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Abstract

This paper explores semi-monotonicity constraints in the distribution of potential out-

comes, first, conditional on an instrument, and second, in terms of the response function.

The imposed assumptions are strictly weaker than traditional instrumental variables as-

sumptions and can be gainfully employed to bound the counterfactual distributions, even

though point identification is only achieved in special cases. The bounds have a simple

analytical form and thus have much practical relevance in all instances when strong exo-

geneity assumptions cannot be credibly invoked. The bounding strategy is illustrated in a

simulated data example and applied to the effect of education on smoking.
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1 Introduction

A major concern about traditional instrumental variables (IV) methods is the validity of the

imposed exogeneity assumption. For example, in the standard linear model, a valid instrument

is assumed to be correlated with the endogenous regressor and uncorrelated with the outcome

error. In the treatment literature, the distribution of potential outcomes is assumed to be

independent of the instrument, perhaps conditional on covariates. Full independence is some-

times replaced by the weaker equality of mean outcomes, but in any case, the credibility of

the imposed exogeneity assumption is inevitably subject to dispute since it cannot be formally

tested using the empirical evidence alone.

The aim of this paper is to explore the identifying power of modest functional form assump-

tions. The restrictions are imposed on the potential outcome distribution, first, conditional on

an order restriction in one covariate (which will be denoted the instrument), and second, in

terms of the response function. For example, the equality of these distributions over different

values of the instrument, as imposed by common IV models, is replaced by a sequence of weak

inequalities, allowing for global extremum points. In accordance with the previous literature

(e.g., Manski and Pepper 2000, 2009), the conditions will be referred to as monotonicity and/or

semi-monotonicity assumptions, depending on the shape of the distribution. The identification

strategy partially addresses Manski and Pepper’s (2000) call for extension of their monotone

instrumental variables approach to stochastic dominance.

Three main implications can be drawn from the analysis. First, although point identifica-

tion of the counterfactual distributions is generally not feasible, the derived bounds are sharp

given the assumptions. Thus, without imposing additional stucture on the data-generating

process, no improvements over the stated bounds can be obtained. Second, if the instru-

ment is the treatment indicator itself, then the bounds have a very simple analytical form,

it is straightforward to calculate their sample values, and to conduct inference using known

methods. Third, the paper avoids any distributional, independence, or exclusion restrictions.

Hence, the derived bounds have important practical relevance in all cases when such assump-
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tions cannot be credibly invoked.

While the assumptions are all motivated in the context of ordinal outcomes as observed,

for example, in the evaluation of future economic developments (e.g., Broz and Plouffe 2010),

records about educational attainment (e.g., Ermisch and Francesconi 2001), or measures of

individual health (e.g., Wildman and Jones 2008), the proposed methods are equally applicable

to continuous and mixed discrete/continuous outcomes. The distinction is inconsequential for

the partial identification results and the derivation of bounds, but it has implications for the

estimation and inference methods. The former is subject of this paper, issues regarding the

latter will only be briefly discussed at the end.

The partial identification of counterfactual quantities under weak monotonicity constraints

has been initiated in the literature by Manski (1995, 1997) and Manski and Pepper (2000).

Subsequent research further developed and applied the idea of monotone instrumental variables

(MIV), and monotone treatment response (MTR), in the context of wage regressions (Blundell

et al. 2007, Gonzáles 2005), health care utilization (Gerfin and Schellhorn 2006, Kreider

and Hill 2009), reporting errors (Kreider and Pepper 2007, 2008), and the intergenerational

transmission of schooling (de Haan 2008). Okumura and Usui (2007) combine the concave-

MTR assumption of Manski (1997) with the monotone treatment selection (MTS) assumption

of Manski and Pepper (2000) to obtain sharp bounds on the average treatment effect that are

tighter than those obtained by imposing either set of assumptions alone.

In the context of discrete outcome data, Bhattacharya et al. (2008) use the Shaikh and

Vytlacil (2005) strategy to bound the effect of Swan-Ganz catheterization on patient mortality,

without imposing a priori knowledge of the sign in the MTR assumption. Boes (2009, 2010)

derives sharp bounds on ordered outcome distributions by imposing a nonparametric threshold

crossing model, and by taking advantage of a sequential information structure. Machado

et al. (2009) consider the implications of weak monotonicity assumptions on the outcome

and selection process in the binary/binary case, partly drawing on the results of the above

literature, on Balke and Pearl (1997), and on Heckman and Vytlacil (2001). See also Chiburis
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(2009) for a generalized linear model approach, and Chesher (2007, 2008) for a non-linear

structural model approach.

