID, if the parameter increases, the equilibrium weakly increases

in the sense of first-order stochastic dominance. Thus, in spite of the well-

known differences between the Nash equilibrium and the QRE, they provide

similar comparative statics predictions in an important class of games.

Next, I show that a simple set of behavioral adjustment rules leads to the

same comparative statics as the structural approach (and the logit equilib-
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rium) and is thus also consistent with the experimental evidence. These ad-

justment dynamics share certain properties with well-known dynamics that

are derived from standard Cournot best-response dynamics,6 but they do

not necessarily require that the adjustment process is justifiable via best

responses.

Finally, I show that, in symmetric games with ID and multiple parameter-

independent equilibria, the comparative statics predictions implied by equi-

librium selection by risk dominance and potential maximization are consis-

tent with the approach proposed here.

To sum up, the main message of the paper is that several different the-

oretical approaches can all rationalize existing comparative statics puzzles.

This obviously makes it hard to discriminate between these theories. How-

ever, it is good news in the sense that, for an important class of games, we

can quite confidently predict the direction of treatment effects, because the

predictions can be based on a wide variety of different arguments.

In Section 2, I will sketch three of the GH examples. In Section 3, I

will introduce the structural approach as a heuristic. Sections 4 and 5 relate

the approach to the Nash equilibrium and the QRE, respectively. Section

6 derives the approach from adjustment dynamics. Section 7 discusses the

relation to selection theories. Section 8 concludes.

2 Introductory examples

I shall first sketch three of the ten GH examples.

(i) In the Kreps game, players choose actions from X1 = {0, 1} and X2 =

{0, 1, 2, 3}, respectively. Table 1 gives payoffs, where θ ∈ R+.
For all θ ∈ Θ, there are two pure Nash equilibria ((0, 0) and (1, 3)). In

addition, there is a mixed-strategy equilibrium where player 1 chooses x1 = 0

with probability 30/31, and player 2 chooses x2 = 0 with probability 1/21

and x2 = 1 with probability 20/21. Thus, an increase of θ does not affect

6See, e.g., Milgrom and Roberts 1990, Echenique 2002.
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x2 = 0 x2 = 1 x2 = 2 x2 = 3

x1 = 0 200, 50 0, 45 10, 30 20,−250
x1 = 1 0,−250 10,−100 30, 30 θ + 50, 6

5
θ + 40

Table 1: Kreps Game

the equilibrium structure. However, GH report the following results. For

θ = 0, 32% of the subjects in the role of player 1 chose the high action 1;

whereas 96% did so for θ = 300. For θ = 0, no subject in the role of player 2

chose x2 = 3, but 84% did so for θ = 300. Thus, the experimental evidence

suggests that, as θ increases, more subjects choose high actions.

I am interested in this particular comparative statics observation of GH.7

One could of course explain it with selection arguments, based for instance on

payoff dominance. However, my goal is to find an explanation of treatment

effects that also applies to games with unique parameter-independent Nash

equilibria such as the following.

(ii) In theTraveler’s Dilemma,8 two players i = 1, 2 simultaneously choose

integers xi ∈ {180, ..., 300}. Each player is paid the minimum of the chosen

numbers; in addition, the player with the lower number receives a transfer

R > 1 from the player with the higher number. Therefore, defining θ = −R,

πi (xi, xj; θ) = min (xi, xj) + θ · sign (xi − xj) . (1)

The dots on the lines in Figure 1 give the reaction functions for any θ ∈
Θ = (−∞,−1). Thus, for all θ the game has a unique Nash equilibrium
x1 = x2 = 180.

9 GH considered θ = −5 and θ = −180.10 For θ = −180, 80%
of the subjects chose actions between 180 (the minimum) and 185, whereas

80% choose actions between 295 and 300 (the maximum) for θ = −5. Thus,
7GH emphasize that for θ = 0 many subjects (68%) choose x2 = 2, the only action

that is neither part of a pure-strategy equilibrium nor of a mixed-strategy equilibrium.
8The game goes back to Basu (1994).
9This equilibrium is also the unique rationalizable strategy profile.
10Similar results have been obtained by Capra et al. (1999) for other parametrizations.
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Figure 1: Traveler’s Dilemma

as in the Kreps Game, even though the Nash equilibrium is independent of

θ, a parameter increase induces higher actions.

(iii) In the common-interest proposal game (GH, Figure 3), two players

move sequentially, according to the game tree in Figure 2.11 Thus, the strat-

egy spaces are X1 = X2 = {0, 1}. The parameter space is Θ = (0, 60). For

all θ ∈ Θ, the unique subgame perfect equilibrium is x1 = x2 = 0. GH

considered θ = 0 and θ = 58. For θ = 0, 84% of the subjects in the role

of player 1 and all the subjects in the role of player 2 chose the equilibrium

actions xi = 0. For θ = 58, however, the corresponding figures are only 46%

and 75% respectively. Hence, higher parameter values lead to higher actions.

Summing up, the following cases arise in the examples: (i) multiple pure-

strategy equilibria, (ii) a unique pure-strategy equilibrium, or (iii) a unique

subgame-perfect equilibrium. In all the examples, however, the set of pure-

strategy equilibria is parameter-independent, but there are nevertheless clear

treatment effects.
11I use the name “common-interest proposal game”, because (0, 0) is the optimal out-

come for both players.
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       Player 1    
           
           
           
     x1 = 0          x1 = 1  
           
             
                        Player 2 
 

                      (80,50)   
  x2 = 0                x2 = 1 

 
 

(90,70)     (20,10 + θ)      
         

Figure 2: A Common-Interest Proposal Game

3 The structural approach

I will now introduce the heuristic structural approach to predict treatment

effects even when the set of Nash equilibria is independent of treatments, as

in the above examples. To repeat, the approach makes no attempt to explain

why the observed play corresponds closely to the equilibrium in one case, but

not in the other; it merely predicts the direction of change in behavior across

treatments, not the relation to the equilibrium in any single experiment.

