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Abstract

The economic concept of the second-best involves the idea that multiple simultane-
ous deviations from a hypothetical first-best optimum may be optimal once the first-best
itself can no longer be achieved, since one distortion may partially compensate for an-
other. Within an evolutionary framework, we translate this concept to behavior under
uncertainty. We argue that the two main components of prospect theory, the value
function and the probability weighting function, are complements in the second-best
sense. Previous work has shown that an adaptive S-shaped value function may be evolu-
tionary optimal if decision-making is subject to cognitive or perceptive constraints. We
show that distortions in the way probabilities are perceived can further enhance fitness.
The second-best optimum involves overweighting of small and underweighting of large
probabilities. Behavior as described by prospect theory might therefore be evolution’s
second-best solution to the fitness maximization problem. Our model makes empiri-
cally testable predictions about the relation between individuals’ value and probability
weighting functions.
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1 Introduction

[W]e must as a second best, as people say, take the least of the evils;
and this will be done best in the way we describe.
Aristotle, Nicomachean Ethics, Book II, Chapter 9.

Lipsey and Lancaster (1956) introduced the concept of the second-best in economics, which
is now widespread. It compares the first-best solution to an optimization problem under
constraints that are “in the nature of things” (p. 12), such as technological constraints for
a problem of welfare maximization, to the second-best solution when additional constraints
are imposed on the same problem. The scope of such additional constraints ranges from
exogenously fixed taxes or tariffs (Lipsey and Lancaster 1956) to asymmetric information
in contract-theoretic applications (Bolton and Dewatripont 2005). Lipsey and Lancaster’s
most important finding is “that if one of the Paretian [first-best| optimum conditions cannot
be fulfilled a second best optimum situation is achieved only by departing from all other
optimum conditions.” (p. 12). For instance, once several countries have introduced tariffs, a
unilateral tariff reduction by a single country may well decrease overall welfare, even though
the hypothetical first-best involves no tariffs at all (Viner 1999). Here, within an evolutionary
framework, we aim at translating this concept to behavior under uncertainty.

As a starting point we observe that evolution can be interpreted as a process that max-
imizes a suitably defined notion of fitness (Maynard Smith 1978), by selecting those be-
havioral traits that are most conducive to reproduction. Much recent work has employed
this paradigm fruitfully in the study of human behavior and its foundation (see Robson and
Samuelson (2008) for an overview). With respect to behavior under uncertainty, for instance,
Robson (1996) has shown that the largest fitness can be achieved by expected utility maxi-
mizing agents, whenever risk is idiosyncratic.! This result has been derived in a framework
that could be described as first-best, where no constraint besides the natural scarcity of
resources has been imposed. Several other papers have considered additional constraints.
The contributions by Friedman (1989), Robson (2001), Rayo and Becker (2007) and Net-
zer (2009) explicitly model cognitive or perceptive constraints of a decision-maker. Within
different frameworks they conclude that the use of an adaptive, S-shaped value function as
postulated in prospect theory (Kahneman and Tversky 1979) is superior in the presence
of such constraints. In short, steepness of the function that evaluates payoffs is helpful to
prevent decision mistakes in these models, because it enables to distinguish even alternatives

that are very similar to each other. Hence a relatively large slope should be allocated to

!This is no longer the case with aggregate, i.e. correlated risk. See Cooper and Kaplan (1982), Robson
(1996), Bergstrom (1997), Curry (2001) and Robson and Samuelson (2009).



regions where correct decisions matter most (the agent’s reference point), which explains the
adaptive nature and the S-shape of the value function. Interestingly, the above papers all
assume that the decision-maker perceives probabilities correctly.

There is in fact no justification for this assumption. To the contrary, even if there is no
constraint that directly prevents the correct perception of probabilities, the general concept
of the second-best outlined above leads us to the conjecture that probabilities should not
be perceived correctly. We investigate the validity of this conjecture in a simple model
where nature offers randomly drawn prospects (lotteries) to an agent, who decides whether
to accept or reject. For instance, the choice whether or not to go hunting in a specific area,
at a particular time, is one such decision that humans were regularly confronted with during
evolutionary history. The eventual outcome of a hunt is stochastic, with varying, situation-
dependent probabilities. We now take the insights of the above discussed literature for
granted and assume that, to evaluate payoffs, the agent uses an adaptive and S-shaped, rather
than a fixed fitness-reflecting value function. Hence we do not model the underlying cognitive
or perceptive constraints explicitly, which adds to the clarity of our results. Importantly, we
also do not assume that constraints directly prevent the correct perception of probabilities;
correct perception would in principle be possible, so that any probability weighting that
emerges in our model is solely an optimal adaptation to the value function.

The basic model and our main results will be presented in Section 2, where we consider
simple prospects (with only one possible gain and one possible loss) and assume away loss
aversion. As a benchmark we first allow perceived probabilities to depend not only on true
probabilities but also on the associated payoffs, and we show that first-best behavior, i.e.
expected fitness/utility maximizing behavior can then be implemented despite the distortion
introduced by the value function. We then impose the restriction that probability weight-
ing has to be payoff-independent, in line with the usual descriptive theories for decisions
under risk. In that case, the first-best can no longer be achieved generically. Furthermore,
any solution to the fitness maximization problem involves overweighting of small and un-
derweighting of large probabilities. Intuitively, lotteries with an expected fitness close to
zero are especially prone to decision mistakes, and small probabilities go along with large
absolute payoffs in such lotteries. Large absolute payoffs are, in turn, relatively undervalued
by the S-shaped value function. To compensate, it becomes optimal to overweigh small and
underweigh large probabilities. We show that the optimal probability perception can be
implemented by reflective and symmetric weighting (Prelec 1998) in some cases, employing
weighting functions that have been used in both empirical and theoretical work on prospect
theory (Gonzalez and Wu 1999).

Section 3 contains several extensions of the model. First, we show that the introduction



of loss aversion — the systematically different treatment of gains and losses — implies that
gain and loss probabilities should also be perceived systematically different. We predict
violations of reflectivity in the direction of an optimism bias (Sharot et al. 2007). Second,
we illustrate that our results do not depend on the use of simple prospects. For more
complicated prospects, our model predicts behavior in line with rank-dependent models
(Quiggin 1982). Finally, in Section 4 we consider what might happen if eventually the value
function adapts optimally, now given the probability weighting function, and how one might
be trapped in a local optimum. We briefly discuss the issues of empirical testability of our
results.

There are several other contributions that can be classified as belonging to the evolution-
ary second-best approach to behavior. They all share the property that some underlying
constraint induces one distortion, or behavioral anomaly, which in turn makes it optimal to
introduce another anomaly to partially compensate for the first. In Samuelson (2004) and
Noeldeke and Samuelson (2005), agents cannot correctly process information about their
environment, specifically about current earnings opportunities. Concern for relative con-
sumption then becomes a second-best optimal way of utilizing the information inherent in
others’ consumption levels. Samuelson and Swinkels (2006) argue that choice-set dependency
might be an analogous way of correcting for an agent’s lack of understanding of her choices’
fitness implications under different conditions. Finally, Baliga and Ely (2009) start from the
assumption of imperfect memory: after having made an investment, an agent forgets about
the details of the project. The initial, sunk investment now still contains information, and
relying on this information for future decisions on the project can be second-best, rather
than a sunk cost “fallacy”.

