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Abstract

The bivariate probit model is frequently used for estimating the effect of an endogenous binary

regressor on a binary outcome variable. This paper discusses simple modifications that maintain the

probit assumption for the marginal distributions while introducing non-normal dependence among the

two variables using copulas. Simulation results and evidence from two applications, one on the effect

of insurance status on ambulatory expenditure and one on the effect of completing high school on

subsequent unemployment, show that these modified bivariate probit models work well in practice, and

that they provide a viable and simple alternative to the standard bivariate probit approach.
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1 Introduction

The bivariate probit model provides a convenient setting for estimating the effect of an endogenous binary

regressor on a binary outcome variable. The generic recursive version of the model can be expressed as

y1 = 1(x′β + αy2 + ε1 > 0) (1)

y2 = 1(z′γ + ε2 > 0) (2)

where 1(·) is the indicator function and x and z are vectors of covariates. The main interest is in the

structural parameter α, and it is assumed that ε1 and ε2 have a bivariate standard normal distribution

(independently of x and z) with correlation ρ:

F (ε1, ε2) = Φ2(ε1, ε2, ρ) (3)

It follows that the joint conditional probability function f(y1, y2|x, z) is given by

f(y1, y2|x, z) = Φ2[s1 (x′β + αy2), s2 (z′γ), s1 s2 ρ] (4)

where s1 = 2y1 − 1 and s2 = 2y2 − 1. For α = 0, (4) reduces to a “seemingly unrelated” model. Closely

related is the sample selection model where

y1 = 1(x′β + ε1 > 0)

is observed if z′γ + ε2 > 0, and unobserved else.

The bivariate probit model has been used in numerous economic applications, among them the effect

of attending catholic high school on graduation (Evans and Schwab, 1995, Vella, 1999), the effect of early

childbearing on high school completion (Ribar, 1994), the effect of insurance status on mortality (Bhat-

tacharya et al., 2006), the effect of hospital type on delivery by Cesarean section (Fabbri and Monfardini,

2008), and the effect of receiving any first-year financial aid on completing a Ph.D. program within five

years (Stock et al., 2009), to name but a few.

A key property of the bivariate probit model is that the joint model simplifies to two univariate probit

equations under independence (ρ = 0), since F (ε1, ε2) has standard normal marginals following from (3). It

1



is a common view that the bivariate normal distribution is the only (simple) bivariate family of distributions

with this property (e.g., Bhattarcharya et al., 2006). The bivariate probit model is, by the same token,

seen as the logical generalization of the univariate probit model.

One objective of the paper is to correct this misapprehension. While a given joint distribution defines

exactly one set of marginal distributions, the opposite does not hold. In fact, there are infinitely many

other joint distribution functions F (ε1, ε2) with probit marginals.

The second contribution is a novel framework for specification and estimation of alternative bivariate

binary response models in a relatively simple parametric setting. This framework integrates the copula

approach into the bivariate binary response model defined by (1) and (2).

Any joint distribution function has a copula representation in which the specification of dependence

and marginals is explicitly separated, or “uncoupled”. Copulas can be used to build alternative joint

distributions that preserve the probit assumption for the marginals but do not impose joint normality. In

particular, one can recur to a set of well known parametric families of copula functions that differ in their

dependence properties but preserve the simplicity of the bivariate probit.

These models are potentially useful in situations where one has confidence in the specification of the

probit marginals but worries about misspecification of the dependence structure of the bivariate probit

model. For example, the conditional expectation function E(ε1|ε2) may be non-linear rather than linear,

as implied by the bivariate probit.

In this paper, three parametric copula functions are investigated in the context of the bivariate binary

response model: the Normal copula, Frank’s copula and Clayton’s copula. Having derived the three copula

representations for the bivariate model, a series of Monte Carlo simulations show that it is possible to

empirically discriminate between the different copulas. Furthermore, using a wrong copula can lead to

substantial bias in the estimation of structural parameters.

Finally, the new approach is illustrated in real data examples, first an application to the endogeneity of

insurance choice in a model for ambulatory health expenditures, following Deb, Munkin, and Trivedi (2006),

and second an application relating to the joint determination of high school completion and post-school

unemployment incidence, based on Li (2006).
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2 The Model

2.1 Copula Functions

Copulas offer a convenient representation of arbitrary joint distribution functions, with the key property

being that the specification of the marginal distributions and the dependence structure is separated. The

earliest copula use in econometrics was Lee (1983) who suggested, in the context of a sample selection model,

to use a bivariate normal copula for generating dependence between two continuous random variables, one

with normal marginal (the continuous outcome variable) and one with logistic distribution (the error in the

latent selection equation). The first econometric applications to discrete outcomes were provided by van

Ophem (1999, 2000) who used a bivariate normal copula to generate joint distributions for two random

variables with Poisson/Poisson and Poisson/normal marginals, respectively.