3.1 Defining the structural approach

In all the examples, there are players i = 1, 2, strategy spaces Xi and payoff

functions πi(xi, xj, θ), where θ ∈ Θ, a partially ordered set, such that:

1. Xi is independent of θ;

2. Xi is a finite set;12

12This assumption can be weakened considerably at the cost of greater technicalities. For
the purposes of interpreting the experimental evidence, the set-up is sufficiently general.
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3. Xi is equipped with a partial order ≥ that is independent of θ, with
respect to which Xi forms a lattice.13

The following properties of the game are crucial.

Definition 1 (i) πi satifies increasing differences in (xi; θ),(ID), if

∆i

¡
xHi , x

L
i ;xj; θ

¢
≡ πi

¡
xHi , xj; θ

¢
− πi

¡
xLi , xj; θ

¢
is weakly increasing in θ, that is, ∆i

¡
xHi , x

L
i ;xj; θ

H
¢
≥ ∆i

¡
xHi , x

L
i ;xj; θ

L
¢
for

all xHi > xLi , θ
H > θL, i = 1, 2, j 6= i.

(ii) πi is supermodular (SUP) if ∆i

¡
xHi , x

L
i ;xj; θ

¢
is weakly increasing in xj

for all xHi > xLi , i = 1, 2, j 6= i.

By (i), an increase in θ has the direct effect of weakly increasing the

incremental payoff for each player. Thus, for fixed behavior of the other

player, increasing own actions becomes (weakly) more attractive, so that

reaction functions are weakly increasing in θ.14 By (ii), the payoff increase

from increasing xi is non-decreasing in xj for j 6= i. Thus, the optimal

response of player i is weakly increasing in xj, that is, the game is a GSC.

The positive direct effects of higher θ on xi and the induced indirect effects

on xj are mutually reinforcing. Together, ID and SUP therefore suggest a

(weakly) positive effect of θ on actions. I thus introduce the following central

tool for predictions.

Definition 2 For a GSC which satisfies ID with respect to θ ∈ Θ, the

structure-based prediction of treatment effects is that the frequency dis-
tribution of observed play for θH weakly dominates the corresponding distri-

bution for θL < θH according to first-order stochastic dominance (FOSD).15

13A lattice requires that the infimum and supremum of each pair of elements exists in
Xi. In the following, the lattice structure will typically come from a complete order on a

finite set.
14A formal version of this statement relies on Lemma 1 in the Appendix.
15In a finite game, this reduces to the requirement that, as θ increases, the fraction

of players choosing an action up to and including any predetermined level of xi weakly
decreases.
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3.2 Experimental evidence

The first justification for such structure-based predictions is that they are

applicable in many examples, and that they are confirmed in this examples.

As an illustration, take the Kreps game. Straightforward derivations show

that this game satisfies SUP and ID with respect to the standard (total)

orders on X1, X2 and θ.16 The structure-based prediction is thus that for

θH = 300 players tend to choose higher actions than for θL = 0. This is

precisely the observed outcome. The overly strong independence prediction

obtained by simple comparison of Nash equilibria for different parameter val-

ues is a boundary case of the structure-based prediction that the equilibrium

is weakly increasing in θ. While the independence prediction does not survive

empirical scrutiny because a change in θ changes the observed actions, the

weaker comparative statics prediction is consistent with the facts.

This argument illustrates the central message of the paper: By ignoring

details of the game and focusing instead on basic structural properties, one

often obtains a weak prediction of treatment effects that is consistent with

the evidence. The structural approach is a powerful tool for explaining com-

parative statics puzzles. For instance, the same logic can be applied to five

other GH examples. Most immediately, the common-interest proposal game,

the related conflicting-interest proposal game17 and the extended coordina-

tion game also satisfy SUP and ID with respect to suitable parameters and

partial orders.18 In all three cases, like in the Kreps game, there are clear

treatment effects, even though the equilibrium set is independent of θ.

Two other GH games, the traveler’s dilemma and an auction game, are

not supermodular, but nevertheless GSC. To illustrate, consider the traveler’s

16As to ID, for both players, an increase in θ raises the benefit from choosing the highest
action (x1 = 1 and x2 = 3) rather than any other one, whereas there is no relation between
θ and the benefit for player 2 from increasing x2 from 0 to 1 or 2, or from 1 to 2. As to
SUP, for instance for player 1, the incremental payoffs increase from −200 to 10, 20 and
finally θ + 30 as player 2 increases his actions from 0 to 3.
17I use this term for the game described in Figure 4 of GH.
18Details of the arguments are available upon request.
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dilemma. Because ID still holds,19 a reduction in the transfer parameter R,

or equivalently, an increase in θ, increases incremental payoffs. Hence, even

though θ has no effect on the reaction function in the specific example, the

game structure suggests that player i’s reaction to xj is weakly increasing

in θ.20 The traveler’s dilemma corresponds to the boundary case where the

reaction functions are unaffected by the parameter change even though ID

holds. Ignoring all details of the game structure except ID and SC suggests

that a parameter increase has the direct effect of increasing actions for both

players, and that these effects are mutually reinforcing, so that actions should

increase with θ, as required by the structure-based prediction.

Beyond the GH examples, many authors have investigated coordination

games, which can be addressed similarly. As an example, consider an effort

coordination game21 with payoffs

πi (xi, xj; θ) = min (xi, xj) + θ · xi,

where xi ∈ {0, 1, ...,M} and θ = −c for some effort cost parameter c ∈ (0, 1).
For c < 1, the set of pure-strategy equilibria is the diagonal (x1 = x2).