Before we present our model in detail, we want to address an obvious question: Why
would evolution introduce additional anomalies rather than remove the origin of the problem?
First, it might not be able to do so because the underlying constraint cannot be relaxed.
For instance, a mutation with weaker cognitive constraints might exhaust too much energy
to still be competitive. Second, even if the original problem could be removed, it is possible
that an evolutionary process gets stuck in a second-best. This has first been shown by
Waldman (1994). In his model, a first-best mutant will not be able to invade a second-best
population, because its optimal characteristics are diluted through the process of sexual
recombination.? An additional argument is given by Ely (2009), who considers a complex
species that reproduces asexually and whose behavior is determined simultaneously by many
different parameters. Even though all mutations are possible, i.e. the probability of a

mutation to the first-best parameter setting is strictly positive, the species can remain second-

2See Dobbs and Molho (1999) for a generalized version of the model by Waldman (1994).



best forever, provided that smaller improvements at only a few parameters (“kludges”) are
more likely and the species’ complexity grows sufficiently fast, which makes an immediate

mutation to the first-best increasingly unlikely.

2 Probability Weighting for Simple Prospects

2.1 The Basic Model

Consider the following model. There is an agent who has a current level of fitness ¢ € R
(which could change over time), that serves as her reference point. That is, she evaluates
payoffs as gains and losses relative to c. In doing so, we assume that the agent makes use of

an S-shaped value function, which is denoted V' : R — R and depicted in the following figure.

cC c+x

Figure 1: The Value Function

Adaptation to the reference point is captured by the assumption that V(c) = 0. It is
convenient to write both gains and losses as positive numbers, and to decompose V' into
two functions, one used to evaluate gains (vg) and one to evaluate losses (v). Specifically,
we define vg : Ry — Ry by vg(z) = V(e + z) for all gains x > 0, and vy, : R, — Ry by
vr(y) = =V(c —y) for all losses y > 0. We assume that both vg and vy, are differentiable,
strictly increasing and strictly concave, and we keep them fixed throughout this section.
As outlined in the Introduction, earlier work has tried to derive the value function from
more basic principles, such as cognitive or perceptive constraints. Because the focus of this
paper is to illuminate the interplay between probability weighting and the value function, we
refrain from providing a foundation of the value function itself, but simply take it as given.
We would like to point out, however, that the arguments by Waldman (1994) and Ely (2009)
discussed earlier provide an additional justification for this approach, even when the value
function remains unsubstantiated. We return to this issue in Section 4.

We start by considering simple prospects. Such prospects consist of one possible gain of

size x > 0 which occurs with probability 0 < p < 1, and one possible loss of size y > 0 which
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occurs with the opposite probability 1 — p. It turns out to be convenient to define such
prospects in terms of relative rather than absolute probabilities. Hence a simple prospect
is a tuple (¢, z,y) from the set & = R3, where ¢ = p/(1 — p) is the relative probability of
a gain. We assume that gains and losses are measured in terms of biological fitness, which
facilitates the analysis.®> We can then define a fitness function F' : & — R that assigns to

each prospect (¢, z,y) € & its expected fitness

Flaan = (14 ) o= (15 ) 1)

which, relying on the results by e.g. Robson (1996), we take as the relevant criterion for
evolutionary success.

The basic choice situation is as simple as possible: when the agent is faced with a
prospect, she has to decide whether to accept or reject it. Then, (g, z,y) should be accepted
if F(q,z,y) > 0, or equivalently ¢ > y/x, so that it (weakly) increases expected fitness above
the current level. In a dynamic interpretation, ¢+ x or ¢ — y could become the new reference
point if the prospect has been accepted and the risk has realized. Let 22T = {(¢,x,y) €
Plq > y/x} be the set of prospects with weakly positive and &2~ = 2\ P of those with
negative expected fitness.

To start with the most general approach, let  : & — R, be a weighting function that,
for any prospect (q,z,y) € £, yields a subjective relative decision weight n(q, z,y). Thus,
given a prospect (q,z,y), the agent perceives the relative gain probability ¢ as n(q,x,y).
Equivalently, the actual gain probability p = ¢/(14¢) is perceived as n(q, x,y)/(1+n(q, z,y)),
and the loss probability 1 — p as 1/(1 + n(q, z,y)) accordingly. We will be interested in the
weighting function that maximizes expected fitness given the fixed value function, with the
second-best-idea in mind that evolution should have selected for agents whose anomalies
optimally compensate one another. Denote the set of weighting functions evolution can
choose from by # C Rf . Then, we can define a functional U : & x # — R that assigns

the subjective utility score

) = (T 22D 0) — (s ) ) 2)

to prospects, using perceived probabilities as given by 7. The agent will accept prospect
(q,z,y) if and only if U, (¢, z,y) > 0. This can be reformulated to 7(q, z,y) > v(y)/va(x),

which is directly comparable to the criterion for optimal choice ¢ > y/x. Given that the

3Defining payoffs in terms of, say, consumption levels adds an additional layer and makes it necessary to
elaborate on the way consumption translates into fitness.



value function distorts one side of the optimality condition, it becomes apparent that the
other side should be distorted as well.

We conclude the introduction of the model by specifying the way in which prospects are
offered to the agent by nature. We assume that nature randomly draws and offers to the
agent one prospect at a time, according to a probability distribution that can be described
by a strictly positive density h on Z.# The agent, endowed with a fixed weighting function
7, then evaluates the offered prospect according to U, and decides whether to accept or to
reject. Let 7 = {(¢,7,y) € Z|n(q,7,y) > vr(y)/ve(r)} be the set of prospects that
the agent accepts, and &, = 93\32; the set of rejected prospects. The optimal, expected

fitness maximizing weighting function is then determined by the following program:

max / F(q,z,y)h(q,z,y)d(q, z,y). (3)

+
'@77

Problem (3) has the following equivalent formulation (see Appendix A.1 for details):

min / |F(q,2,y)|h(q, 2, y)d(q, z,y), (4)

new
(2gnzH)u(2;n2-)

which prescribes the minimization of (non-negative) fitness lost due to rejection of positive
fitness prospects (from the set PN P7T) and acceptance of negative fitness prospects
(ZF N Z7). Formulation (4) is convenient for the following reason. Suppose there exists
a weighting function n € # for which the objective in (4) takes the value zero. Given that
h is strictly positive, this requires that Zf = &%, so that & N P = PN P~ =
@.> Hence behavior under 7 is identical to expected fitness/utility maximization, i.e. 7
perfectly compensates for the value function. We say that the first-best is achievable in
this case. Otherwise, if the optimal value of (4) is strictly positive, the solution is in fact
only second-best, with observed behavior that systematically deviates from unconstrained

expected fitness maximization.

2.2 Payoff-dependent Weighting

As a benchmark, we first want to consider the possibility of unconstrained choice of 7.
Let % = Rf be the complete set of weighting functions, which includes functions where

perceived probabilities do not only depend on true probabilities but also on the size of the

4The assumption of a continuous distribution is not essential to our arguments. The full support assump-
tion makes sure that there is actually evolutionary pressure for optimal handling of all possible prospects.
5Strictly speaking, this must only be true except for measure-zero sets of prospects.



associated gain and loss. We can then state the following immediate result.
Proposition 1. Suppose # = .%. Then, the first-best is achievable.

There is actually a variety of different first-best weighting functions n*? € .%. Consider

vi(y) ©

ve(z)y’

n"Plq,x,y)=q-

for instance, for which we obtain n'2(q, x,y) > vr(y)/ve(r) & q > y/z, so that actual and
fitness maximizing decisions coincide. We will not discuss this function in further detail,
as the behavior it induces cannot be distinguished from expected utility maximization with
correct probability perception and a linear Bernoulli utility function.® One aspect, however,
is worth being pointed out: n%? is linear in ¢ for given = and vy, so that there is no need to
systematically distort the relative perception of large and small probabilities when weighting

can condition on payoffs.