A related strand of the literature concerns the empirical analysis of moment inequalities,

as derived for example in Pakes et al. (2006) and Pakes (2009). Chernozhukov et al. (2007)

and Andrews et al. (2004) establish general identification, estimation, and inference results for

such models. See also Rosen (2008), Guggenberger et al. (2008), Andrews and Guggenberger

(2009), Andrews and Han (2009), Romano and Shaikh (2009), and Stoye (2009). Most of this

literature can be embedded within the broader topic of partially identified models (Manski

2003, Tamer 2009). Regarding discrete outcomes, Manski and Tamer (2002) discuss inference

on regressions with interval data. Tamer (2003) analyzes the incompleteness of a simultaneous

binary choice model. Inference is discussed, for example, in Imbens and Manski (2004).

The remainder of the paper is structured as follows. The next two sections propose several

variations of the MIV and MTR assumptions. Section 4 investigates the identifying power

when both sets of assumptions are imposed jointly. Section 5 illustrates the construction of

bounds in a simulated data example and applies the proposed methods to bound the effect of

education on smoking. Section 6 concludes.

2 Semi-Monotonicity in Subpopulations

2.1 Instrumental Variables Assumptions

Suppose that outcomes are (at least) measured on a discrete ordinal scale, i.e., responses can

be ranked from low to high, but differences between outcomes are not necessarily defined.

Each individual is assumed to have a response function, denoted by Y (s) ∈ Y, that determines

the outcome in each state s ∈ S. Let S ∈ S denote the realized state, let Y = Y (S) denote the

realized outcome, and let X = (W,V ) denote the vector of covariates with support X = W×V.

The observed data are the triple (Y, S,X) with distribution P (Y, S,X).

The problem is to learn P [Y (s) ≤ y] or P [Y (s) ≤ y|W ] for all s ∈ S from the observed data
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distribution. Without imposing additional assumptions, point identification from P (Y, S,X)

fails because the outcome of each individual is only observed in the realized state, the outcomes

that would have occured under alternative states are logically unobserved. This yields the no-

assumptions bounds of Manski (1990):

P (Y ≤ y|W,S = s) · P (S = s|W ) ≤ P [Y (s) ≤ y|W ] ≤ (1)

P (Y ≤ y|W,S = s) · P (S = s|W ) + P (S 6= s|W )

which follows by the law of total probability, and bounds zero and one on the counterfactual

distributions P (Y ≤ y|W,S 6= s). The interval defined in (1) can also be interpreted as an

identification region for the potential outcome distribution (Manski 2003).

Additional information can be gained using an instrumental variables strategy. Standard

IV methods state that covariate V is an instrument if the distribution of outcomes for each

s ∈ S conditional on W does not change with different values of V . Formally,

Assumption (IV). Covariate V is an IV in the sense of conditional independence in the

distribution of Y if, for each y ∈ Y, s ∈ S, W ∈ W, and all u1, u2 ∈ V × V,

P [Y (s) ≤ y|W,V = u1] = P [Y (s) ≤ y|W,V = u2]. (2)

Assumption IV implies that P [Y (s) ≤ y|W,V ] = P [Y (s) ≤ y|W ] and thus a lower bound

on the latter is given by the largest of the lower bounds on P [Y (s) ≤ y|W,V = u] over all u,

and an upper bound is given by the smallest of the upper bounds on P [Y (s) ≤ y|W,V = u]

over all u (Manski 1990, 1995).

Now assume that V is an ordered set. A distributional equivalent to the MIV assumption

of Manski and Pepper (2000) would be that the distribution of Y (s) for all individuals with a

specified W and value u1 of V weakly dominates the distribution of Y (s) for individuals with

the same W but with u2 ≥ u1. Formally,

Assumption (MIV). Let V be an ordered set. Covariate V is an IV in the sense of weak

stochastic dominance in the distribution of Y if, for each y ∈ Y, s ∈ S, W ∈ W, and all
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u1, u2 ∈ V × V with u1 ≤ u2,

P [Y (s) ≤ y|W,V = u1] ≥ P [Y (s) ≤ y|W,V = u2]. (3)

Depending on the application and the implications of the theoretical model, the sign of the

inequality may be reversed such that the distribution of Y (s) conditional on V = u2 weakly

dominates the distribution of Y (s) conditional on V = u1.

Assumption MIV implies for any u ∈ V with u1 ≤ u ≤ u2 and ∀y ∈ Y that

P [Y (s) ≤ y|W,V = u1] ≥ P [Y (s) ≤ y|W,V = u] ≥ P [Y (s) ≤ y|W,V = u2]. (4)

Thus, a lower bound of P [Y (s) ≤ y|W,V = u2] is also a lower bound of P [Y (s) ≤ y|W,V = u],

and an upper bound of P [Y (s) ≤ y|W,V = u1] is also an upper bound of P [Y (s) ≤ y|W,V =

u]. This must hold for all values u1 ≤ u and must hold for all values u2 ≥ u. Exploiting the

full support of V , the following sharp bounds on the distribution of potential outcomes can be

derived (see Manski and Pepper 2000, but also Blundell et al. 2007):

inf
u1≤u

{

P [Y ≤ y|W,S = s, V = u1] · P (S = s|W,V = u1) + P (S 6= s|W,V = u1)
}

≥ P [Y (s) ≤ y|W,V = u] ≥ (5)

sup
u2≥u

{

P [Y ≤ y|W,S = s, V = u2] · P (S = s|W,V = u2)
}

.