The systematic consideration of non-normal copulas started with Smith (2003) who specified eight dif-

ferent copulas for normal/normal and normal/gamma marginals. Further contributions in this area include

Smith (2005) who used five different copulas in a switching regression model for continuous outcomes, and

Zimmer and Trivedi (2006) who used the Frank copula for negative binomial/normal marginals. An intro-

duction to the copula method for empirical economists is provided by Trivedi and Zimmer (2007), see also

Nelson (2006).

Formally, a copula is a multivariate joint distribution function defined on the n-dimensional unit cube

[0, 1] such that every marginal distribution is uniform on the interval [0, 1]. For example, the normal, or

Gaussian, copula, for n = 2, is

P (U ≤ u, V ≤ v) = C(u, v) = Φ2(Φ−1(u),Φ−1(v); θ) (5)

where Φ and Φ2 are the uni- and bivariate cdfs of the standard normal distribution, and θ is the coefficient

of correlation. Two examples for copulas with closed form expressions are Clayton’s copula

C(u, v) = (u−θ + v−θ − 1)−1/θ (6)

and the Frank copula

C(u, v) = −θ−1 log

{
1 +

(e−θu − 1)(e−θv − 1)
(e−θ − 1)

}
(7)
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The marginal distributions are given by P (U ≤ u, V ≤ 1) = C(u, 1) and P (U ≤ 1, V ≤ v) = C(1, v),

respectively. It is easy to verify that all three copulas have the property that their marginal distributions

are uniform, as C(u, 1) = u and C(1, v) = v.

The significance of copulas lies in the fact that by way of transformation, they can be used to generate

joint distribution functions for random variables with arbitrary, non-uniform marginals. Let u = Fx(x)

and v = Fy(y). Then G(x, y) = C(Fx(x), Fy(y)) is a joint distribution function for x and y with marginal

distribution functions Fx(x) and Fy(y). Even more importantly, a theorem due to Sklar (1959) says that

any joint distribution function can be expressed as a copula applied to the marginal distributions, and that

this representation is unique for continuous random variables x and y.

The practical significance of copula functions in empirical modeling derives from the fact that they can

be used to build new multivariate models for given univariate marginal component cdf’s. If the bivariate

cdf F (x, y) is unknown, but the univariate marginal cdf’s are of known form, then one can choose a copula

function and thereby generate a representation of the unknown joint distribution function. The key is that

this copula function introduces dependence, captured by additional parameter(s), between the two random

variables (unless the independence copula C(u, v) = uv is chosen). The degree and type of dependence

depends on the choice of copula.

I consider four copula functions in this paper, the normal copula, Frank’s copula, Clayton’s copula, and

the independence copula C(u, v) = uv. The marginals are standard normal in each case, corresponding to

standard probit models for the two binary dependent variables under independence. The normal copula

model is then equivalent to the bivariate normal distribution, as

F (x, y) = Φ2[Φ−1(Φ(x)),Φ−1(Φ(y))] = Φ2(x, z)

To describe the differences in the dependence structure implied by these copulas, correlation is not a good

summary statistic. First, it detects only linear dependence, whereas dependence in copulas is non-linear

in general. Second, and relatedly, it is not invariant to transformation of the marginals. As a consequence,

other measures have to be used, and a common one is Kendall’s τ , a measure of the degree of concordance.

Imagine drawing to random pairs (U1, V1) and (U2, V2) from the joint distribution of U and V . Then τ is
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defined as

τ = P [(U1 − U2)(V1 − V2) > 0]− P [(U1 − U2)(V1 − V2) < 0]

τ can vary between -1 and 1. It is zero if U and V are independent. Not all copulas cover the full

spectrum of possible τ ’s. If they do so, they are called comprehensive. The normal and Frank copulas are

comprehensive, the Clayton copula (6) is not, the reason being that it only captures positive dependence.

It is “half comprehensive”, however, since τ can take any value between 0 and 1. Of course, one can

always reflect a Clayton copula, modeling the relationship between U and −V instead, in which case the

dependence is strictly negative, with τ ’s between -1 and 0.

Additional insight into the nature of dependence implied by these copula models can be obtained from

contour plots of the joint density function or, alternatively, the conditional expectation functions (CEFs).

Both are not invariant to the choice of marginal distribution. In this paper, the interest is in standard

normal marginals that correspond to the probit assumption. The CEF of the bivariate normal distribution

is linear, with E(Y |X = x) = ρx. For the Clayton and Frank copula, simple expressions for the conditional

expectations are not available, but it is straightforward to obtain them by way of simulation. Figures 1

and 2 show a sample of 500 draws from the Frank and Clayton copulas, with standard normal marginals,

for θ = 3.3 and θ = 1, respectively. Also shown are the CEFs (obtained from a nonparametric regression)

as well as the linear regression line.