2.3 Separate Weighting

In prospect theory applied to simple prospects (Kahneman and Tversky 1979), probability
weighting is assumed to be independent of payoffs, i.e. perceived probabilities depend on true
probabilities but not on the size of gains and losses. The same holds true for expected utility
theory (von Neumann and Morgenstern 1944) where 7(q, z,y) = ¢, in terms of our notation.
Results from neurobiology provide support for this assumption. In an fMRI study, Berns
et al. (2008) find behaviorally meaningful neural correlates of non-linear (inverse S-shape)
probability weighting. They show that “the pattern of [brain| activation could be largely
dissociated into magnitude-sensitive and probability-sensitive regions” (p. 2052), which they
explicitly interpret as evidence for the hypothesis that “people process these two dimensions

separately” (p. 2055).” Hence let
F' = {ne F3i € RE Mg, z,y) € Z,n(g,z,y) = il(a)}

be the set of relative weighting functions which are independent of payoffs, and write, with

slight abuse of notation, such functions as functions 7(q) of ¢ only. We will continue to

6Taking up our remark in footnote 3, risk aversion with respect to consumption could be introduced in
this framework by defining prospects as lotteries over consumption and using a concave function that maps
consumption into fitness.

"The only region that Berns et al. (2008) found activated by both payoffs and probabilities is an area
close to the anterior cingulate cortex, which they see as a “prime candidate for the integration of magnitude
and probability information” (p. 2055). See Fehr-Duda, Bruhin, Epper, and Schubert (2010) for an instance
of (partial) non-separability of payoffs and probabilities.



derive optimality conditions for 7 if choice is restricted to .%#’. The relation of our findings
to prospect theory will be discussed in the next subsection.

First, we focus on the case without loss aversion. Formally, this means that the functions
vg and v, are identical, so that gains and losses are evaluated symmetrically. We denote this
common valuation function by v. The following proposition states the important property
of optimal weighting that the relative probability of the gain is undervalued if and only if
the gain is the more likely than the loss.

Proposition 2. Suppose # = F' and there is no loss aversion. Then, any solution n* to

(4) satisfies

n"(q) & q=1, (5)

AV
Q
VIIA

for almost all g € R,.
Proof. See Appendix A.2. O

To grasp an intuition for the result, suppose the agent perceives probabilities correctly
(n(q) = q). Assume nature offers a prospect (¢, r,y) where y = gx, so that the prospect’s
fitness is exactly zero. Will the agent accept or reject it? The condition for rejection becomes
qu(z) < v(qx) which, due to strict concavity of v, is equivalent to ¢ < 1. Hence whenever a
zero fitness prospect has a small relative gain probability, it will be rejected when probabilities
are perceived correctly. The reason is that any such prospect must satisfy y < x, i.e. its gain
must be larger than its loss. But then the use of the concave function v implies that the
gain is undervalued relative to the loss, resulting in rejection. Monotonicity of v implies that
all negative fitness lotteries with ¢ < 1 are also rejected, but the same still holds for some
positive fitness lotteries, by continuity of v. Put differently, when there is no probability
weighting, prospects (q,z,y) with ¢ < 1 are subject to only one of the two possible types
of mistakes: rejection of prospects with strictly positive fitness. The analogous argument
applies to prospects with ¢ > 1, where correct probability perception implies that only the
mistake of accepting a negative fitness prospect can occur. To counteract these mistakes, it
becomes optimal to overvalue small relative gain probabilities (n*(¢) > ¢ if ¢ < 1) and to
undervalue large relative gain probabilities (n*(q) < g if ¢ > 1).

Note that neither Proposition 2 nor the above intuition depend on the prior A. The exact
shape of the solution n* will generally depend on A, but the direction of probability weighting
given in (5) does not. Hence Proposition 2 does not rely on (unknown) details about the
environment in which evolution operated.

Can the first-best still be achieved if choice of 7 is restricted to .#’? And if so, what is

the first-best weighting function? We are able to answer these two questions as follows.



Proposition 3. Suppose # = F' and there is no loss aversion. Then, the first-best is
achievable if and only if v(z) = [z for some > 0 and 0 < a < 1. The corresponding
first-best weighting function is n*B(q) = ¢*.

Proposition 3 is a special case of Proposition 4, which we present in Section 3.1 and prove
in Appendix A.5. Achieving the first-best requires to align actual and fitness-maximizing
behavior. Specifically, all fitness-neutral prospects (g, z, gr) must actually be identified as
such by the agent, so that, by monotonicity, all prospects with strictly positive fitness will be
accepted and those with strictly negative fitness will be rejected. The condition U, (q, z, gx) =
0 can be reformulated to 1(q) = v(qz)/v(x). This can only be solved by some n € %" if the
ratio v(gx)/v(zx) is independent of x, for all ¢. It can be shown that any continuous, strictly
increasing and concave function v which satisfies this property must be of the CRRA form
v(z) = (2% Whenever the value function does not belong to this class (which should be
considered as the generic case), the fitness-maximizing solution n* is truly second-best. As
a consequence, the agent’s behavior will deviate from expected fitness maximization, in the

direction predicted by prospect theory, as the next section will show.

2.4 Relation to Prospect Theory

We now want to examine how the above derived optimality conditions relate to the probabil-
ity weighting postulated in prospect theory. There, it is usually assumed (Prelec 1998) that
a function 7g : [0,1] — [0, 1] transforms the actual gain probability p into a perceived gain
decision weight 74 (p), and a function 7y, : [0, 1] — [0, 1] likewise transforms the loss proba-
bility 1 — p into 7 (1 — p). The term decision weights is used because mg(p) and 7 (1 — p)
do not necessarily sum up to one, and thus are not necessarily probabilities.

The absolute weighting functions 7g and 7y, relate to our relative weighting function n
as follows. On the one hand, any given pair (g, 77) induces a unique 7, i.e. when mg and

71, are employed, the relative gain probability ¢ = p/(1 — p) is perceived as

N(rg,mL) (CJ) =

The converse is not true, because there are different pairs of absolute weighting functions
(rq, mr) that implement a given relative perception 7. That means there is not a unique way
of representing the optimal weighting n* in terms of prospect theory weighting functions,
except if we impose additional requirements on (7g, 7). Two candidates that have received

attention in both the theoretical and the empirical literature are the following (Prelec 1998):

1. Reflectivity. (mq, ) is reflective if mg(r) = 7 (r), Vr € [0, 1].

9



2. Symmetry. (ng,m) is symmetric if m;(1 —r) =1 —m(r), Vr € [0,1] and i = G, L.

Reflectivity requires the identical treatment of gain and loss probabilities. We will skip the
indices G and L when referring to reflective weighting functions. Reflective weighting is
especially appealing from an evolutionary perspective. It redundantizes the maintenance of
two separate weighting mechanisms, which would be resource expensive and could lead to
undesirable interference effects. Hence it seems reasonable to assume that evolution would
have settled on reflective weighting if the optimal probability perception can be implemented
in this way. Symmetry is then also appealing because, if imposed in addition to reflectivity,
it ensures that 7(p) + (1 —p) = 7(p) + 1 — w(p) = 1 for all p € [0, 1], i.e. that probabilities
are in fact perceived as probabilities. Let us see whether the optimal n* can be implemented
by reflective weighting, and how property (5) then affects the shape of the absolute weighting

function.

Lemma 1. (i) A function n € F' can be implemented by reflective weighting if and only if

n(1/q) = 1/n(q),vq € Ry. (6)

(i) Suppose the optimal weighting function n* derived from Program (4) also satisfies (6).

Then any reflective m,- that implements n* satisfies

Ty (p)
Ty (1-p)

AV

1

<

=Pz 5 (7)
If symmetry is imposed in addition, m,- = n*(p/(1 —p))/(1 +n*(p/(1 — p))) is unique, with

1

<

@) SPEPS 5 (8)
Proof. See Appendix A.3. n

Note that (7) corresponds to condition (5) in Proposition 2, and (8) corresponds to a
key property of probability weighting functions in prospect theory: small probabilities are
over-weighted and large probabilities are under-weighted.