Thus, if one uses the set of pure-strategy equilibria to predict responses to

parameter changes, increases in costs should have no effect on equilibrium

effort. The comparative statics become more counter-intuitive if one allows

for mixed-strategy equilibria. For instance, for Xi = {0, 1}, there is an equi-
librium such that each player chooses xi = 1 with probability c. Thus, as
19To see this, first note that, because of the termmin (xi, xj) in the payoff function, there

is an incentive to choose high actions. The term θ ·sign (xi − xj) acts as a counterbalance,
but less so as θ approaches zero from below. Therefore, the incremental payoff from
increasing xi is non-decreasing in θ.
20Again, Lemma 1 in the Appendix provides the formal justification of this argument.
21Several authors have analyzed the effects of changing various parameters in other 2×2-

coordination games satisfying (SUP) and (ID). For instance, in the experiments of Huettel
and Lockhead (2000), Schmidt et al. (2003), and most of the experiments of Guyer and
Rapoport (1972), the comparative-statics predictions correspond exactly to those obtained
from the structural approach, and the arguments are similar as in the following discussion
of effort coordination games. The propositions of this paper are not applicable for the
“Benefit-to-other”-treatment of Guyer and Rapoport, because (ID) does not hold.
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costs increase, agents put more weight on the high effort level, so that, para-

doxically, effort increases with costs. Unsurprisingly, experimental results

(van Huyck et al. 1990; Goeree and Holt 2005) show that for lower c more

subjects choose higher effort. The structural approach resolves the tension

between theoretical predictions and empirical observations. Effort coordina-

tion games are supermodular, because the net benefit from increasing effort

is 1− c > 0 if the original effort level is smaller than the effort of the other

player, and −c < 0 otherwise. Thus, πi satisfies ID. Therefore, the structural
prediction is that actions are weakly increasing in θ.

Another application concerns public goods experiments (e.g., Ledyard

1995), which display clear behavioral effects of the return on investment

which again cannot be captured by comparison of Nash equilibria. The games

satisfy ID, and SUP holds trivially because payoffs are additively separable.

The very fact that the predictions of the structural approach are consis-

tent with the experimental evidence is a strong argument in its favor. In

addition, the intuition for this observation is straightforward. Even subjects

who, for whatever reason, do not display Nash behavior, are likely to under-

stand the two basic structural properties: (i) High incremental payoffs make

high actions attractive for given actions of the other player; (ii) incremental

payoffs increase with the other player’s action. If players understand these

two properties, and if they believe that other players do so, too, then they

should choose high actions for high parameter values.

Before turning to more precise justifications of the structural approach, I

note that a slight modification of the idea can be used to show that a seventh

GH example, the generalized matching pennies game, can be explained along

similar lines, even though it is not a GSC (See Appendix 2 for details).22

22In this example, with an appropriate order on strategy spaces, a higher parameter
increases the equilibrium action of one player, but leaves the action of the other player

constant; while observed actions of both players are affected. Any order on the strategy
space implies that the actions are SC for one player, but strategic substitutes (SS) for the
other one. However, because the parameter only affects one of the two payoff functions, an
intuitive structure-based prediction of treatment can be given even so, and this intuitive

12



Nash Prediction Game Observed Actions Reason
Unique pure Nash Traveler’s dilemma Increasing in θ SC +
equilibrium (Capra et al. 1999, GH) ID
independent of θ Public goods games SUP +

(Ledyard 1995) ID

Unique SPE Proposal games Increasing in θ SUP +
independent of θ (GH Fig. 3 and 4) ID

Unique mixed Matching pennies Player 2: increasing SC/SS
equilibrium: (Ochs 1995, GH) Player 1: decreasing ID
increasing in θ for
player 2, constant
for player 1

Unique Bayesian Auction game (GH) Increasing in θ SC +
Equilibrium ID
independent of θ

Multiple pure Kreps game (GH) Increasing in θ SUP +
equilibria; Extended coordination ID
mixed equilibrium game (GH)
is independent of θ

Multiple pure Nash Effort coordination Increasing in θ SUP +
equilibria where (Van Huyck et al. 1990, ID
mixed equilibrium is Goeree and Holt 2005)
decreasing in θ Wolf’s dilemma

(Huettel-Lockhead 2000)

Period-2 equilibrium Capacity game Period-2 actions SUP +
independent of (Brandts et al. 2003) increasing in own ID
first-period play period-1 action,

decreasing in

opponent’s.

Table 2: Summary of Results
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As summarized in Table 2, the structural approach can thus explain the

evidence in seven of the ten examples provided by GH. In the remaining cases,

it does not provide a false prediction. It is simply not applicable because

the games do not have suitable structural properties. Loosely speaking, the

direct and indirect effects of parameter changes are not mutually reinforcing,

so that general comparative statics results cannot be derived.

4 Nash equilibrium and structural approach

A first more formal justification of the structural approach relies on a famil-

iar comparative statics results for the Nash equilibrium that was shown for

supermodular games by Milgrom and Roberts 1990, but extends to GSC.23

Proposition 1 Suppose ID and GSC hold. Then
(i) A smallest and a largest pure-strategy Nash equilibrium exist.

(ii) For both equilibria, the actions of each player are weakly increasing in θ.

Statement (i) not only guarantees existence of a Nash equilibrium, but

also makes sure that the smallest and largest equilibrium are well-defined.24

Part (ii) provides a comparative statics prediction that is fully in line with

the empirical evidence for the six GH-games that are GSC, namely that,

if the equilibrium changes, it should move upwards. As a boundary case,

Proposition 1 contains the prediction derived from direct calculation of the

Nash equilibria in the GH-examples that the actions do not change with θ.