The Frank copula is symmetric. Its CEF is near linear in the center but flattens out in the tails. This is

an interesting feature that may be of interest in applications to sample selection models where the linearity

of the CEF of the bivariate normal distribution lacks plausibility when selection probabilities are very

small. The Clayton copula looks quite different. It is not symmetric, and the CEF shows much stronger

dependence in the left tail of the distribution than in the right. Again, this is a distinctive feature that may

be a-priori desirable in some applications. Finally note that the tail behavior of the CEF is not directly

related to the concept of “tail dependence” that is used in finance. (Upper) tail dependence is defined as

the left limit, for v → 1, of the expression P (U > u|V > v). For the normal copula, these two events are

independent in the limit, although the CEF is linear. Other copulas (among them the t copula) allow for
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tail dependence.

2.2 Likelihood function for the bivariate binary response model

The bivariate binary response model defined by (1) and (2) has a generic probability function defined by

four terms:

P (y1 = 0, y2 = 0|x, z) = P (ε1 ≤ −x′β, ε2 ≤ −z′γ)

P (y1 = 1, y2 = 0|x, z) = P (ε1 > −x′β, ε2 ≤ −z′γ)

P (y1 = 0, y2 = 1|x, z) = P (ε1 ≤ −x′β − α, ε2 > −z′γ)

P (y1 = 1, y2 = 1|x, z) = P (ε1 > −x′β − α, ε2 > −z′γ)

Under a copula representation with probit marginals, these can be written as

P (y1 = 0, y2 = 0) = C[Φ(−x′β),Φ(−z′γ)] (8)

P (y1 = 1, y2 = 0) = C[1,Φ(−z′γ)]− C[Φ(−x′β),Φ(−z′γ)] (9)

P (y1 = 0, y2 = 1) = C[Φ(−x′β − α), 1]− C[Φ(−x′β),Φ(−z′γ)] (10)

P (y1 = 1, y2 = 1) = 1− C[Φ(−x′β − α), 1]− C[1,Φ(−z′γ)] + C[Φ(−x′β − α),Φ(−z′γ)] (11)

The joint probabilities depend on the selected copula as well as on four parameters, ξ = (β, γ, α, θ),

where θ is the dependence parameter of the copula function. If the true copula is assumed to belong to a

parametric family C = {Cξ, ξ ∈ Ξ}, a consistent and asymptotically normally distributed estimator of the

parameter ξ can be obtained through maximum likelihood method.

Assuming an independent sample of n observations (yi1, yi2, xi, zi), the likelihood function L(ξ; y1, y2, x, z)

is proportional to

n∏
i=1

P (yi1 = 1, yi2 = 1)yi1yi2 × P (yi1 = 1, yi2 = 0)yi1(1−yi2)
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×P (yi1 = 0, yi2 = 1)(1−yi1)yi2 × P (yi1 = 0, yi2 = 0)(1−yi1)(1−yi2)

Numerical optimization methods can be used to maximize this function. These can employ analytical first

derivatives that have a relatively tractable form. For example,

∂P (y1 = 0, y2 = 0|ξ)
∂β

= −cu[Φ(−x′β),Φ(−z′γ)]φ(−x′β)x

where cu = ∂C(u, v)/∂u. A formal requirement for identification is that there is at least one exogenous

regressor with a non-zero coefficient, i.e., β 6= 0 or γ 6= 0 (Wilde, 2000). The maximum likelihood

estimator has the usual asymptotic properties, as long as the model is correctly specified. Perhaps it is

more pertinent to think of these estimators as providing best approximations to an unknown true model,

in a quasi-likelihood sense (White, 1982), and then a robust covariance estimator should be used.

3 A Simulation Study

To explore the performance of the maximum likelihood estimator under the various copula assumptions, I

report results for a small simulation experiment designed to evaluate the bias and accuracy of the estimators

as well as model selection.

The data generating process (DGP) is a simple recursive model for two binary dependent variables

with probit margins:

y1 = 1(β0 + β1x+ αy2 + ε1 > 0)

y2 = 1(γ0 + γ1z + ε2 > 0)

where (β0, β1, γ0, γ1, α) = (0.5,−0.5, 0, 1, 0.5). In all cases x and z are iid Gaussian with mean zero and

standard deviation 1.

The stochastic errors ε1 and ε2 are generated from three alternative copula functions:

• Normal copula with ρ = 0.5

• Frank copula with θ = 3.3
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• Clayton copula with θ = 1

The dependence parameters have been chosen to yield the same value for τ in all three cases, namely

0.33. The marginals are standard normal, meaning that a probit link applies to both y1 and y2 at the

marginal level under independence. Given the parameter values and the distribution of x and z, the mean

of y1 is approximately 73%, while the mean of y2 is approximately 50%. The simulations are conducted

for three sample sizes n = 500, 1000, 5000, and run for r = 5000 replications each.

The results are shown in Table 1 (Normal DGP), Table 2 (Frank DGP) and Table 3 (Clayton DGP).