Prelec (1998) summarizes empirical evidence on the shape of weighting functions, which
provides support for reflectivity. Our Lemma 1 identifies condition (6) as crucial for the
question whether or not the evolutionary optimal weighting can be implemented reflectively.
FB

(

For instance, 77" (q) = ¢* presented in Proposition 3 satisfies (6). According to the lemma,

the unique reflective and symmetric weighting function that implements n*'? is then given

10



by
res(p) = —P 9)
p*+ (1 —p)*
Function (9) has been studied in the context of probability weighting by Karmarkar (1978,

1979). In Figure 2, it is depicted by a solid line for the case when oo = 1/2.

0 p 1

Figure 2: Common Weighting Functions.

While there exists empirical evidence on the reflectivity of actual probability weighting,
there is also much evidence on the asymmetry of weighting functions. Individuals tend to
overweigh absolute probabilities below approximately 1/3 and underweigh those above 1/3,
in contrast to (8). Hence symmetry might not be a reasonable property to impose. Prelec
(1998) instead suggests and axiomatizes the following class of reflective but non-symmetric
functions:

m(p) = e "mP where 0 <a < 1. (10)

We show in Appendix A.4 that this function indeed satisfies condition (7). This does, of
course, not yet imply that (10) is optimal. It only shows that the function suggested by Prelec
remains a candidate for optimal weighting, as it satisfies a necessary optimality condition.

In fact, the relative weighting implemented by function (10) is given by

o149
n(q) = on(1+g)—In(q)]" ’

which is similar but not identical to 72 (g) = ¢%, so that (10) remains a candidate for actual

second-best weighting only. The dashed line in Figure 2 depicts (10), for the exponent 1/2.

11



3 Extensions

3.1 Loss Aversion

As a first extension, we want to allow for loss aversion, which means that the agent takes a
loss of given size more seriously than a gain of the same size. We formalize this as follows. We
assume that there exists a function v : Ry — R, such that vg(z) = v(z) and vy (z) = yv(2)
for some v > 1. The parameter v measures the degree of loss aversion. For v = 1 we obtain
the special case already considered in Proposition 3, while loss aversion requires v > 1. We

can then state the following generalization of Proposition 3.

Proposition 4. Suppose # = F' and v > 1. Then, the first-best is achievable if and only
if v(z) = Bz for some B >0 and 0 < a < 1. The corresponding first-best weighting function

is 175 (q) = vg~.
Proof. See Appendix A.5. ]

There are two main insights that can be derived from Proposition 4. First, the fact
that the first-best can be achieved for special cases but not in general is unaffected by the
existence of loss aversion. The condition for attainability of the first-best is even independent
of the size of «. For the second main insight, consider the optimal n2(q) = v¢® and its
implementation in terms of absolute weighting functions (7wg, 7). Whenever v > 1, we
have nf'B(1/q) = v/q® # 1/v¢* = 1/n"P(q), so that (6) is violated and the optimum can no
longer be implemented reflectively. In fact, both reflectivity and symmetry must be violated.
This is true in much greater generality, i.e. not only when the first-best is attainable, as the

following proposition shows.

o

Proposition 5. Suppose # = F' and v > 1. Let n* be a solution to (4), and assume

(r&, m1) implements n*. Then, (1, m;) is neither reflective nor symmetric.

Proof. Let # = ', v > 1, and suppose n* is a solution to (4). Arguing as in the proof of
Proposition 2, it then follows that n*(q) > ¢ for all ¢ < ~. In particular, since v > 1, we have
n*(1) > 1. Assume (7, 7}) implements n*, i.e. 75(q/(1+q))/75(1/(1+q)) = n*(¢q). For ¢ =1
we obtain 75(1/2)/77(1/2) = n*(1) > 1, and thus n,(1/2) > 77 (1/2). Hence (wf,n}) is not
reflective. Furthermore, symmetry requires 7;(1/2) = 1/2 for both i = G, L, so that (7, 7}) is also

not symmetric. O

On a positive account, the model with loss aversion does actually provide a basis for
asymmetric weighting, in line with empirical findings. Yet, it also predicts non-reflectivity

at the same time, which seems not supported by the empirical evidence. In our model,
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Figure 3: Non-reflective Weighting for « = 1/2 and v = 3/2.

non-reflectivity is a fundamental implication of loss aversion. If there is an asymmetry
in the evaluation of gains and losses, the second-best principle calls for a systematically
different treatment of gain and loss probabilities. Let us examine the properties of this
differential treatment more closely. Consider the solution n7?(q) = v¢®, for instance. The
following absolute weighting functions, called “linear in log odds” by Gonzalez and Wu (1999),
implement n'? and additionally satisfy 757 (p) + 7EB(1 —p) = 1:

FB(p) Vpa FB(p) — (1/'7)pa (11>

W T e = T (1/y)p™ + (1 = p)>

They are illustrated in Figure 3 for the case of @ = 1/2 and v = 3/2.8 Importantly, the
function used to weigh gain probabilities lies above the one for losses, which compensates for
the relative overassessment of losses implied by loss aversion. Hence our model predicts a
specific type of non-reflectivity, which is close to what has become known as overconfidence
(Camerer and Lovallo 1999) or, even more closely, optimism (Sharot et al. 2007). The fact
that loss aversion and optimism might optimally compensate for one another has also been
pointed out by Yao and Li (2009). They argue that investors who exhibit both anomalies will
be most successful, provided that information is sufficiently incomplete. From the perspective
of our model, this provides the basis for the following thought. We have already discussed the

evolutionary benefits of reflective probability weighting. Hence it might make sense to impose

8Several empirical studies have concluded that, to compensate for a loss of any given size, individuals
require of gain of roughly twice that size (see e.g. Fox et al. 2007). With the function v(z) = Bz%, this
implies v = 2% for the parameter of loss aversion, which we approximate by 3/2 for the case when o = 1/2.
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reflectivity, captured by condition (6), as an additional constraint on evolution’s optimization
problem when there is loss aversion. The resulting “third-best” could then involve systematic
optimism as in Yao and Li (2009) as an additional compensating anomaly.

Heifetz and Spiegel (2001) study the evolution of general perception biases in strategic
settings, which includes biases such as overoptimism or overconfidence. In a strategic setting,
such biases may be evolutionary beneficial because they can change the equilibrium structure.
In Carrillo and Mariotti (2000), Bénabou and Tirole (2002) and Brocas and Carrillo (2004),
individuals may choose to adhere to delusions, because they serve as commitment devices
in the presence of time-inconsistency problems. Hence these latter contributions are again
closer to our approach, by modelling incorrect perceptions of reality as a compensation for

pre-existing biases (hyperbolic discounting in these models).

3.2 More General Prospects

In this subsection we want to investigate whether our results apply more generally than just
to simple prospects. The use of simple prospects made the analysis tractable and helped to
develop an intuition, but it poses the obvious question to what extent the previous results
are robust. Hence assume that a prospect consists of a vector of payoffs z € R"™, where n > 2
and z = (21, ..., z,) With 21 < ... < 2, <0 < 2541 < ... < 2, for 1 <k < n, so that there are k
possible losses and n — k possible gains. The associated probabilities are given by p €]0, 1",
where p = (p1,...,pn) with > p; = 1. The model examined previously is included in this
setup as the special case where n = 2 and k = 1. As before, let & denote the set of all such
prospects (for fixed values of n and k, which are suppressed for notational convenience).