However, consideration of the structural properties, “forgetting” the details

of the payoff functions, suggests that, if actions change at all, they should

increase with θ. One way to make this point more precise is to consider the

following more specific argument.

prediction can be justified as in the GSC case.
23See Vives (1999, p. 35).
24The smallest equilibrium exists if and only if the profile consisting of the minimal equi-

librium action for each player is itself an equilibrium; similarly for the largest equilibrium.
Of course, for some or all values of θ, the smallest and largest equilibrium may coincide.
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4.1 Nash equilibria of perturbed games

Suppose actual payoffs are perturbations of monetary payoffs, for instance,

because players have social preferences. Specifically, suppose that instead of

the monetary payoff functions πi, players have objective functions

bπi (xi, xj; θ) = πi (xi, xj; θ) + gi (xi, xj; θ) , (2)

such that πi satisfies SC and ID and the perturbation gi is such that bπi still
has this property. This could be true because gi is small, but this is by no

means the only possibility. For instance, if πi and gi both satisfy ID and

SUP in (xi, θ), so does bπi, no matter how large the perturbation is. Clearly,
Proposition 1 can still be applied: Hence, even though the Nash equilibrium

for bπi may differ substantially from the equilibrium for πi, the equilibrium is
still weakly increasing in θ.

Of course, to obtain point predictions, the perturbation would have to

be specified. As long as one is exclusively concerned with weak comparative

statics, however, there is no need to do so. Any specification of perturbations

such that actual payoffs bπi and monetary payoffs πi both have properties
SC and ID justifies weak comparative statics conclusions for bπi based on
the structural properties of πi. However, only suitable perturbations will

guarantee that the equilibrium set for bπi is increasing in θ, rather than merely
non-decreasing. In situations where the equilibrium structure is independent

of θ for πi, but the observed behavior is increasing, the correct choice of bπi
should capture this possibility.

To illustrate the idea, consider the effort coordination game with Xi =

{0, 1}. Let k > 0 and consider the effort coordination game with two effort

levels and perturbation term gi (xi, xj; θ) = kmax (xj − xi, 0). Thus, agents

display spiteful behavior, gaining utility if the other player has exercised

useless effort. The payoff matrix of the perturbed game is given in Table 3.

Suppose k < 1. Then the perturbed game still satisfies ID and SUP, and

Proposition 1 predicts that the smallest and largest equililibrium are both

weakly increasing in θ. Closer inspection reveals that the equilibrium set
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depends on θ: For high costs (θ < −(1 − k)), the only equilibrium is (0, 0).

For low costs (θ > −(1 − k)), there are multiple equilibria, including (1, 1)

as well. Thus, with this specification of preferences, the largest equilibrium

is strictly increasing in θ.

Summing up, for both πi and bπi = πi + gi the smallest and largest equi-

librium are weakly increasing in θ. However, it is independent of θ for πi,

whereas it is strictly increasing in θ for bπi. Thus, if the true behavioral model
is given by bπi, weak comparative-statics conclusions derived from the prop-

erties ID and SC of πi are correct, but for the stronger conclusion that the

equilibrium set changes with θ, it is necessary to have a perturbation of πi
(e.g., by gi).

x2 = 0 x2 = 1

x1 = 0 0, 0 k, θ

x1 = 1 θ, k 1 + θ, 1 + θ

Table 3: Payoffs in the Perturbed Effort Coordination Game Game

Of course, the interesting aspect of this section is not that there exist

suitable perturbations for which the comparative-statics can be rationalized.

In view of the substantial degrees of freedom, this should be expected.25 It is

much more interesting that the weak comparative statics carry over for wide

classes of perturbations.

5 The quantal response equilibrium

The most popular approach to the GH puzzles is based on the quantal re-

sponse equilibrium (QRE) introduced by Mc Kelvey and Palfrey (1995). This

concept does not presuppose best responses; instead players can make errors.

Specifically, consider a finite game with strategy spaces Xi = {0, 1, ..., ni};
denote the probabilities with which player i chooses action xi as pixi. Let

25See also the related discussion of the QRE below.
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εi = (εi1, ..., εini) be a vector of perturbations for player i, drawn from a

joint density fi. Then, by assumption, player i chooses ν ∈ Xi if and only if

ν maximizes the sum of the expected payoff and the perturbation, that is,

njX
xj=0

pjxjπi (ν, xj; θ) + εiν ≥
njX

xj=0

pjxjπi (xi, xj; θ) + εixi ∀xi 6= ν. (3)

Using this condition, one immediately arrives at the stochastic best-response

function or quantal response function that assigns to each probability vector

pj for player j the probability vector pi = pi(pj; θ) of choices for player i

defined by the requirement that εi satisfies (3). A QRE requires that each

player’s own error distribution is consistent with stochastic best response.

The next comparative statics result shows that the similarity in the pre-

dictions of the structural approach and the QRE is not a coincidence. As in

Haile et al. (2007), I assume that a parameter shift leaves the error distrib-

ution unchanged; this invariance assumption is discussed by these authors.

Proposition 2 Suppose a finite game with strategy spaces Xi = {0, 1, ..., ni}
satisfies SUP and ID. Suppose for a fixed error distribution, a unique QRE

p(θ) = (p1(θ),p2(θ)) exists for every θ. Then, an increase in θ shifts the

equilibrium distribution p(θ) = (p1(θ),p2(θ)) weakly according to first-order

stochastic dominance (FOSD).

Thus, a parameter increase in a game satisfying (SUP) and (ID) implies

that higher choices become more likely for the logit equilibrium. The in-

tuition for the result is quite similar to the intuition for Proposition 1. As

the parameter θ shifts upwards, increasing differences imply that, for fixed

behavior of the opponent, players are more likely to respond with higher ac-

tions. Anticipating this, it becomes even more attractive for both players to

increase their actions.