Bounds on P [Y (s) ≤ y|W ] can be obtained by integrating out over the support of V (subject to

measurability conditions). Two remarks can be made regarding the properties of the bounds

in (5). First, they are not informative if the lower and upper no-assumptions bounds on

P [Y (s) ≤ y|W,V = u] weakly decrease with u, in which case they coincide with the no-

assumptions bounds. Second, the bounds coincide with the IV bounds if the no-assumptions

lower and upper bounds on P [Y (s) = y|W,V = u] weakly increase with u.

Assumption MIV might be too restrictive if monotonicity only holds for subsets of V. For

example, one might think of a combination of monotonically increasing and monotonically

decreasing distribution functions P [Y (s) ≤ y|W,V = u] over the support of V . Formally,
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Assumption (MMIV). Let V be an ordered set. Covariate V is an IV in the sense of partial

weak stochastic dominance in the distribution of Y with a global maximum if, for each y ∈ Y,

s ∈ S, W ∈ W, and all u1, u2 ∈ V × V with u1 ≤ u2 ≤ umax = arg max
u∈V

P [Y (s) ≤ y|W,V = u],

P [Y (s) ≤ y|W,V = u1] ≤ P [Y (s) ≤ y|W,V = u2], (6)

and for all u1, u2 ∈ V × V with umax ≤ u1 ≤ u2,

P [Y (s) ≤ y|W,V = u1] ≥ P [Y (s) ≤ y|W,V = u2]. (7)

Assumption MMIV (the maximum monotone instrumental variables assumption) yields

the assumption MIV as a special case if the global maximum point is at the lower boundary

of V. While assumption MMIV allows for a single break in the monotonicity of P [Y (s) ≤

y|W,V = u] over the support of V , multiple break points would be possible as well. However,

the identification of a global optimum is generally easier to establish from economic theory than

multiple local optima. Depending on the application, assumption MMIV might be reversed to

a minimum condition (justifying the more general semi-monotonicity terminology).

In order to analyze the implications of assumption MMIV on the (partial) identification of

P [Y (s) ≤ y|W,V = u], define the following subsets of V:

V lmax = {u ∈ V : u ≤ arg max
u∈V

P [Y (s) ≤ y|W,V = u]}

Vumax = {u ∈ V : u ≥ arg max
u∈V

P [Y (s) ≤ y|W,V = u]}.

For any u ∈ Vumax with u1 ≤ u ≤ u2 and evaluation points u1, u2 ∈ Vumax × Vumax, and ∀y ∈ Y,

assumption MMIV implies the same set of inequalities as in (4), and thus the same bounds

on P [Y (s) ≤ y|W,V = u]. For any u ∈ V lmax with u1 ≤ u ≤ u2 and u1, u2 ∈ V lmax × V lmax, and

∀y ∈ Y, assumption MMIV implies

P [Y (s) ≤ y|W,V = u1] ≤ P [Y (s) ≤ y|W,V = u] ≤ P [Y (s) ≤ y|W,V = u2]. (8)

Thus, an upper bound of P [Y (s) ≤ y|W,V = u2] is also an upper bound of P [Y (s) ≤ y|W,V =

u], and a lower bound of P [Y (s) ≤ y|W,V = u1] is also a lower bound of P [Y (s) ≤ y|W,V = u].
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This must hold for all values u1 ≤ u and for all values u2 ≥ u as defined above. Exploiting

the full support of V yields the following sharp bounds:

Proposition 1. Let assumption MMIV hold. Then for any u ∈ V lmax,

sup
u1≤u∈V l

max

{

P [Y ≤ y|W,S = s, V = u1] · P (S = s|W,V = u1)
}

≤ P [Y (s) ≤ y|W,V = u] ≤ (9)

inf
u2≥u∈V l

max

{

P [Y ≤ y|W,S = s, V = u2] · P (S = s|W,V = u2) + P (S 6= s|W,V = u2)
}

.

and for any u ∈ Vumax,

sup
u2≥u∈Vu

max

{

P [Y ≤ y|W,S = s, V = u2] · P (S = s|W,V = u2)
}

≤ P [Y (s) ≤ y|W,V = u] ≤ (10)

inf
u1≤u∈Vu

max

{

P [Y ≤ y|W,S = s, V = u1] · P (S = s|W,V = u1) + P (S 6= s|W,V = u1)
}

.

In the absence of other information, these bounds are sharp.