W

The usual fitness mapping F' : & — R is given by F(p,z) = p - z, where represents
vector multiplication. The sets Z* and &2~ of positive and negative fitness lotteries are
then defined as before. Now let v : &2 —|0, 1[" be a weighting function that assigns decision
weights m(p,z) = (m(p,2), ..., 7(p,2z)) to prospects, such that Ur(p,z) = w(p,z) - V(2)
is the agent’s perceived utility from prospect (p,z), where V(z) € R™ denotes the vector
obtained by mapping z pointwise through the value function V. The assumptions imposed
on V and on h are identical to those described in Section 2.1. Based on the utility function
we immediately obtain the sets &2} and 2. of prospects that are accepted and rejected,

respectively, and the optimization problem we are interested in is given by

TeW
(,@;mt@+)u(,@¢m,@—)

wy [ |F(p, ) h(p, 2)d(p, 7). (12)

for some strictly positive density 2 on &2 and a set of admissible weighting functions # .
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Let % denote the unrestricted set of weighting functions, and %’ the set of functions

which depend on p only. We can now prove the following result.

Proposition 6. (i) Suppose n > 2 and # = F. Then, the first-best is achievable.
(i) Suppose n > 2 and W = F'. Then, the first-best is not achievable.

Proof. Part (i). Let w"B(p,z) be given by /"B (p,z) = p;z;/V(2), Vi = 1,...,n. Then we
have wfB(p,z)-V(z) =Y  7fB(p,z)- V() = .1, pizi = P2, so that utility and fitness
maximization becomes identical and the first-best is achieved.

Part (7). Suppose n > 2 and # = .#'. Assume also that & > 2 (the proof is analogous
when k& = 1 but n—k > 2), and let #* € .Z’ be a solution to (12). Consider any (p,z') such
that p - z' = 0, and construct z?(¢) from z' by letting 2?(¢) = 2{ — ¢, 23(€) = 23 + (p1/p2)e,
and 27(e) = 2} for all 1 = 3,...,n. Whenever € €|¢, €[, where € = pa(2{ — 23)/(p1 + p2) <0
and € = min{pa(—22)/p1,p2(22 — 22)/p1} > 0, we have that 27(e) < 23(¢) < min{23(e),0},
so that z*(¢) is well-defined. Furthermore, p - z%(¢) = 0 holds for all e. We now obtain

0’ [r*(p) - V(z*(e))] _ .

= = mi V) +mie) (1) V) > 0

due to strict convexity of V' below zero, so that utility, as opposed to fitness, is not constant
in € < € < €. Continuity of V' then implies that for (every) p there is a positive measure set
of payoffs z for which p -z and #©*(p) - V(z) have the opposite sign, which implies that 7*
is not first-best. Il

The fact that payoff-dependent weighting facilitates first-best behavior is unchanged by
the introduction of more general prospects. A change occurs for payoff-independent weight-
ing: the first-best can never be achieved with more than only one gain and loss, not even
for specific value functions such as v(z) = Fz®. It is thus important to keep in mind that all
our following results are about actual second-best weighting.

In general, the model becomes hard to tackle analytically for n > 2. Therefore, we
will proceed to present numerical results for several interesting cases of payoff-independent
weighting. Our numerical procedure is described in detail in Appendix A.6. All following
results are for the case of two gains and two losses (n = 4,k = 2). We use vg(z) = 2°
and vr(z) = yz* for the value function, and assume that nature offers prospects according
to a uniform prior.” For each combination of « € {1,3/4,1/2,1/4,1/10} and v € {1,3/2},

we search for the optimal weighting function within the rank-dependent framework (Quiggin

90ur results are highly robust to the use of different priors. Appendix A.6 contains all results of this
section for a different prior, where payoffs and probabilities are not independent.
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1982). There, the additional restriction is imposed that there exists a (bijective) function

w : [0,1] — [0, 1] which transforms cumulated probabilities. Formally,

mi(p) = w (Zpl> —w (Z@) . (13)

As a result, the obtained decision weights 7; are in fact probabilities because they sum up
to one. Cumulative prospect theory (Tversky and Kahneman 1992) uses a slightly different
formulation where an inverse of cumulated probabilities is transformed for gains.

Table 1 contains the results when we parameterize w(p) = p°/(p® + (1 — p)?) as in
Karmarkar (1978, 1979), and search the range ( € [0,2] so that linear, S-shape, and inverse
S-shape weighting is admitted.

Karmarkar v=1 v=23/2
Q 5 Fitness G* Fitness
1 1.0000 0.2714 | 1.3819 0.2646
3/4 0.7708 0.2713 | 1.2222 0.2612
1/2 0.5208 0.2707 | 1.2847 0.2555
1/4 0.2639 0.2690 | 1.2847 0.2467
1/10 0.1042 0.2672 | 1.1111 0.2433

Table 1: Results for w(p) = p?/(p” + (1 — p)?).

The first main column refers to the case without loss aversion (y = 1). If we additionally
assume that payoffs are perceived linearly (o = 1), the optimum does not involve any
probability weighting (3* = 1). The corresponding behavior is first-best, yielding the largest
possible fitness level (0.2714). We now introduce S-shaped payoff valuation by decreasing «
towards zero. As Table 1 shows, the optimal exponent of the weighting function does then
also go to zero, which means that probability weighting should become increasingly inverse
S-shaped, as in our simpler model in Section 2. It is even true that the optimal exponent 5*
of probability weighting is almost equal to the exponent « of the value function, which we
identified as a property of first-best weighting for simple prospects in Proposition 3. Note
again, however, that the first-best can no longer be achieved in the present setup when o < 1.
As can be seen from Table 1, the optimal fitness level goes down (albeit not too much) as
we decrease «, i.e. as we increase the severity of the original distortion.

With loss aversion (y = 3/2), the picture looks different. According to the results in
Table 1, optimal weighting should now be S-shaped (5* > 1), in contrast to both our

previous findings and empirical evidence. Before taking this result serious, though, we need
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to point out that it holds for imposed reflectivity and symmetry, while the model with
simple prospects implied that both these properties are violated in an unrestricted optimum
under loss aversion (Proposition 5). Let us therefore relax the assumption of symmetry, by
considering the more general linear in log odds function w(p) = 6p°/(6p° + (1 — p)?), for
values (3,0 € [0, 2].

LLO v=1 v=3/2
o G* o* Fitness G* o* Fitness
1 1.0000 1.0000 0.2714 | 1.0069 0.6944 0.2713
3/4 |0.7708 1.0000 0.2713 | 0.7708 0.6875 0.2712
1/2 | 0.5208 1.0000 0.2707 | 0.5208 0.6806 0.2705
1/4 10.2639 1.0000 0.2690 | 0.2569 0.6736 0.2688
1/10 | 0.1042 1.0000 0.2672 | 0.1042 0.6667 0.2669

Table 2: Results for w(p) = 6p°/(6p° + (1 — p)¥).

Without loss aversion, the optimum is again achieved by symmetric weighting (6* = 1),
so that column 1 in Table 2 is otherwise identical to Table 1. A crucial difference arises
under loss aversion: allowing for asymmetry restores the inverse S-shape of the weighting
function. Also, the emerging asymmetry is strikingly close to empirical findings, with the
point of correct probability perception strictly below 1/2. For the case where a = 1/2 and
v = 3/2, the optimally adjusted linear in log odds function is depicted as a solid line in
Figure 4. Picking up on our remarks in Section 3.1, we believe this finding provides support
for the idea of treating reflectivity (but not symmetry) as an additional constraint on the
fitness maximization problem. If gain and loss probabilities have to be treated identically, for
instance due to large fixed costs of a weighting mechanism, loss aversion implies a systematic
deviation from symmetry, in the direction found in many empirical studies.

The last functional form we consider is Prelec’s (1998) generalized function w(p) =
e9mp)"  Table 3 reveals that optimal weighting is again inverse S-shaped, with a strong
correlation between the inverse S-shape of the weighting function (as captured by *) and
the S-shape of the value function (as captured by «). For 6 = 1, the Prelec function is not
symmetric whenever o < 1. When there is no loss aversion (column 1 in Table 3), this is
compensated by letting 6* < 1, so that the optimal function is at least close to symmet-
ric. With loss aversion, symmetry is again violated systematically. The generalized Prelec
function which is optimal for &« = 1/2 and v = 3/2 is depicted by a dotted line in Figure 4.