Paralleling the discussion in the previous section, the interesting aspect

of Proposition 1 is not that that there exists some kind of QRE for which

the comparative statics property holds, but that this holds quite generally
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(under the invariance assumption). Haile et al. (2008) have shown that,

because of the degrees of freedom in specifying the error distributions, the

QRE can explain any behavior in any given game. Nevertheless, as the

authors themselves point out, the QRE may still put restrictions on possible

comparative statics under the invariance assumption. However, Haile et al.

(2008, Theorem 2) follow a completely different approach: They are interested

in observing whether the behavior observed ex-post is consistent with agents

putting greater weight on actions that, given the observed distribution of

play, have benefited more from the parameter increase than others in terms

of expected payoff. To the contrary, Proposition 1 gives comparative statics

predictions purely on the basis of structural properties that are known ex

ante.

6 Adjustment dynamics

The next contribution of the paper involves a more radical suggestion: To

derive comparative statics results, it is not essential to apply an equilibrium

concept. All that is required is an appropriate theory of change. This can best

be explained by starting from standard adjustment theories, as presented for

instance in Milgrom and Roberts (1990), Milgrom and Shannon (1994) and

Echenique (2002). As the simplest case, take the framework of Section 3.1,

and assume that best-responses are unique. Define Cournot best-response

dynamics after a parameter increase from θL to θH as a sequence
©
xk
ª
=©

xk1, x
k
2

ª
; k = 0, 1, ..., as follows:

(ADJ1) x0 ∈ x(θL), the old equilibrium set of the game

(ADJ2) For k ≥ 1, xk = φ(xk−1), that is, xk results from best responses to xk−1.

Then, for GSC, these adaptive dynamics have the following properties if

the objective functions satisfy ID.

(ADJ3) x1 ≥ x0 (because of ID)
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(ADJ4) xk+1 ≥ xk (because of GSC)

(ADJ5) limk→∞x
k ∈

£
inf x(θH), supx(θH)

¤
Thus

©
xk
ª
is monotone increasing, and hence limk→∞x

k ≥ x0. The ex-

isting literature has shown that, for GSC, the limits of adjustment dynamics

have similar properties, even when best-responses are non-unique and ad-

justment dynamics are more general. For instance, Milgrom and Roberts

(1990) consider adjustment dynamics in supermodular games such that, for

any date, there is a later date after which players select a strategy that is

justifiable as a best response to behavior that is in the interval of past play.

They show that all accumulation points are in the interval bounded by the

smallest and largest new equilibrium. For similar “generalized adjustment

dynamics”,26 Echenique (2002), shows that, if play starts below the smallest

best response in a GSC (for instance, because of an upward parameter shift),

then the set of limits is contained in the same interval.

To provide restrictions on the limit of such adjustment processes in terms

of past play, as in (ADJ5), it is clearly necessary to impose conditions such

as (ADJ1) and (ADJ2) or mild generalizations that relate adjustment be-

havior to best responses. For the weaker conclusion required here that the

limit of the adjustment sequence exists and lies above the starting point,

much weaker requirements are sufficient. This conclusion holds trivially for

arbitrary sequences xk = φ(xk−1) such that:

(ADJ6) The immediate response to a change of parameter is weakly positive

(x1 ≥ x0)

(ADJ7) φ is increasing.

These conditions can be justified without direct reference to (ADJ1) and

(ADJ2) or even without assuming that choices are justifiable in terms of past

26Echenique makes the stronger requirement that play is always in the interval of best-
responses to previous play (not only eventually).
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play. Suppose that observed behavior in the treatment corresponding to θL is

given by x0, which can be below or above the old equilibrium (for instance,

because players have perturbed objective functions). Next postulate that

x1 reflects the immediate adjustment to change, not taking into account

possible adjustments of the other player. This adjustment may or may not

be a best response to x0. For instance, instead of resulting from a best

response for monetary payoffs πi, it could reflect best responses for bπi (as
in Section 4.1). If ID is satisfied, then the incremental value of increasing

the action for fixed behavior of the other players increases. Even if the

adjustment does not come from a best response, one should therefore expect

that x1 ≥ x0, as required by (ADJ6). Indeed, using Lemma 1, this conclusion

will for instance be true if players best-respond to the previous choices with

the perturbed payoffs bπi rather than πi. Thus, each player’s immediate

response to a parameter increase should be to increase the own action weakly.

Similarly, (ADJ7) can be justified as reflecting indirect effects, even when

the adjustment does not result from best responses: SUP guarantees that

a player i who thinks that the other player has the immediate impulse to

increase his actions following a parameter increase (x1j ≥ x0j) should realize

that the marginal value of increasing an action increases even further. This

would imply x2 = φ(x1) ≥ φ(x0) = x1 which is (ADJ7) for k = 1.27 Iterating

the argument leads to a justification of (ADJ7) for arbitrary values of k.

To sum up, in a GSC satisfying ID, actions should increase after a pa-

rameter increase even if the adjustment dynamics does not explicitly follow

from best-responses with monetary payoffs. As long as players increase their

actions both as a direct response to a parameter increase and as an indirect

response to higher actions of other players, which is natural under ID and

SUP, actions will increase. Of course, convergence to a Nash equilibrium

is not guaranteed without more specific assumptions. At any point of the

sequence, behavior may be below or above the equilibrium set, depending on

27Again, this conclusion can be derived formally, by assuming that players best-respond
with a perturbed payoff function as in Section 4.1.
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whatever biases the players have.

7 Equilibrium Selection

The structural approach fits nicely with selection criteria such as risk dom-

inance (Harsanyi and Selten 1988). Consider a symmetric game with Xi =

{0, 1}, that is, as in effort coordination games, payoff functions are such that
π1 (x

0, x00; θ) = π2 (x
0, x00; θ) for arbitrary (x0, x00; θ) ∈ {0, 1} × {0, 1} × Θ.