Compared to assumption MIV, the construction of bounds under MMIV requires a split

of the support of V into two parts, one for the lower level set and one for the upper level

set relative to the global maximum point (including the maximum as a boundary). These

two sets yield the bounds in (9) and (10), respectively. Note that weak monotonicity in the

no-assumptions lower and upper bounds on P [Y (s) ≤ y|W,V = u] implies that either (9) or

(10) coincides with the no-assumptions bounds or the bounds under IV, and vice versa. Note

too that Proposition 1 requires credible knowledge about umax.

In order to motivate the foregoing assumptions, consider the following example. Suppose

one is interested in the effect of education (S) on individual health (Y ). Assume that educa-

tion outcomes are generated according to an ordered choice model with the optimal stopping

time determined by pairwise comparisons of returns in adjacent schooling stages. A common

assumption in this model is the concavity of the marginal return function; see Cunha et al.

(2008) for a discussion of this type of model and extensions. Let the threshold values depend

on transition-specific characteristics (such as school subsidies or tuition fees), some of which
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are unobserved, and assume, for simplicity, that there are three levels of subsidies: no subsidy

(V = u1), modest subsidy (V = u2), and maximum subsidy (V = u3).

For V to serve as an instrument in the sense of IV we would assume that the potential

health distribution does not change with the level of the subsidy. This assumption might

be reasonable if subsidies are assumed to be independent of health behavior. If, however,

the smarter people are more likely to get a grant, and they are also better able to take

care of themselves, then assumption IV would be invalid (support for the existence of such a

channel is provided, for example, by Cutler and Lleras-Muney, 2009). However, assumption

MIV would be reasonable if transition-specific subsidies increase the education outcomes and

are symmetrically related to health behavior (generating a weak stochastic dominance with

increasing V ; the lower V , the lower the potential health).

If there is an asymmetry in the link to individual health, then monotonicity might be

combined with a weak concavity assumption. For instance, if education outcomes are generally

higher the higher the subsidies, and if the transition to the higher education levels are more

relevant for generating positive health (Cutler and Lleras-Muney, 2009, for related arguments),

then the dominance of the distribution of potential health conditional on V = u1 relative to

V = u2 might be smaller than that of V = u2 relative to V = u3. In the extreme case, this

might yield a maximum point at V = u2, and thus conform with MMIV. The data examples

below will further illustrate this point.

2.2 Semi-Monotone Treatment Selection

A special case of assumptions IV, MIV, and MMIV is obtained if V is the treatment variable

itself. In this case, the IV assumption is equivalent to the exogenous treatment selection

assumption, stating that the potential outcome distribution does not vary with S, i.e., for

each y ∈ Y, s ∈ S, W ∈ W, and u1, u2 ∈ S × S,

P [Y (s) ≤ y|W,S = u1] = P (Y (s) ≤ y|W,S = u2]. (11)
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This assumption point identifies the counterfactual distribution since P [Y (s) ≤ y|W,S 6= s] =

P [Y ≤ y|W,S = s], and thus P [Y (s) ≤ y|W ] = P (Y ≤ y|W,S = s).

The MIV assumption becomes a monotone treatment selection (MTS) condition assert-

ing that the potential outcome distribution given S = u1 weakly dominates the distribution

conditional on S = u2 with u1 ≤ u2. The MTS assumption implies that

u < s ⇒ P (Y ≤ y|W,S = s) ≤ P [Y (s) ≤ y|W,S = u] ≤ 1

u = s ⇒ P [Y (s) ≤ y|W,S = u] = P (Y ≤ y|W,S = s) (12)

u > s ⇒ 0 ≤ P [Y (s) ≤ y|W,S = u] ≤ P (Y ≤ y|W,S = s),

and thus

P [Y ≤ y|W,S = s] · P (S ≤ s|W ) ≤ P [Y (s) ≤ y|W ] ≤ (13)

P [Y ≤ y|W,S = s] · P (S ≥ s|W ) + P (S < s|W ).

The MMIV assumption with V = S postulates the existence of a unique global maximum point

umax = arg maxu∈S P [Y (s) ≤ y|W,S = u]. The potential outcome dstribution is assumed to

be monotonically increasing for all states u ≤ umax and monotonically decreasing for all states

u ≥ umax. Corollary 1 summarizes the bounds implied by this maximum monotone treatment

selection (MMTS) assumption.