When looking at the results, there are two key questions of interest. First, what are the biases that result

from estimating the wrong model?; and second, do tests and model selection reveal the right model? In

Table 1, for example, the parameter of the exogenous regressor β1 (the true value is -0.5) is estimated

well regardless of model and sample size. (Similarly, the means of the estimated parameters for γ0 and γ1

do not show any systematic deviations from their true values and hence are not reported in the tables.)

However, the parameter of the endogenous regressor α is subject to bias in the misspecified models. The

bias is very large for the independence model, where it amounts to over 100 % but there is also substantial

bias for the Clayton copula. For n = 500, for instance, the Clayton mean is 0.549, compared to the true

value of 0.5. The bias does not vanish as the sample size increases.

The average likelihood ratio test statistic for the independence model against the normal model is 11.6

for n = 500, increasing to 107.4 for n = 5000. While the simulation results show that the copula models

do well in detecting dependence, they also show that larger samples are needed to reliably discriminate

between the three copulas with dependence. For example, while the correctly specified normal copula

model has the highest average log-likelihood even if n is only 500, the Frank copula model is picked instead

in a substantial proportion of instances (33.6%) when model selection is based on the highest log-likelihood

value. The situation improves considerably when the sample size is increased to 5000. Now, the correct

model is picked in 80% of all simulation runs.

These conclusions are largely confirmed by the other two DGPs in Tables 2 and 3. In Table 2, data are

generated from a Frank copula with dependence parameter θ = 3.3. Again, estimating the correct model
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estimates the true parameter values accurately on average, even for the smallest sample size, whereas

estimating a misspecified model tends to overestimate the structural parameter α. There is one exception,

though, since the normal copula appears to provide an unbiased estimator as well, indicating a certain

degree of robustness. Also in terms of log-likelihood value, Frank and normal copula are closest to each

other, which was already true under the normal DGP in Table 1. In a different context, Prokhorov and

Schmidt (2009) point to the possibility of robust estimation in the class of radially symmetric copulas,

which includes the Gaussian and the Frank copula.

By contrast, the Clayton copula is not a good substitute for the Frank copula, at least for the parameters

chosen in this simulation experiment, as it overestimates the structural parameter α by about 10 percent.

In the large sample, the Clayton model is almost never picked (only in 0.6% of all cases).

Finally, in Table 3, data were generated from the Clayton copula with true dependence parameter θ = 1,

corresponding to a Kendall’s τ of 0.33. The empirical distinctiveness of the Clayton model is evident from

the last column of Table 3, where it is seen that even in the small sample, model selection favors the (true)

Clayton model in a vast majority of cases (71.4%), increasing to near uniform selection (97.9%) in the

large sample. The large sample bias in the structural parameter is larger for the Frank model than for the

normal model (about 10 % as compared to 5%), whereas the independence model overestimates the true

parameter by a factor of almost 1.5.

The simulations document some promise of the proposed modified bivariate probit models for applied

work. First, these models are identifiable through their different dependence patterns even in relatively

small samples, and log-likelihood based selection criteria work quite well. Second, these modified models

are relevant, since bias results when the wrong model is chosen. However, it is also true that if the true

DGP has dependence, then it is much better to use any model with dependence (regardless of whether it is

the right or the wrong one) for estimating the structural parameter α, than it is to assume independence.

Third, and finally, it is encouraging that these models can in fact disentangle the direct effect of y1 on y2

from the indirect effect exerted through the dependence between the error terms ε1 and ε2.
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4 Application 1: Medical Expenditures

Deb, Munkin, and Trivedi (2006) (in the following: DMT) analyzed the determinants of medical expendi-

ture in a two-part framework, i.e., distinguishing between the extensive margin (whether expenditures are

zero or positive) and the intensive margin (positive expenditures). This is a common approach in studies of

health utilization, as a substantial fraction of observations is typically zero. In particular, DMT considered

a simultaneous recursive system of equations where insurance plan choice is modeled through the multi-

nomial probit model and endogeneity of insurance status in the health expenditure equation arises from

correlated unobservables. Results were obtained using Bayesian posterior simulation via Gibbs Sampler,

applied to data from the 1996 – 2001 waves of the Medical Expenditure Panel Survey.

The application reported here departs from DMT in a number of dimensions. First, I use a subset of

the DMT data, excluding all individuals enrolled in a fee-for-service plans. The remaining individuals are

either part of an health maintenance organization (HMO), a rather restrictive insurance model involving

a gatekeeper physician and a preselected network of providers, or they are enrolled in a preferred provider

organization (PPO) plan. The PPO plans also have a gatekeeper but leave otherwise more provider choice.

The restriction to PPO and HMO plans yields a sample of 12,382 persons, 15 percent of which had no

ambulatory expenditures. 85% of persons were enrolled in an HMO plan, with the remaining 15 % in a

PPO plan.