Suppose there are two pure-strategy equilibria (0, 0) and (1, 1). (0, 0) is risk

dominant if both players prefer 0 if they expect the other player to choose

0 and 1 with probability 1/2 each. In effort games, risk dominance predicts

that equilibria with higher effort levels are chosen as costs decrease (Goeree

and Holt 2005). More generally, the comparative statics implied by the struc-

tural approach and by risk dominance coincide, as the following simple result

shows.28

Proposition 3 Consider a symmetric game with Xi = {0, 1}, such that ID
holds for the standard order on {0, 1}. Suppose that the set of Nash equilibria
is {(0, 0) , (1, 1)} for all θ ∈ Θ. Then, if (1, 1) is selected by risk dominance

for θL; it is also selected for θH ≥ θL.

Proof. See Appendix.
An alternative approach to equilibrium selection that generalizes to games

with more than two players and continuous actions is available for potential

games (Monderer and Shapley 1996, Goeree and Holt 2005). Such games are

characterized by the existence of a potential V (x1, x2; θ) with the defining

property that π1 (x001, x2; θ)−π1 (x01, x2; θ) = V (x001, x2; θ)−V (x01, x2; θ) for all
x01, x

00
1 ∈ X1, x2 ∈ X2, θ ∈ Θ, and analogously for π2.29 Potential-maximizing

28The discussion in Section 4.2 shows that, in symmetric games, (ID) suffices to generate
monotone comparative statics.
29With continuously differentiable games, this boils down to the requirement that the

partial derivatives of V with respect to each xi coincide with those of πi (xi, xj ; θ).

21



strategy profiles are pure-strategy equilibria, but the converse is not necessar-

ily true (Monderer and Shapley 1996): In games with multiple equilibria such

as effort coordination games, there is typically a unique potential-maximizing

profile which can be used for equilibrium selection. Monderer and Shapley

(1996) have already argued that, in effort games, the observed effects of in-

creasing costs can be explained using potential maximization, showing that,

in the experiments of van Huyck et al. (1990), potential maximization selects

the lowest equilibrium for high effort costs and the highest equilibrium for

low effort costs. This is true more generally.30

Proposition 4 In a symmetric game satisfying ID, suppose
¡
xH , xH

¢
and¡

xL, xL
¢
are unique potential maximizers for θH and θL (θH ≥ θL), respec-

tively. Then xL ≤ xH.

Proof. See Appendix.
Summing up, the structural approach yields comparative statics predic-

tions that are compatible with standard selection methods where they apply.

8 Conclusions

I have introduced a heuristic “structural” approach to predict treatment ef-

fects even when Nash equilibria are the same in the different treatments.

The resulting comparative statics predictions are supported by the experi-

mental observations in all cases that I am aware of, in particular, in the GH

examples. I have shown that the structural approach is consistent with the

predictions of the QRE and, where it applies, of equilibrium theories. Fi-

nally, I explain treatment effects by reference to an adjustment process that

does not require any equilibrium concept.

30Relatedly, Echenique (2004) shows that finite two player ordinal potential games are
GSC, so that when ID holds, the smallest and largest equilibrium must increase weakly
with parameters. Proposition 4 sharpens the result by showing that the same is true for
the potential maximizers.
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As GH have already explained some of the experimental observations un-

der consideration, it is legitimate to ask why another approach is needed.

First, the structural approach brings together two literatures that rarely

speak to each other, namely the experimental literature and the literature

on monotone comparative statics in games with strategic complementarities.

Hopefully, this exercise contains potential for further cross-fertilization.31

Second, the structural approach is more basic than the alternative sugges-

tions: Without imposing a particular story about what subjects do for any

given parameter value, it shows that structural properties of the game are

useful to explain treatment effects. Third, I provide a unified explanation

of seven of the ten GH examples which, to my knowledge, no other single

approach does. While the QRE, for instance, has several useful applications

elsewhere, I am only aware of two types of GH paradoxes that are explained

by the concept.32 In addition, as I indicate in the paper, my predictions are

also borne out in many examples that were not treated by GH. Fourth, the

paper provides a suggestion that is interesting in its own right: To under-

stand comparative statics, it is not absolutely essential to have a theory of

point predictions — it suffices to have a theory of reaction to change. Finally,

though this was not detailed here, the approach can be applied to problems

that do not concern comparative statics directly. For instance, Brandts et

al. (2006) consider a two-stage game of capacity choice where the structural

approach correctly predicts the effects of (endogenous) capacity choices on

second-period actions.33

31A vaguely related experimental contribution of Chen and Gazzale (2004) demonstrates
that learning in certain games with strategic complementarities, namely supermodular
games, works particularly well. However, the authors do not treat comparative statics.
32GH use the QRE to explain the traveler’s dilemma and the matching pennies game;

in addition, it is useful for effort cost games.
33Two players can make costly, but not fully binding capacity commitments Ci before

they decide on investments Ii. Payoff functions πi (Ii, Ij ;Ci, Cj) are supermodular in

(Ii,−Ij) and have increasing differences in (Ii, Ij ;Ci,−Cj). The subgame equilibria in
stage 2 are independent of first-period choices. Interpreting Ci and Cj as exogenous
parameters of the ensuing subgame, however, the structural approach correctly predicts
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It would be interesting to extend the approach to other solution con-

cepts. A natural candidate is the cognitive hierarchy model (e.g., Camerer

et al. 2004), which assumes that players differ with respect to the extent of

strategic thinking they carry out. Like the QRE, the model is consistent with

comparative-statics observations in the games discussed here, for instance in

coordination games. It appears quite conceivable that general comparative

statics results are also available for cognitive hierarchy models in GSC.

In spite of the large number of conceivable applications, it is important

to recognize the limitations of the approach. First, obviously, it does not

provide point predictions. Second, there are examples where the direct and

indirect effects of parameter changes are not mutually reinforcing, so that no

comparative statics predictions are possible without relying on the concrete

specification. Third, I am convinced that cleverly designed experiments can

show that there are some GSC satisfying ID, for which the observed actions

are not increasing in the parameter. The challenge for future experimental

work is to discover under which circumstances such violations of the struc-

tural approach will occur.