Corollary 1. Let assumption MMIV hold with V = S. Then

s < u ≤ umax

umax ≤ u < s

}

⇒ P (Y ≤ y|W,S = s) ≤ P [Y (s) ≤ y|W,S = u] ≤ 1

u = s ⇒ P [Y (s) ≤ y|W,S = u] = P (Y ≤ y|W,S = s)

u < s ≤ umax

umax ≤ s < u

}

⇒ 0 ≤ P [Y (s) ≤ y|W,S = u] ≤ P (Y ≤ y|W,S = s)

else ⇒ 0 ≤ P [Y (s) ≤ y|W,S = u] ≤ 1,

and thus

s < umax ⇒ P (Y ≤ y|W,S = s) · P (s ≤ S ≤ umax|W ) (14)
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≤ P [Y (s) ≤ y|W ] ≤ P (Y ≤ y|W,S = s) · P (S ≤ s|W ) + P (S > s|W )

s = umax ⇒ P (Y ≤ y|W,S = s) · P (S = s|W ) (15)

≤ P [Y (s) ≤ y|W ] ≤ P (Y ≤ y|W,S = s)

s > umax ⇒ P (Y ≤ y|W,S = s) · P (umax ≤ S ≤ s|W ) (16)

≤ P [Y (s) ≤ y|W ] ≤ P (Y ≤ y|W,S = s) · P (S ≥ s|W ) + P (S < s|W ).

In the absence of other information, these bounds are sharp.

The bounds in Corollary 1 result from a split of S into two subsets with separation point

equal to the global maximum umax. If s and u both lie on one side of umax, then the MMTS

assumption is informative and yields bounds that are tighter than the logical unit range. If s

and u are not element of the same subset, then the MMTS assumption alone is not informative

regarding the counterfactual distribution.

3 Semi-Monotone Treatment Response

The preceding section explored assumptions in terms of an instrument that, when conditioned

on, restricts the shape of the potential outcome distribution. One might also think of imposing

assumptions on the response function Y (s) directly, either for each individual, or for the distri-

bution of outcomes in the population. Assumptions of the former type have been investigated

in Manski (1997), Manski and Pepper (2000, 2009), and Okumura and Usui (2007). Two

assumptions of the latter type, referred to as weak monotone treatment response (WMTR)

and maximum monotone treatment response (MMTR), will be investigated here:

Assumption (WMTR). Let S be an ordered set. Y (s) fulfills a weak stochastic order condition

if, for each y ∈ Y, t ∈ S, X ∈ X , and all s1, s2 ∈ S × S with s1 ≤ s2,

P [Y (s1) ≤ y|X,S = t] ≥ P [Y (s2) ≤ y|X,S = t]. (17)

Assumption (MMTR). Let S be an ordered set. Y (s) fulfills a weak stochastic order condition

with a maximum point if, for each y ∈ Y, t ∈ S, X ∈ X , and all s1, s2 ∈ S × S with
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s1 ≤ s2 ≤ smax = arg maxs∈S P [Y (s) ≤ y|X,S = t],

P [Y (s1) ≤ y|X,S = t] ≤ P [Y (s2) ≤ y|X,S = t], (18)

and for all s1, s2 ∈ S × S with smax ≤ s1 ≤ s2,

P [Y (s1) ≤ y|X,S = t] ≥ P [Y (s2) ≤ y|X,S = t]. (19)

Assumption WMTR states that the outcome distribution in state s1 weakly dominates the

outcome distribution in state s2 ≥ s1, irrespective of the realized state. WMTR holds, for

example, under the monotone treatment response assumption of Manski (1997) that restricts

individual responses by the condition: s2 ≥ s1 ⇒ Y (s2) ≥ Y (s1). Assumption WMTR is also

fulfilled if the Manski (1997) assumption does not hold for all members of the population, but

on average across the population. The weak inequality is assumed to hold conditional on X,

and thus still holds conditional on W , or unconditional on covariates.

Assumption MMTR asserts the existence of a state smax that stochastically dominates all

other states, i.e., P [Y (smax) ≤ y|X,S = t] ≥ P [Y (s) ≤ y|X,S = t) for all s 6= smax. The

distributions are assumed to be monotonically increasing in s to the left and monotonically

decreasing to the right of the maximum point. Hence, the MMTR assumption encompasses

the WMTR assumption as a special case if smax is at the lower boundary of S. It may also

reverse the sign of the weak inequality if the maximum point is at the upper boundary of S.

It is straightforward to replace MMTR by a minimum condition, so one may refer to it more

generally as a semi-monotone treatment response assumption.

Assumption WMTR places the following sharp bounds on the potential outcome distribu-

tion (see Manski 1997 for further details):

P (Y ≤ y|W,S ≥ s)P (S ≥ s|W ) ≤ P [Y (s) ≤ y|W ] ≤ (20)

P (Y ≤ y|W,S ≤ s)P (S ≤ s|W ) + P (S > s|W ).

which follows from the law of total probability and the presumed monotonicity, such that

P (Y ≤ y|W,S = s) can be used as an informative lower bound on all P [Y (s) ≤ y|W,S = t)

with t > s, and as an informative upper bound on all P [Y (s) ≤ y|W,S = t) with t < s.
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Weak monotonicity combined with a global maximum point splits the support of S into

a lower level and an upper level set relative to smax. While the same type of bounds on the

counterfactual probabilities as under WMTR apply for the latter, arguments with a reversed

sign of the inequality can be applied for the former. Proposition 2 summarizes the bounds:

Proposition 2. Let assumption MMTR hold. Then

s < t ≤ smax

smax ≤ t < s

}

⇒ 0 ≤ P [Y (s) ≤ y|W,S = t] ≤ P (Y ≤ y|W,S = t)

s = t ⇒ P [Y (s) ≤ y|W,S = t] = P (Y ≤ y|W,S = s)

t < s ≤ smax

smax ≤ s < t

}

⇒ P (Y ≤ y|W,S = t) ≤ P [Y (s) ≤ y|W,S = t] ≤ 1

else ⇒ 0 ≤ P [Y (s) ≤ y|W,S = t] ≤ 1,

and thus

s < smax ⇒ P (Y ≤ y|W,S ≤ s) · P (S ≤ s|W ) ≤ P [Y (s) ≤ y|W ] ≤ (21)

P (Y ≤ y|W, s ≤ S ≤ smax) · P (s ≤ S ≤ smax|W )

+[1 − P (s ≤ S ≤ smax|W )]

s = smax ⇒ P (Y ≤ y|W ) ≤ P [Y (s) ≤ y|W ] ≤ (22)

P (Y ≤ y|W,S = s) · P (S = s|W ) + [1 − P (S = s|W )]

s > smax ⇒ P (Y ≤ y|W,S ≥ s) · P (S ≥ s|W ) ≤ P [Y (s) ≤ y|W ] ≤ (23)

P (Y ≤ y|W, smax ≤ S ≤ s) · P (smax ≤ S ≤ s|W )

+[1 − P (smax ≤ S ≤ s|W )].

In the absence of other information, these bounds are sharp.

Note that assumptions MMTR and MMTS contribute differently to the identification of

P [Y (s) ≤ y|W ]. While the former explores stochastic dominance over potential states s in

Y (s), the latter explores stochastic dominance over realized states, i.e., conditional on S. In

each case, credible knowledge of the stochastic order, i.e., the sign of the weak inequalities,

and of the global maximum points is essential in the construction of bounds.

13



4 Assumptions on Treatment Selection and Response

One might also think of combining the assumptions of Sections 2 and 3. A particularly in-

teresting case is obtained if the MMTS and the MMTR assumptions are imposed jointly. In

order to illustrate their identifying power, it is helpful to employ a matrix representation of

the counterfactual probabilities, as in the following example with four states:

P [Y (1) ≤ y|W,S = 1] ≤ P [Y (1) ≤ y|W,S = 2] ≤ P [Y (1) ≤ y|W,S = 3] ≥ P [Y (1) ≤ y|W,S = 4]

≤ ≤ ≤ ≤

P [Y (2) ≤ y|W,S = 1] ≤ P [Y (2) ≤ y|W,S = 2] ≤ P [Y (2) ≤ y|W,S = 3] ≥ P [Y (2) ≤ y|W,S = 4]

≤ ≤ ≤ ≤

P [Y (3) ≤ y|W,S = 1] ≤ P [Y (3) ≤ y|W,S = 2] ≤ P [Y (3) ≤ y|W,S = 3] ≥ P [Y (3) ≤ y|W,S = 4]

≥ ≥ ≥ ≥

P [Y (4) ≤ y|W,S = 1] ≤ P [Y (4) ≤ y|W,S = 2] ≤ P [Y (4) ≤ y|W,S = 3] ≥ P [Y (4) ≤ y|W,S = 4]

The main diagonal elements are identified from the observed data distribution, the off-

diagonal elements are not identified. The MMTS assumption places a sequence of inequalities

between the columns of the matrix, the MMTR assumption places inequalities between the

rows of the matrix. Suppose, for simplicity, that smax = umax = 3 such that the inequalities can

be placed as shown above. The matrix can be used to derive sharp lower and upper bounds on

P [Y (s) ≤ y||W,S = u] for all s 6= u. For example, P [Y (2) ≤ y|W,S = 1] can be bounded from

below by P (Y ≤ y|W,S = 1) and bounded from above by P (Y ≤ y|W,S = 2). Informative

bounds can be placed on all counterfactual distributions with s ≤ smax and u ≤ umax, or

s ≥ smax and u ≥ umax. For all other s, u combinations, the bounds zero and one apply.

The bounds on the potential outcome distributions P [Y (s) ≤ y|W ] in the special case of

MMTS and MMTR with smax = umax are summarized in the following corollary:

Corollary 2. Let assumption MMIV hold with V = S, and let assumption MMTR hold.