Second, I focus on the hurdle decision for ambulatory expenditures (DMT also model the positive part).

This particular sub-model fits into the class of models discussed in this paper. The goal is thus to estimate

the effect of an endogenous binary explanatory variable (whether or not the individual has an HMO plan

(yes=1)) on a binary outcome (whether or not the individual had any ambulatory health expenditures

(no=1)).

Third, I depart from DMT both in terms of estimation technique (Maximum likelihood estimation

rather than Bayesian posterior estimation) and in terms of the range of dependence models under consid-

eration. Whereas DMT assume joint normality, I will contrast the results obtained under this assumption

with those obtained from Frank and Clayton dependence.

10



Otherwise, I follow the specification of DMT. In particular, I use the same regressors in the outcome

equation. They include indicators of self-perceived health status variables (VEGOOD, GOOD and FAIR-

POOR); measures of chronic diseases and physical limitation (TOTCHR, PHYSLIM and INJURY); geo-

graphical variables (NOREAST,MIDWEST, SOUTH and MSA); and socio-economic variables (BLACK,

HISPANIC, FAMSIZE, FEMALE, MARRIED, EDUC, AGE, AGE2, AGEXFEM and INCOME); respec-

tively. I also use the same exclusion restrictions for the insurance choice equations. These are the age of

the spouse (SPAGE) and whether the spouse was covered by an HMO in the previous year (LGSPHMO).

I refer to DMT for a detailed description of these variables.

Table 4 contains the key results. For each of the four copulas (independence, normal, Frank and

Clayton), it lists the estimated effect of HMO on no ambulatory expenditure, the estimated dependence

parameter, Kendall’s τ as well as the log-likelihood value. In this application, the model based on the Frank

copula outperforms the other three models. Independence can be formally rejected. The chi-squared (1)

- distributed likelihood ratio test statistic is 4.6, with p-value of 0.032 . Similarly, the Frank dependence

parameter is significantly smaller than zero. The sign suggests positive self-selection: those who are more

likely to opt for HMO have a higher than average probability of having no ambulatory expenses. If

unaccounted for, the positive dependence between the unobservables in the two equations is captured by

the effect estimate which is indeed found to be positive and even statistically significant in the independence

model. Once endogeneity is accounted for, the effect switches its sign and becomes insignificant. In the

Frank model, there is no evidence that individuals in an HMO plan have a higher probability of zero

ambulatory expenditures than otherwise similar individuals in an PPO plan.

It is interesting to observe that while the point estimates for the effect and dependence parameter under

the normal copula assumption are qualitatively similar, the conclusion obtained from formal applications of

hypothesis tests would be quite different. Specifically, the independence model cannot be rejected against

the bivariate normal model. Likelihood ratio and z-test statistics are both insignificant. As a consequence,

one would be led to interpret the +0.1 effect under independence as causal. Under the probit marginals

implied by the model, this effect would predict an increase in the probability of no expenditure by up to

4 percentage points, apparently a spurious effect.
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The full set of regression coefficients for the independence and Frank copula are displayed in Table

5. Except for the HMO coefficient, there is not much difference between the size and precision of the

estimated effects between the two models.

5 Application 2: Dropping out of high school and unemployment

The second application is based on an earlier study by Li (2006) who investigated the effect of high school

completion on post-schooling unemployment, accounting for endogeneity of education. Specifically, the

analysis was based on data from High School and Beyond, a survey of US high school students (sophomores)

in the spring of 1980. Using three follow ups (in 1982, 1984 and 1986) one can determine both whether the

student completed high school or not (dropout yes=1) and whether the student had any unemployment

experiences upon entering the labor market. Li (2006) also considered the time of drop out (after ninth,

tenth or eleventh grade), as well as the intensity of unemployment (proportion of post-school time in

unemployment). In the available sample of n = 5238 sophomores, there were 9.5 percent dropouts and

47.1 percent of students with at least one incidence of unemployment.

Clearly, there are many reasons why dropout status and unemployment can be jointly determined, in

which case the causal effect of not completing highschool on later unempoloyment cannot be estimated

in a simple probit model.Li (2006) used a recursive model structure with bivariate normal assumption to

account for endogeneity, plus exclusion restrictions derived from state specific compulsory attendance laws.

Using these legal provisions, Li computed for each student in 1980 the variable “Time until eligibility to

drop out”. The time depends on the age of the sophomore in 1980 (which is also controlled for) and the

state a student lives in. In the sample, 74.7% of the individuals have a compulsory attendance age of 16

or less, 16.5% have a compulsory attendance age of 17, and 8.8% have a compulsory attendance age of 18.

Following Li, I use a fourth order polynomial in this time as instrument for actual drop out status. The

instrument has some bite. For example, for an average student, increasing the compulsory attendance age

from 16 to 18 is predicted to increase the probability of completing high school by 5.1 percentage points.