9 Appendix

9.1 Appendix 1: Proofs

The following well-known monotone comparative statics (Topkis 1978) result

will be helpful.

Lemma 1 Let f ((x, τ) be a real-valued function defined on X×T , where X

is a complete lattice and T is a partially ordered set. Suppose f satisfies in-

creasing differences with respect to (x, τ). Then g(τ) ≡ argmaxx∈X f ((x, τ)

is a weakly increasing correspondence.34

that Ii should be non-decreasing in Ci and non-increasing in Cj for j 6= i according to
Proposition 1.
34g(τ) is weakly increasing if τL < τH implies min g(τL) ≤ min g(τH) and max g(τL)
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In the following applications, X will correspond to the strategy set of one

player; τ will be the strategy set of the other player or the parameter θ.

9.1.1 Proof of Proposition 2

Proposition 2 is a simple corollary of the following result.

Lemma 2 Suppose πi (xi, xj; θ) satisfies SUP and ID. Then
(i) For fixed choice probabilities of the opponent, pj, an increase in θ shifts

the stochastic best response pi(pj; θ) according to FOSD.

(ii) The stochastic best response pi(pj; θ) is weakly increasing in pj.

Proof. (i) For ν ∈ {0, 1, ..., ni}, the probability that xi ≤ ν is chosen is

Pν(θ) = prob

⎛⎝ max
xi∈{0,1,...,ν}

njX
xj=0

pjxjπi (xi, xj; θ) + εixi ≥
njX

xj=0

pjxjπi (x
0
i, xj; θ) + εix0i

⎞⎠
∀x0i > ν. (4)

By ID,
njX

xj=0

pjxjπi (xi, xj; θ)−
njX

xj=0

pjxjπi (x
0
i, xj; θ)

is weakly decreasing in θ for all x0i > ν. Because εix0i − εixi is independent of

θ by the invariance property, Pν(θ) is therefore weakly decreasing in θ.

(ii) Suppose r < s ∈ {0, ..., xj}. It suffices to show that replacing any pj

by pjε ≡
³
pj0, ...,p

j
r − ε, ...,pjs + ε, ...,pjnj

´
for ε ∈ (0, qr] leads to an FOSD-

shift in pi. This will be true if, as ε increases, Pν(θ) is weakly larger for ε = 0

than for ε > 0 for all ν ∈ {0, 1, ..., ni}. This holds, because (SUP) implies

≤ max g(τH) , where the inequalities on X refer to some arbitrary partial order.
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njX
xj=0

pjεxjπi (xi, xj; θ)−
njX

xj=0

pjεxjπi (x
0
i, xj; θ)−

njX
xj=0

pjxjπi (xi, xj; θ) +

njX
xj=0

pjxjπi (x
0
i, xj; θ) = (5)

ε (πi (xi, s; θ)− πi (x
0
i, s; θ)− πi (xi, r; θ) + πi (x

0
i, r; θ)) ≤ 0. (6)

Now note that, with FOSD as a partial order, Pi the set of distributions on

Xi is a complete lattice (Echenique 2003, Lemma 1); this structure carries

over to P = Pi × Pj. Further, by Lemma 2, the stochastic best response

correspondence shifts out as θ increases. Denote the interval of probability

vectors in P that are greater or equal to some p as U(p). Since the best-

response correspondence for θH > θL is weakly increasing by part (ii) of the

lemma, it maps U(p(θL)) into itself. Its fixed point must therefore satisfy

p(θH) ≥ p(θL).

9.1.2 Proof of Proposition 3

In this symmetric setting, (1, 1) is selected by risk-dominance for θL if and

only if

πi
¡
1, 1; θL

¢
− πi

¡
0, 1; θL

¢
≥ πi

¡
0, 0; θL

¢
− πi

¡
1, 0; θL

¢
. (7)

Applying ID to both sides of (7) shows that analogous inequalities hold with

θL replaced with θH , so that (1, 1) is selected by risk-dominance for θH .

9.1.3 Proof of Proposition 4

For xL, xH ∈ X1 = X2, θ ∈
©
θL, θH

ª
, V

¡
xL, xL; θ

¢
− V

¡
xH , xH ; θ

¢
=

V
¡
xL, xL; θ

¢
− V

¡
xH , xL; θ

¢
+ V

¡
xH , xL; θ

¢
− V

¡
xH , xH ; θ

¢
.
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Thus, the definition of the potential function implies

V
¡
xL, xL; θ

¢
− V

¡
xH , xH ; θ

¢
=

π1
¡
xL, xL; θ

¢
− π1

¡
xH , xL; θ

¢
+ π2

¡
xL, xH ; θ

¢
− π2

¡
xH , xH ; θ

¢
.

Using ID, therefore, if xL > xH (contrary to the assertion of the proposition),

for θH > θL

V
¡
xL, xL; θH

¢
− V

¡
xH , xH ; θH

¢
≥ V

¡
xL, xL; θL

¢
− V

¡
xH , xH ; θL

¢
.

Further, because xL is the unique maximizer of the potential function for θL,

V
¡
xL, xL; θL

¢
− V

¡
xH , xH ; θL

¢
> 0.

Taking the last two inequalities together, xH cannot maximize the potential

for θH , which contradicts its definition.