Suppose smax = umax. Then,

s < smax ⇒ P (Y ≤ y|W,S ≤ s) · P (S ≤ s|W ) + P (Y ≤ y|W,S = s) (24)

·P (s < S ≤ smax|W ) ≤ P [Y (s) ≤ y|W ] ≤

P (Y ≤ y|W,S = s) · P (S < s|W ) + P (Y ≤ y|W, s ≤ S ≤ smax)
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·P (s ≤ S ≤ smax|W ) + P (S > smax|W ),

s = smax ⇒ P (Y ≤ y|W ) ≤ P [Y (s) ≤ y|W ] ≤ P (Y ≤ y|W,S = s), (25)

s > smax ⇒ P (Y ≤ y|W,S ≥ s) · P (S ≥ s|W ) + P (Y ≤ y|W,S = s) (26)

·P (smax ≤ S < s|W ) ≤ P [Y (s) ≤ y|W ] ≤

P (S < smax|W ) + P (Y ≤ y|W, smax ≤ S ≤ s) · P (smax ≤ S ≤ s|W )

+P (Y ≤ y|W,S = s) · P (S > s|W )].

In the absence of other information, these bounds are sharp.

The key to Corollary 2 is again to split the support of S into a lower and an upper level

set relative to the global maximum point, and to derive the bounds on the counterfactual

probabilities for each of these sets. Note that the bounds of Corollary 2 are never wider but

often tighter than the bounds of Corollary 1 or the bounds of Proposition 2.

5 Illustrations

5.1 Simulated Data Example

Consider the following model for the selection and outcome processes:

S =

3
∑

s=1

sI(τs−1 < ψ ≤ τs) (27)

Y (s) =
3

∑

y=1

yI(κs,y−1 < ε ≤ κs,y), s = 1, 2, 3

where I(A) is the logical indicator function that returns one when A is true. The observed

data are the pair (Y, S) with Y = Y (S). The selection status and the potential outcomes

in each state are generated according to a threshold crossing mechanism where −∞ = τ0 <

τ1 < τ2 < τ3 = ∞, and −∞ = κs,0 < κs,1 < κs,2 < κs,3 = ∞. The selection model allows

for random thresholds with τ1 = ν1 and τ2 = τ1 + exp(ν2) to fulfill the order condition. The

parameters κs,y and ψ are constant but unknown.

15



Model (27) does not impose a-priori restrictions on the joint distribution of (ν1, ν2, ε).

In particular, the correlations between the error terms of the selection process and the error

term of the outcome process are free to vary (except for common regularity conditions such

as a finite and positive definite covariance matrix). Moreover, the model allows for arbitrary

behavioral assumptions in the selection process since no a-priori assumptions are imposed on

the correlation between ν1 and ν2. The model does however impose the restriction that the

error terms in all states are generated by the same process. This assumption substantially

simplifies the illustration below, by allowing to focus on the influence of the main parameters

on the construction and properties of the bounds.

The model can be extended to allow for covariates W by making the thresholds in the

selection process and in the outcome processes functions of W . However, in line with the

notion of the paper, the model avoids exclusion restrictions (i.e, non-overlapping subsets of W

appear in κ and τ), such that accounting for covariates amounts to defining treatment effects

(and deriving bounds) for subpopulations described by W .

In order to illustrate the construction of bounds, the error terms (ν1, ν2, ε) are assumed

jointly normal with zero means and covariance matrix

Σ =











1 σ1,2 σ1,ε

σ1,2 1 σ2,ε

σ1,ε σ2,ε 1











.

The following additional restrictions are imposed on the data-generating process: σ1,ε = α/2,

σ1,ε = −α/2, σ1,2 = 0. The thresholds in the outcome processes are specified as

κ1,1 = −β/2 κ2,1 = 0 κ3,1 = −β/5 (lower thresholds)

κ1,2 = .7 κ2,2 = .3 κ3,2 = .4 (upper thresholds)

The parameters α (scenario 1), β (scenario 2), and ψ (scenario 3) are varied in the simulation

study, one at a time between -1 and 1 with the other parameters fixed at one.

Each of these parameters makes a different contribution to the (partial) identification of

the potential outcome distribution. The parameter α does only affect the treatment selection
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assumption. For α positive, the assumption of an asymmetric correlation structure (positive

correlation for the lower selection threshold and negative correlation for the upper selection

threshold) generates a global maximum point in the MMTS sense at umax = 2. If α is

negative, then the maximum point turns into a global minimum point. If α equals zero, then

the potential outcome distribution does not vary conditional on different values of S, which is

equivalent to an IV assumption with the instrument equal to the treatment variable.

The parameter β only affects the treatment response assumption because it changes the

lower outcome thresholds. If β is positive, then P [Y (s) ≤ 1|S] is maximal at smax = 2,

which turns into a minimum point if β is negative. If β equals zero, then P [Y (s) ≤ 1|S]

does not differ over states. The upper outcome thresholds are chosen such that the order

condition is fulfilled, and the relative magnitude over states generates a global minimum point

in P [Y (s) ≤ 2|S] at smin = 2. Finally, ψ does not affect the treatment selection and treatment

response assumptions, but it affects the severity of the partial identification result, i.e., the

width of the bounds, by varying the proportion of observations in each state.