The chi-squared-statistic for the joint significance of the instruments in the dropout equation has a p-value
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below 1 %.

Results are shown in Table 6. In this application, the Normal copula model is clearly the best. The

Clayton copula does not work at all, as the estimated dependence parameter is virtually zero, so that this

model practically coincides with the independence model, except that the effect is estimated much more

imprecisely due to not imposing the zero-dependence restriction. Under both normal and Frank copula,

a positive dependence is detected (with estimated Kendall’s τ os 0.21 and 0.16, respectively), but it is

statistically significant only in the bivariate probit model. Ignoring the positive correlation between the

two errors in the dropout and the unemployment equations causes an upward bias in the effect estimate,

as is seen from the first column of Table 6. In fact, there is no longer any statistically significant effect

of dropping out on unemployment once endogeneity is accounted for (and the point estimate even turns

negative). This result appears to contradict the findings in Li (2006) where dropping out increases the

unemployment risk even after accounting for endogeneity. A likely explanation for this discrepancy is that

I consider here only the occurrence of any unemployment, whereas Li modeled the severity of it, by using

the fraction of time spent in unemployment as outcome variable.

6 Discussion

The paper considered the problem of modeling and estimating the effect of a binary endogenous regressor

on a binary outcome variable using a new approach based on copula functions. The copula approach is an

alternative to semi-parametric estimation of bivariate probit models (e.g. Murphy, 2007, Chen and Zhou

2007). It offers a relatively simple and parsimonious compromise between the standard bivariate probit

model and these semi-parametric alternatives. The main benefits of the copula approach are twofold. First,

it makes it relatively effortless to assess the sensitivity of results within a broader class of distribution

families. Second, by considering such larger classes of copula families one can obtain, in a quasi-likelihood

sense, a better approximation to the true underlying distribution.

The evidence provided in the paper, based on simulations and two real data applications, suggests

that copula models work well in practice, and thus provide a viable and simple alternative to the common

13



bivariate probit approach. Of course, the bivariate probit can well be the best model in the class of copulas

that is considered, as was the case in the second application on the effect of completing high school on

subsequent unemployment. Even then, however, one does not know this before the analysis is actually

completed, and using a menu of copula models provides thus additional information, also on the sensitivity

of the estimates to distributional assumptions.

The methods and models presented in the paper have at least two immediate extensions. First, they

can be applied to cases where the outcome variable is an ordered response with more than two outcomes.

For example, one can easily construct a model with ordered probit marginals for the outcome variable

and binary probit marginal for the endogenous regressor. The ordered probit model has a latent variable

representation as well. Let

y∗1 = x′β + αy2 + ε1

The observed ordered responses y1 = 1, 2, . . . , J are obtained from a threshold observation mechanism

y1 =
J∑
j=0

1(y∗1 > κj)

where κs,0 = −∞ < κs,1 < . . . < κs,J =∞ partition the real line. It follows that

P (y1 = j, y2 = 0) = C(Φ(κj − x′β),Φ(−z′γ))− C(Φ(κj−1 − x′β),Φ(−z′γ))

and

P (y1 = j, y2 = 1) = C(Φ(κj − x′β − α), 1)− C(Φ(κj−1 − x′β − α), 1)− P (y1 = j, y2 = 0)

Second, the copula approach can be easily extended to accommodate other marginal models, such as the

logit or any other desired link function (Koenker and Yoon, 2009). A bivariate model with logit marginals

is obtained by letting F (x, y) = C[Λ(x),Λ(y)], where Λ(z) = exp(z)/(1 + exp(z)) is the cdf of the logistic

distribution. Alternatively, one could even estimate the marginals semiparametrically, an approach that

has been explored in other copula applications (e.g., Chen and Fan 2005).

A further potentially fruitful development explores copula mixture models, where the underlying joint

distribution function of the unobservables is approximated by a finite mixture of parametric distribution
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functions that can differ both in their copula specification and in their parameters. Conceptually this is a

very elegant approach as it dispenses with the need to select single copulas and moreover can in principle

approximate the true joint distribution function to an arbitrary degree. The practical implementation may

be very difficult, however, and related results from a study by Trivedi and Zimmer (2009) are not very

encouraging.
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Table 1
Simulation Results for Recursive Probit Model with Normal Dependence

(ρ = 0.5, r=5000)

β0 β1 α θ τ llik % pick

n = 500

Normal 0.499 -0.504 0.512 0.497 0.335 -473.5 40.8
(0.107) (0.072) (0.226) (0.132)

Frank 0.501 -0.507 0.527 3.419 0.333 -473.7 33.6
(0.108) (0.073) (0.233) (1.251)

Clayton 0.467 -0.507 0.554 0.747 0.260 -474.1 25.5
(0.115) (0.074) (0.241) (0.370)