To resolve doubts that our findings might still depend on the functional forms chosen, we
conducted a non-parameterized grid-search for the optimal weighting function w(p) within

the rank-dependent framework. The result, contained in Appendix A.6, again confirms that
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Figure 4: Numerical results for a = 1/2 and v = 3/2.

Prelec v=1 v =3/2
o 5 0* Fitness 5 0* Fitness
1 1.0000 1.0000 0.2714 | 0.9306 1.2431 0.2713
3/4 0.7708 0.9306 0.2713 | 0.7014 1.1597 0.2712
1/2 0.5347 0.8542 0.2706 | 0.4931 1.0903 0.2705
1/4 0.2708 0.7708 0.2688 | 0.2569 1.0069 0.2688
1/10 0.1111 0.7222 0.2668 | 0.1042 0.9514 0.2669

Table 3: Results for w(p) = e~ (-1»)",

optimal weighting exhibits an inverse S-shape with overweighting of small and underweight-

ing of large probabilities.

4 Discussion

The main insight of our analysis is that non-linear probability weighting is a complement
of non-linear payoff valuation. As a consequence, probability weighting should be more
pronounced for agents whose value function deviates more strongly from linearity. This can
be seen most easily for the case of first-best weighting, where the exponent of the optimal
linear in log odds function is equal to the value function’s exponent, and it has further
been illustrated in the previous Section 3.2. We now want to outline how that insight could
become the basis for empirical testing. In fact, our theory has to be augmented by additional

hypotheses before the above described correlation translates into a testable prediction. The
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following two obstacles need to be addressed:

1. Mutual optimality. We have derived optimal weighting for given value functions. How-
ever, long-run evolutionary stability would probably also require inverse optimality of

the value function for the given weighting function.

2. Polymorphic populations. When there are different, mutually optimal value-weighting-
function pairs, it is not evident that evolution would support a polymorphic equilibrium

in which several of them are present.

Concerning mutual optimality, observe first that it follows immediately for all the cases
where the first-best is achievable. When simple prospects are concerned and probabilities are
weighted by 7(p) = p*/(p* + (1 —p)®) for some «, then v(z) = 2® is indeed optimal because
the best possible fitness level is attained. Although this result is not yet entirely satisfactory,
it at least serves as an illustration that different, mutually optimal pairs of weighting and
value functions can indeed exist.

The problem with polymorphic populations is twofold. First, coexistence of different
types in a model with multiple traits either requires that reproduction is asexual (as in
Ely 2009), or that probability weighting function and value function are inherited jointly,
since otherwise genetic recombination systematically yields mismatches (Waldman 1994).
Alternatively, the problem could be overcome by assortativity within a heterogeneous pop-
ulation.'® Second, and more importantly, coexistence of different value-weighting-function
pairs would require them to achieve exactly the same fitness level, while our results in Section
3.2 show that fitness goes down as the value function’s S-shape becomes more pronounced,
even with optimally adapted weighting function. On the other hand, this decline is small: in
Table 2, for instance, the fitness level achievable with a value function exponent of o = 1/4
is still more than 99% of the first-best fitness, with and without loss-aversion. Hence an
appropriately defined evolutionary e-equilibrium could easily comprise heterogeneity.

We want to conclude the discussion by proposing a unifying hypothesis that deals with
both mutual optimality and heterogeneity jointly. Suppose most decisions our evolutionary
ancestors had to make were in fact as simple as modelled in Section 2, for instance because the
outcome of a hunt can be classified as either a success or a failure. Then, mutual optimality
of m(p) = p*/(p* + (1 — p)*) and v(z) = 2* is immediate for any «, as argued above.
Also, any such combination yields the identical first-best fitness level, enabling polymorphic
equilibria in a suitably defined population model. Still, in the presumably more complicated
modern world (or in specifically designed experiments), to which adaptation has not occurred,

behavioral differences would emerge between individuals.

10We are greatful to Joel Sobel for pointing out this possibility.
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We are not aware of a study that either explicitly examines the correlation between
individuals’ value and weighting function parameters, or provides enough individual-level
estimation results to make meaningful correlation statements. Gonzalez and Wu (1999)
present estimated parameters for only 10 subjects, Hsu et al. (2009) for 16 subjects.!* More
helpful for our purpose is the contribution by Bruhin et al. (2010). Based on experimental
data for altogether 448 subjects, they estimate a finite mixture model in which individuals
are endogenously grouped into different behavioral categories. They find that (only) two
such categories emerge: 20% of all individuals maximize expected payoffs, using linear value
and probability weighting functions, while 80% exhibit inverse S-shape probability weight-
ing. From our perspective, these types could correspond to two different points from the
continuum of second-best possibilities. Surprisingly, however, Bruhin et al. (2010) find that
the value function of the group that weighs probabilities non-linearly is concave for gains
but not convex for losses (Table 5, p. 25). This finding is at odds with standard prospect
theory and, since our basic premise of an S-shaped value function is not satisfied, makes it

impossible to directly test our model.

5 Conclusions

Substantial progress has been made in the theory of bounded rationality during the last
decades. There is, however, still widespread unease about relaxing the assumption of ratio-
nality, often based on the argument that behavioral economics offers many different expla-
nations for different phenomena, but not a unifying model. For instance, Rubinstein (1998)
describes a view according to which “...rationality of the decision maker can be seen as the
minimal discipline to be imposed on the modeler [emphasis added|. Our departure from the
rational man paradigm represents a removal of those chains. However, there are an infinite
number of “plausible” models that can explain social phenomena; without such chains we
are left with a strong sense of arbitrariness” (p. 4).

In this paper, we have shown that two specific model ingredients — adaptive S-shaped

" Gonzalez and Wu (1999) consider gain lotteries only, and perform nonparametric estimates of individual
value and weighting functions. Then they show that the nonparametric results can be approximated by the
CRRA value function and the linear in log odds weighting function. Using their estimates (Table 3, p. 157),
we obtain a value of —0.05 for the coefficient of correlation between the estimated exponents of the value and
the weighting function. Statements about significance are not straightforward because the parameters are
themselves only estimated. When treating them as a standard sample, however, this result is not significantly
different from zero at any reasonable level. Hsu et al. (2009) are mostly interested in the neural correlates
of probability weighting, but also present estimated parameters from a behavioral experiment. They also
consider gain lotteries only, and fit a CRRA value function together with the one parameter Prelec function
(10). Based on their estimates (Table S4, p. 13 online supplementary material), we obtain a coefficient of
correlation of +0.04, which is again insignificant.
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payoff valuation and probability misperception — are in fact not arbitrary but complement
each other in achieving a second-best. The underlying idea is more general: behavioral
anomalies should not be examined in isolation, but must be understood as an interacting
system. Once cognitive constraints introduce an anomaly, we should expect deviations from
perfectly rational behavior elsewhere, too. This idea is of course not a unifying theory, but
it might provide a generalized framework for thinking about bounded rationality. Models
based on the evolutionary second-best approach are able to make predictions about the co-
occurrence or mutual exclusion of behavioral anomalies, and as such could help to organize

the multiplicity of empirically documented behavioral phenomena.
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A Appendix

A.1 The Transformed Objective
The objective from (3) can be rewritten as
| Fasvhaopieen+ [ Faabsdae)
PN+ Prng -
because 2T and £~ form a partition of 2. This in turn is equivalent to

/ F(q,z,y)h(q,z,y)d(q, z,y) + / F(q,z,y)h(q,z,y)d(q,,y)

PN+ Prno-

+ / F(q,z,y)h(q,z,y)d(q,z,y) — / F(q,z,y)h(q,z,y)d(q,x,y),
PP+ PP+

where the same term has been added and subtracted. Since 3”; and &, also form a partition of

&, we can rearrange to

/F(q,w7y)h(q,$,y)d(q,w7y)
P+

- / F(q,z,y)h(q, 2, y)d(q,,y) — / F(q,z,y)h(q, z, y)d(q, 2, y)
Py NP+ Prng-
Since the first term in this expression is independent of 7, we can equivalently minimize the expres-

sion in brackets. Observing that F'(q,z,y) > 0 for all (¢,z,y) € &, N PT and F(q,z,y) < 0 for
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all (q,z,y) € 9,}" N &, this immediately yields the transformed problem (4).