9.2 Appendix 2: Generalized matching pennies

Even for asymmetric games that do not satisfy SC, the structural approach

is sometimes useful. A case in point is generalized matching pennies, with

Xi = {0, 1} and Θ = {44, 80, 320} and payoffs as in Table 4.

x2 = 0 x2 = 1

x1 = 0 θ, 40 40, 80

x1 = 1 40, 80 80, 40

Table 4: Payoffs in the Generalized Matching Pennies Game

Identify a mixed strategy of player i, σi, with the probability of choosing

action 1. For all θ ∈ Θ = {44, 80, 320}, the reaction correspondence for
player 2 is given by the same dashed line R2 (σ1; θ) in Figure 3, while it

depends explicitly on θ for player 1. The unique mixed-strategy equilibrium

is σ∗1 =
1
2
, σ∗2 = 1− 40

θ
. Thus, unlike in the earlier examples, only player 1’s

equilibrium action is independent of θ: Player 2’s choice x2 is increasing in θ,
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Figure 3: Generalized Matching Pennies

as the probability with which x2 = 1 is played increases in θ. As θ increases

from 44 to 80 and 320, the percentage of subjects in the role of player 1

choosing the high action decreases from 92% to 52% and then to 4%, whereas

the corresponding values for player 2 increase from 20% to 52% and then to

84%. Thus, contrary to the prediction of the mixed-strategy equilibrium both

players’ actions change as θ does. Intuitively, as player 1’s payoff function

satisfies ID with respect to (−x1, θ),35 an increase in θ directly reduces his

incremental benefits from higher actions.36 Next, because π2 (x2, x1; θ) is

supermodular in (x2,−x1),37 a reduction in x1 from 1 to 0 has the indirect

effect of increasing the incremental benefit for player 2 from increasing x2

from 0 to 1.38 These properties suggest that, when θ increases, player 1’s

action should decrease, whereas player 2’s action should increase.

I first prove such a comparative statics result for games with four struc-

tural properties that hold for generalized matching pennies, but one addi-

35This means that ∆1
¡
xH1 , x

L
1 ;x2; θ

¢
is weakly decreasing in θ.

36When x2 = 0, this benefit is 40− θ; when x2 = 1, this benefit is independent of θ.
37This means that ∆2

¡
xH2 , x

L
2 ;x1; θ

¢
is weakly decreasing in x1.

38For x1 = 1, this incremental benefit is −40, for x1 = 0, it is 40.
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tional requirement that obviously does not hold, namely existence of a unique

pure-strategy Nash equilibrium.

Proposition 5 Suppose both players have well-defined reaction functions;
and there is a unique pure-strategy Nash equilibrium x(θ) for each θ. Suppose

further that the following properties hold:

(SUP1) π1 (x1, x2; θ) is supermodular in (x1, x2).

(SUP−2 ) π2 (x2, x1; θ) is supermodular in (x2,−x1).
(ID−1 ) π1 (x1, x2; θ) satisfies increasing differences in (−x1, θ).
(IND2) π2 (x2, x1; θ) is independent of θ.

Then x1(θ) is weakly decreasing in θ, and x2(θ) is weakly increasing in θ.

Proof. Let
¡
xL1 , x

L
2

¢
be the equilibrium for θL. By (SUP−2 ) and Lemma

1 the reaction function of player 2 is weakly decreasing in x1, and by (IND2),

R2
¡
x1; θ

L
¢
= R2

¡
x1; θ

H
¢
. Thus, the equilibrium

¡
xH1 , x

H
2

¢
for θH lies on

R2
¡
x1; θ

L
¢
, implying

xH1 ≤ xL1 and xH2 ≥ xL2 or x
H
1 ≥ xL1 and xH2 ≤ xL2 . (8)

It therefore suffices to show that xH1 ≥ xL1 and xH2 ≤ xL2 cannot hold simul-

taneously except if both hold with equality. First, I show that xH1 > xL1 and

xH2 < xL2 cannot hold simultaneously. Because R2
¡
xH1 ; θ

H
¢
= R2

¡
xH1 ; θ

L
¢
is

weakly decreasing by (SUP−2 ), clearly x
H
1 > xL1 implies x

H
2 = R2

¡
xH1 ; θ

H
¢
≥

R2
¡
xL1 ; θ

H
¢
= R2

¡
xL1 ; θ

L
¢
= xL2 . Next, I exclude the possibility that x

H
1 > xL1

and xH2 = xL2 . This would require that R2
¡
x1; θ

H
¢
= R2

¡
xL1 ; θ

H
¢
is horizon-

tal to the right of
¡
xL1 , x

L
2

¢
; the analogous statement would have to hold for

R1
¡
x2; θ

H
¢
. This would contradict uniqueness of the equilibrium. By similar

reasoning I exclude the possibility that xH2 < xL2 and x
H
1 = xL1 . Therefore (8)

requires xH1 ≤ xL1 and xH2 ≥ xL2 .

By (SUP1) and (SUP−2 ), actions are strategic complements for player 1

and strategic substitutes for player 2. Figure 4 suggests why a clear com-

parative statics result can be obtained even so. For simplicity, the figure

assumes continuous action spaces and presupposes that R1 (σ2; θ) is strictly
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Figure 4: Understanding Generalized Matching Pennies

increasing, whereas R2 (σ1; θ) is strictly decreasing; the proof of Proposition 5

extends the argument to reaction functions that are merely weakly increasing

and weakly decreasing, respectively. Crucially, an increase in the parameter

affects only the payoffs of one player, shifting his (increasing) reaction func-

tion inwards while leaving the other player’s (decreasing) reaction function

constant. Hence, the equilibrium must move to the left and upwards.

Even though generalized matching pennies only has a mixed-strategy

equilibrium, the result applies. The mixed-strategy equilibrium can be shown

to be the pure-strategy equilibrium of a game satisfying the assumptions of

Proposition 5. This game has strategy space
P

i = [0, 1], corresponding to

the set of probability distributions on Xi; payoffs correspond to the expected

payoffs of the original game.39 Hence, comparative statics follow from basic

structural properties.

39A related procedure was applied by Echenique (2003) who shows that the mixed
extension of a GSC is still a GSC.
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