Independence 0.231 -0.527 1.120 n.a. n.a. -479.3 0
(0.086) (0.075) (0.145) n.a.

n = 1000

Normal 0.498 -0.502 0.516 0.495 0.332 -949.1 47.5
(0.074) (0.048) (0.157) (0.091)

Frank 0.500 -0.504 0.509 3.347 0.332 -949.4 32.7
(0.074) (0.049) (0.162) (0.916)

Clayton 0.464 -0.505 0.559 0.707 0.256 -950.3 19.8
(0.080) (0.050) (0.168) (0.241)

Independence 0.230 -0.524 1.121 n.a. n.a. -960.1 0
(0.060) (0.051) (0.101) n.a.

n = 5000

Normal 0.500 -0.501 0.500 0.501 0.334 -4763.6 80.0
(0.034) (0.022) (0.071) (0.041)

Frank 0.503 -0.504 0.514 3.313 0.333 -4765.2 16.4
(0.034) (0.022) (0.072) (0.367)

Clayton 0.465 -0.504 0.546 0.691 0.256 -4769.8 3.6
(0.037) (0.023) (0.075) (0.103)

Independence 0.229 -0.523 1.110 n.a. n.a. -4817.3
(0.027) (0.023) (0.045) n.a.

Notes:
The main entries in the table give the mean values of the statistics over repeated samples. Standard
deviations in parentheses.
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Table 2
Simulation Results for Recursive Probit Model with Frank Dependence

(θ = 3.3, r=5000)

β0 β1 α θ τ llik % pick

n = 500

Normal 0.492 -0.498 0.503 0.490 0.330 -475.3 28.8
(0.107) (0.072) (0.221) (0.129)

Frank 0.501 -0.501 0.503 3.465 0.337 -475.1 52.8
(0.106) (0.072) (0.224) (1.225)

Clayton 0.457 -0.500 0.550 0.719 0.252 -476.1 18.4
(0.116) (0.074) (0.240) (0.370)

Independence 0.227 -0.521 1.101 n.a. n.a. -481.0 0
(0.084) (0.075) (0.143) n.a.

n = 1000

Normal 0.488 -0.499 0.504 0.492 0.329 -953.7 29.4
(0.074) (0.051) (0.157) (0.091)

Frank 0.498 -0.502 0.503 3.404 0.337 -953.4 59.0
(0.074) (0.051) (0.159) (0.811)

Clayton 0.451 -0.501 0.555 0.685 0.250 -955.4 11.6
(0.080) (0.052) (0.169) (0.237)

Independence 0.221 -0.521 1.104 n.a. n.a. -964.7 0
(0.059) (0.052) (0.098) n.a.

n = 5000

Normal 0.490 -0.497 0.503 0.487 0.324 -4782.3 18.1
(0.034) (0.022) (0.069) (0.040)

Frank 0.500 -0.501 0.501 3.309 0.333 -4780.6 81.3
(0.033) (0.023) (0.070) (0.351)

Clayton 0.451 -0.499 0.557 0.647 0.243 -4791.0 0.6
(0.037) (0.023) (0.076) (0.100)

Independence 0.225 -0.518 1.095 n.a. n.a. -4833.7
(0.027) (0.023) (0.045) n.a.
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Table 3
Simulation Results for Recursive Probit Model with Clayton Dependence

(θ = 1, r=5000)

β0 β1 α θ τ llik % pick

n = 500

Normal 0.513 -0.497 0.521 0.573 0.393 -465.1 19.4
(0.104) (0.072) (0.222) (0.124)

Frank 0.507 -0.498 0.551 4.109 0.384 -465.6 9.2
(0.105) (0.073) (0.235) (1.427)

Clayton 0.505 -0.501 0.501 1.088 0.341 -464.2 71.4
(0.108) (0.073) (0.222) (0.427)

Independence 0.203 -0.527 1.241 n.a. n.a. -473.0 0
(0.086) (0.076) (0.148) n.a.

n = 1000

Normal 0.507 -0.497 0.523 0.574 0.392 -933.7 14.5
(0.072) (0.050) (0.154) (0.086)

Frank 0.502 -0.498 0.553 3.750 0.384 -934.9 3.1
(0.073) (0.051) (0.164) (0.834)

Clayton 0.499 -0.502 0.502 1.051 0.339 -932.0 82.4
(0.074) (0.050) (0.154) (0.286)

Independence 0.196 -0.526 1.242 n.a. n.a. -949.1 0.0
(0.061) (0.052) (0.099) n.a.

n = 5000

Normal 0.509 -0.496 0.522 0.570 0.386 -4681.0 2.0
(0.033) (0.022) (0.070) (0.038)

Frank 0.505 -0.498 0.553 3.874 0.378 -4686.6 0.1
(0.033) (0.023) (0.074) (0.403)

Clayton 0.500 -0.501 0.501 1.007 0.334 -4672.4 97.9
(0.034) (0.023) (0.070) (0.119)

Independence 0.200 -0.525 1.235 n.a. n.a. -4754.4
(0.027) (0.023) (0.046) n.a.
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Table 4: Results for Ambulatory Expenditure Example

Effect Dependence Kendall’s Log-Likelihood
Parameter τ

Independence 0.101* n.a. n.a. -8341.6
(0.044) n.a.