A.2 Proof of Proposition 2

We first rewrite problem (4) for the present case. We write v for the identical functions vg and vy,
and we use the fact that # = .#’. Then, for any q € Ry, define 27" (q) = {(z,y) € R |¢ > y/z}
and 2~ (g) = {(,9) € R2|g < y/z}. For any r € Ry let ¥+(r) = {(z,9) € R2|r > v(y)/v(z)}
and ¥~ (r) = {(z,y) € R%|r < v(y)/v(x)}. Then, we can reformulate (4) as follows:

min / / |F(q,z,y)|h(q,z,y)d(z,y) | dg. (14)

neF’
R \ (7= m(@)nZ *+(@)u(*+(n(a)Nn2 = (9))
For any fixed value of ¢, the inner integral in (14) is affected by the function 7 only through ¥ (n(q))
and ¥~ (n(q)), where in turn only the function value 7(q) is relevant. Hence n* € #’ is a solution
to (14) if and only if

1" (¢q) € arg min / |F(q, z,y)|h(q, z,y)d(z,y) + / |F(q,z,y)|h(q, z,y)d(x,y)

reRy
V= (r)NZ*(q) VN2~ (q) (15)
15

for almost all ¢ € #Z4. Denote the first integral in (15) by Ai(q, ), the second by Aa(q,r), and
let A(q,7) = A1(q,7)+A2(q,7), so that n*(¢q) € argmax,cr, A(g,r) must hold for almost all ¢ € R.

Fix any ¢ < 1. We prove the following preliminary claim.
Lemma 2. Given any q <1, Aa(q,7) =0 if r <gq.
Proof. If r < q holds, any (z,y) € ¥ (r) satisfies

M§T§q<1,

v(@)

where the first inequality follows from the definition of ¥ (r). Hence v(y) < v(z) and thus y < z,

so that strict concavity of v implies

y _v(y)

x  v(x)
for all (x,y) € ¥+ (r). But then y/x < ¢, which implies (z,y) ¢ 2"~ (q). Hence ¥ " (r)N2" " (q) = 2,
so that Aa(g,7) = 0. O

Hence the mistake of accepting a negative fitness prospect does not occur for ¢ < 1 when
1n(¢) < q. Now consider the other type of mistake. ¥~ (r) contains all payoffs (z,y) for which
r < v(y)/v(xz). Hence ¥~ (r) and therefore ¥ ~(r) N 2 " (q) is weakly shrinking (in the sense of set
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inclusion) in 7, so that Aj(q,r) is weakly decreasing in r. Combined with Lemma 2 this implies
that, whenever ¢ < 1, A(q,r) is weakly decreasing in 7 up to and including q.

We complete the proof for ¢ < 1 by showing that A(q,r) is strictly decreasing in r at r = g,
which implies that any solution n* must satisfy n*(q) > q. Let r = ¢+ ¢, for e > 0 with e < 1 — q.
Then, any (z,y) € (¥ (¢ +¢) N 2 (g)) must satisfy

y € lqz, (¢ + €)x[,

where the lower bound follows from the definition of 2 ~(g). To derive the upper bound, note that
(x,y) € ¥*(q+e¢) implies v(y)/v(z) < ¢+€ < 1, which implies y < z and hence y/z < v(y)/v(z) <

q + € by concavity of v. Hence we have

(g+e)x
M@mﬂS/ /QHWWW@MMQWEM@Q (16)
Ry qx

i.e. Ay(g,€) is an upper bound for Ay(g, ¢ + €). Also, it holds that

8]\2((:15 6)

e = /x|F(q7w, (g + €)x)|h(q,x,(q+ €)x) dx.

Ry

Then dAz(g,0)/de = 0 because F(q,x,qz) = 0. Observe that Ay(g,0) = 0, and As(q,q+0) =0
by Lemma 2, so that Ag(q,e) and A2(q,q + €) coincide for € = 0. Altogether, this implies that
0A2(q,q+€)/0e = 0 at e = 0 must also hold. Now consider Aj(q,q+¢€). A tuple (x,y) is an element
of ¥~ (qg+¢)NZ*(q) if and only if

y € o (g +e)v(x)],qz]

where v~ is the inverse of v, and v=! [(¢ + €)v(x)] < g for sufficiently small ¢ due to concavity of

v and ¢ < 1. Hence

qr

Al(Q7Q+6):/ / |F(q,z,y)|h(q, z,y)dy | dx
Ry \v—1[(g+e)v(z)]

such that
OM(q,q+¢€)
Oe a
- v(:c) z, 07! e)v(x z, 07! e)v(x T
§/<ww*uq+awmn>ww” ((a+ Y@ hlg 2,07 (g + () da.
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From the fact that v~! [qu(z)] < gz it then immediately follows that OA1(q,q +¢)/e < 0 at € = 0.

Hence we have

ON(q,q+¢€)|  OAi(q,q+¢) OA2(q,q + €)
TNyt 7 — o\t 7/ 4 =2
86 e=0 ae e=0 86 e=0

which completes the proof for ¢ < 1.

The arguments for ¢ = 1 and g > 1 are analogous and therefore omitted.

A.3 Proof of Lemma 1

Part (i). Suppose n € .F' satisfies (6) and consider the reflective candidate m,(p) = n(p/(1—p))/(1+
n(p/(1 —p))). It implements the relative perception

() (i) X1+n(1+q 1?)_ n(g) 1+n(1/q)
m(rhy)  1+n(ex50) (g x ) tHaa) w(/e)

Using (6) we obtain

n(e) 1+n(/q) _ n(e)® [W(Q)Jrl] — 1(e)
L+n(g) n(l/g)  1+n(a) | nla) ’

which shows that , indeed implements 7. For the converse, suppose 7 is implemented by some
reflective weighting =, i.e. n(q) = 7(q/(1+ ¢)/m(1/(1 + q)) for all ¢ € Ry. Then we have

& (1-}-/1(]/(1) ™ <1iq)
(1/q) = = =1/n(q)
n(1/q 7T<1+11/q> 77(13_(1) 1/n(q
for all ¢ € Ry, so n satisfies (6).

Part (ii). Suppose n* satisfies (6) and is implemented by reflective weighting m,» Then we have by

Proposition 2 that
(/A +9)) >

T (1/(1+q)) <

Substituting ¢ = p/(1 — p) then immediately yields condition (7). Also, the substitution shows that

@qél.

* _ . Wn*(p)
n(p/(1=p)) = (=)

Imposing symmetry m,«(1 — p) = 1 — m,;«(p) and rearranging yields the unique solution m,«(p) =
n*(p/(1 —p))/(1 +n*(p/(1 —p))), and straightforward calculations reveal that it satisfies (8).
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A.4 Proof that (10) satisfies condition (7)

Substituting 7 (p) = e~ (=) into
p
L—p

AV

(17)

and rearranging leads to

(+(55) = (5) = G)-(-6)

Let fo(p) denote the left hand side of (18). Note that fo(3) = 0. Hence it is sufficient to show that
fa(p) falls strictly in p, or that f/(p) <0 for 0 < a < 1. Consider

AV

0. (18)

a—1 a—1
fé(p):a<<_1n<1_p>> L (i) ) Lo

S — 19
1—p P I—-p »p (19)

The value of the derivative is strictly increasing in « and for @ = 1 is is exactly 0. Hence it must

be strictly negative for @ < 1, what completes the proof.