Normal -0.067 0.112 0.071 -8340.0
(0.106) (0.063)

Frank -0.131 0.982* 0.108 -8339.3
(0.117) (0.453)

Clayton -0.032 0.124 0.058 -8340.4
(0.105) (0.095)
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Table 5: Full Regression Results for Ambulatory Expenditure

Independent Frank Independent Frank
HMO No AE HMO No AE HMO No AE HMO No AE

FAMSIZE -0.049 0.083 -0.049 0.082 VEGOOD 0.048 -0.145 0.048 -0.142
(0.012) (0.011) (0.012) (0.011) (0.038) (0.036) (0.039) (0.037)

EDUC -0.166 -0.625 -0.168 -0.623 GOOD 0.052 -0.221 0.053 -0.217
(0.070) (0.067) (0.071) (0.067) (0.043) (0.043) (0.044) (0.043)

INCOME -0.011 -0.045 -0.011 -0.045 FAIRPOOR 0.100 -0.466 0.098 -0.463
(0.007) (0.008) (0.007) (0.008) (0.073) (0.095) (0.072) (0.097)

FEMALE 0.008 -0.920 0.010 -0.913 PHYSLIM -0.040 -0.286 -0.040 -0.287
(0.118) (0.121) (0.118) (0.122) (0.050) (0.066) (0.052) (0.065)

BLACK 0.175 0.262 0.172 0.270 TOTCHR -0.004 -0.640 -0.004 -0.638
(0.048) (0.046) (0.049) (0.047) (0.022) (0.036) (0.022) (0.035)

HISPANIC 0.170 0.135 0.169 0.141 INJURY 0.033 -0.657 0.035 -0.655
(0.047) (0.042) (0.047) (0.042) (0.039) (0.048) (0.038) (0.047)

MARRIED -0.316 -0.242 -0.317 -0.244 YEAR98 0.051 -0.090 0.049 -0.088
(0.082) (0.038) (0.081) (0.038) (0.049) (0.048) (0.050) (0.048)

NOREAST -0.027 -0.137 -0.027 -0.137 YEAR99 -0.016 -0.027 -0.019 -0.027
(0.052) (0.048) (0.052) (0.048) (0.049) (0.047) (0.051) (0.047)

MIDWEST -0.346 -0.185 -0.346 -0.201 YEAR00 -0.203 -0.118 -0.205 -0.126
(0.049) (0.050) (0.050) (0.050) (0.044) (0.044) (0.043) (0.044)

SOUTH -0.360 0.029 -0.359 0.010 YEAR01 -0.143 -0.102 -0.145 -0.108
(0.044) (0.041) (0.044) (0.042) (0.048) (0.049) (0.048) (0.050)

MSA -0.114 0.020 -0.111 0.018 SPAGE -0.113 -0.113
(0.046) (0.047) (0.046) (0.048) (0.019) (0.019)

AGE -0.203 0.103 -0.207 0.108 LGSPHMO 1.710 1.710
(0.108) (0.113) (0.106) (0.114) (0.043) (0.042)

AGE2 0.236 -0.263 0.241 -0.268 HMO 0.101 -0.131
(0.129) (0.138) (0.127) (0.137) (0.044) (0.117)

AGEXFEM 0.125 0.783 0.120 0.772 theta 0.982
(0.285) (0.306) (0.286) (0.306) (0.453)

constant 2.087 0.525 2.092 0.724
(0.241) (0.243) (0.235) (0.265)

Standard errors in parentheses; the following variables are scaled by factor 10−1: EDUC, INCOME,
AGEXFEM, AGE2.
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Table 6: Results for Dropout Example

Effect Dependence Kendall’s Log-Likelihood
Parameter τ

Independence 0.363* n.a. n.a. -4757.2
(0.066) n.a.

Normal -0.209 0.318* 0.206 -4754.0
(0.227) (0.118)

Frank -0.051 1.454 0.158 -4755.8
(0.268) (0.957)

Clayton 0.362 0.001 0.001 -4757.2
(0.191) (0.176)

23



−
4

−
2

0
2

4

−3 −2 −1 0 1 2 3
v1

Figure 1: 500 draws from a Frank Copula with Standard Normal Marginals, θ = 3.3. Regression line and
Locally Weighted Polynomial Regression

24



−
4

−
2

0
2

4

−3 −2 −1 0 1 2 3
v1

Figure 2: 500 draws from a Clayton Copula with Standard Normal Marginals, θ = 1. Regression line and
Locally Weighted Polynomial Regression
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