A.5 Proof of Proposition 4

We prove the proposition by two consecutive lemmas.

Lemma 3. Suppose # = F' and v > 1. Then, the first-best can be achieved if and only if there
exists a function § : Ry — Ry such that

1laz) _ 5 (20)

forall z € Ry

Proof. Suppose the first-best is achievable by some function nf®. Problem (4) can again be re-
formulated to (15), with the only difference that now ¥ (r) = {(z,y) € R2|r > yv(y)/v(z)} and
Y= (r) = {(z,y) € RZ|r < ~yv(y)/v(z)}. The solution being first-best implies that A(g, n'"?(g)) =0
holds for almost all ¢ € R . This is equivalent to saying that, for almost all ¢, # ~(n*B(q))N. 2 (q)
and 7+ (nfB(q)) N2 ~(q) are measure-zero sets. Fix some value ¢ € R,. The line y = gz separates
the positive quadrant R? into 2 (q) and 2 ~(¢). The curve y = v=! [nfB(q)v(x)/7] separates
R% into ¥ ("5 (q)) and ¥~ (n*P(g)). Thus for almost all ¢ € Ry, v~ [n"B(q)v(x)/7] = g holds
for almost all x € R;, and hence for all z € Ry by continuity of v. Equivalently, for almost all

VS RJF?
yv(g)

v(x)

holds. Continuity of v then implies that there exists a function § : Ry — R, which coincides with

n¥'B except possibly at countably many points, which satisfies (20).

=n""P(q),Vz € Ry, (21)
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Conversely, if a function § exists which satisfies (20), then n°'Z = § is a solution which achieves

the first-best, from the same arguments. O

Lemma 4. The following two statements are equivalent.
(i) v: Ry — Ry is continuous, strictly increasing, strictly concave, and satisfies (20).

(i) v: Ry — Ry is given by v(z) = B2% for some >0 and 0 < o < 1.

Proof. (ii) = (i). This implication is obvious, with §(q) = v¢® being the function required in (20).
(i) = (it). Suppose v satisfies (i). Define f : Ry — Ry by f(z2) = v(z)/v(1). Clearly, f still
satisfies (7). Specifically, the function &(z) = 8(z)/v satisfies f(qz) = 8(q)f(2) for all z,q € R.
Setting z = 1 we obtain f(q) = d(q), for all ¢ € R,. Multiplication of both sides by f(z) then
yields that f(q)f(z) = 6(q)f(z) for all ¢, z € R, But since 6(q)f(z) = f(¢z) from above, we obtain
that f(q)f(z) = f(gz) for all g,z € R4, i.e. the function f is totally multiplicative. Since it is also
continuous and strictly increasing, it follows that f must be of the form f(z) = 2% for some a > 0
(see Cohen (1989), p. 513). Since f is strictly concave, o < 1 must also hold. Then, v(z) = v(1)f(2)
implies that v(z) = G2z for some 8 > 0 and 0 < a < 1. O

Lemmas 3 and 4 together imply that, when # = .%’, the first-best can be achieved if and only if
the function v (which is continuous, strictly increasing, and strictly concave) is given by v(z) = 2%
for some 8 > 0 and 0 < a < 1. The fact that nf"B(q) = y¢® is a first-best solution then follows

immediately from the proof of Lemma 3.

A.6 Numerical Procedure

All numerical calculations were performed in GNU Octave. The scripts are available upon request.

Throughout, we consider the case with two losses and two gains. We start with defining a
finite version of the set of prospects Z2. First, we discretize the interval [0, 1] of probabilities into
a grid of size ny, i.e. we allow for probabilities 0,1/n,,2/n,,...,1. We can then generate the set
of all probability vectors p = (p1,p2,p3,p4) based on this grid. Analogously, we allow for payoffs
between —k and +k and discretize [—k, k] into a grid of size n,, so that the set of all payoff vectors
z = (21, 22, 23, 24) as defined in Section 3.2 can be derived for that grid. The set & of all prospects
is then made up of all possible combinations of probabilities and payoffs, and nature’s prior is an
assignment of probabilities to each of these prospects. We use n, = n, = 10 and k = 2, except if
stated otherwise.

The value function is given by vg(z) = 2¢
procedure for each combination of a € {1,3/4,1/2,1/4,1/10} and v € {1,3/2}. For any of the

considered weighting functions (Karmarkar, linear in log odds, Prelec), we search the range [0, 2] for

and vr(z) = 2%, and we repeat the following

the optimal parameter values, i.e. the values of the weighting functions’ parameters that maximize
expected fitness. The search is carried out in two stages. First, we decompose [0,2] into a grid of

size ng and identify the optimum on that grid. As a second step, we search the area around this
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optimum (+1/ny) more closely, by again decomposing it into a grid of size n,. We use n, = 12
throughout.

For the nonparametric approach, we go through all increasing functions {0,1/n,,2/nyp,...,1} —
{0,1/np,2/np, ..., 1}, calculate the associated fitness and identify the optimum. We have used
n, = 12 here. For @ = 1/2 and v = 1, the result is displayed in Figure 5.

Figure 5: Nonparametric Result

All results in Section 3.2 are based on a uniform prior, where all prospects from & are weighted
equally. As a robustness check, we have performed the same calculations for a different prior.
Specifically, we consider the case where the likelihood of a prospect (p,z) is inversely related to
its absolute fitness value |p - z|.2 On the one hand this captures a realistic scenario where more
extreme prospects are less common than more moderate prospects. On the other hand, probabilities
and payoffs are no longer statistically independent with this prior, unlike for the uniform case. The
corresponding results (Tables 4 to 6) appear below in the same order as Tables 1 to 3 in Section

3.2. It can be seen that there are only very small, if any, differences in the optimal parameters.

12Formally, the probability that nature offers a prospect (p,z) is assumed to be directly proportional to
1/(|p - z| + 0.05), where 0.05 is added to deal with zero fitness prospects.
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Karmarkar v=1 v=23/2
a 5 Fitness 5 Fitness
1 1.0000 0.1226 | 1.4097 0.1108
3/4 0.7708 0.1222 | 1.3403 0.1074
1/2 0.5208 0.1207 | 1.3611 0.1025
1/4 0.2639 0.1178 | 1.2569 0.0970
1/10 0.1042 0.1157 | 1.1042 0.0953

Table 4: w(p) = p°/(p® + (1 — p)?), nonuniform prior.

LLO v=1 v =3/2
« G* o* Fitness G* 0* Fitness
1 1.0000 1.0000 0.1226 | 1.0069 0.6944 0.1223
3/4 |0.7708 1.0000 0.1222 | 0.7708 0.6875 0.1218
1/2 | 0.5208 1.0000 0.1207 | 0.5139 0.6806 0.1202
1/4 10.2639 1.0000 0.1178 | 0.2569 0.6736 0.1174
1/10 | 0.1042 1.0000 0.1157 | 0.1042 0.6667 0.1152

Table 5: w(p) = 6p°/(6p” + (1 — p)?), nonuniform prior.

Prelec vy=1 v=3/2
o 5* 0* Fitness 5* 0* Fitness
1 1.0000 1.0000 0.1226 | 0.9306 1.2431 0.1222
3/4 0.7708 0.9306 0.1221 | 0.7014 1.1667 0.1218
1/2 0.5278 0.8542 0.1203 | 0.4931 1.0903 0.1202
1/4 0.2708 0.7708 0.1174 | 0.2569 1.0069 0.1174
1/10 0.1111 0.7222 0.1150 | 0.1042 0.9514 0.1152

Table 6: w(p) = e 0 np)”
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