Figures 1 to 3 display the potential outcome distribution if α is varied from -1 to 1 (and all

other parameters are fixed as described above). In each figure, the diagrams on the left show

the probability that the potential outcome takes value 1 in state 1 (top), in state 2 (middle),

and in state 3 (bottom). The right diagrams show the probability that the potential outcome

takes values less or equal 2 in the three states. Figure 1 shows the bounds on the potential

outcome distribution if only the MMTS assumption is imposed, Figure 2 if only the MMTR

assumption is imposed, and Figure 3 if both assumptions are imposed jointly.

— Insert Figures 1 to 3 about here —

Consider Figure 1 and the top left diagram, i.e., the probability that the potential outcome

in state 1 takes value 1. This probability can be written as

P [Y (1) ≤ 1] = P (Y ≤ 1|S = 1)P (S = 1) + P [Y (1) ≤ 1|S = 2]P (S = 2)

+P [Y (1) ≤ 1|S = 3]P (S = 3)
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where all terms but P [Y (1) ≤ 1|S = 2] and P [Y (1) ≤ 1|S = 3] are point identified from

the observed data distribution P (Y, S). If α is negative, then the MMTS assumption implies

a global minimum point at 2 = arg minu∈S P [Y (s) ≤ 1|S = u] such that P (Y ≤ 1|S = 1)

can be used as an upper bound on P [Y (1) ≤ 1|S = 2] instead of one with the lower bound

zero unchanged. P [Y (1) ≤ 1|S = 3] is bounded by zero and one since it lies to the right of

the minimum point with the identified probability lying on the left and thus no informative

conclusions can be drawn from the MMTS assumption. If α is positive, then the minimum

point is replaced by a maximum point such that P (Y ≤ 1|S = 1) can be used as a lower bound

on P [Y (1) ≤ 1|S = 2] instead of zero with the no-assumptions upper bound one unchanged.

If α = 0, then the potential outcome distribution does not vary conditional on different S.

and thus P [Y (1) ≤ 1] is point identified by the observed P (Y ≤ 1|S = 1). Similar arguments

apply to the cumulative probabilities of outcome 2 and the other states.

Now consider the top left diagram of Figure 2. The assumptions imposed on the data-

generating process imply a global maximum point in the MMTR sense at 2 = arg maxs∈S

P [Y (s) ≤ 1|S = u]. Thus, irrespective of α, P (Y ≤ 2|S = 2) can be used as an upper bound

for P [Y (1) ≤ 1|S = 2] instead of one with the no-assumptions lower bound zero unchanged, but

no informative conclusions can be drawn from the MMTR assumption on P [Y (1) ≤ 1|S = 3].

By the assumptions on the upper thresholds of the outcome process, the global maximum point

turns into a global minimum point for outcomes less or equal two, and thus P (Y ≤ 2|S = 2)

can be used as an informative lower bound on P [Y (1) ≤ 2|S = 2] with the no-assumption

upper bound one unchanged. Again, similar arguments apply to the other states.

Figure 3 combines the bounds of Figures 1 and 2. If the MMTS and MMTR assumptions are

imposed jointly, then the larger of the lower bounds and the smaller of the upper bounds under

each assumption provides a binding constraint on the possible range of the potential outcome

distribution. Since the two assumptions make different contributions on identification, the

overlap of both assumptions may provide a substantial improvement over the bounds obtained

under either assumption alone. This explains, on the one hand, the observed kinks in the
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upper and lower bounds, and, on the other hand, the small width in some cases (such as for

the lower part of the distribution in state 2 and α > 0, and the upper part for α < 0.

Figures 4 to 6 summarize the results for β altered from -1 to 1 (scenario 2). Since β does

not affect the MMTS assumption, and α is fixed at 1, the conclusions drawn from the MMTS

assumption are analogous to the outer right part of the bounds in Figure 1. Furthermore, since

β only affects the lower threshold parameters, a change in the bounds over the range of β is only

observed in the left panel of Figure 5. If β is negative, then 2 = arg mins∈S P [Y (s) ≤ 1|S = u]

such that, for example, P (Y ≤ 1|S = 2) can be used as a lower bound on P [Y (1) ≤ 1|S = 2]

instead of zero, with the no-assumptions upper bound one unchanged. If β is positive, then

the minimum point turns into a maximum point such that P (Y ≤ 1|S = 2) can be used as an

upper bound on P [Y (1) ≤ 1|S = 2] instead of one, with the no-assumptions lower bound zero

unchanged. This explains the upward shift in the lower bound for β < 0 and the downward

shift in the upper bound for β > 0. If β = 0, the potential outcome distribution is point

identified because the thresholds do not vary over treatment states.

— Insert Figures 4 to 6 about here —

Scenario 3 considers the variation in ψ from -1 to 1. Since ψ only affects the distribution

of states, but does not affect MMTS and MMTR (which are determined by α = β = 1), this

scenario illustrates the trade-off in the collection of data on states. The smaller ψ, the more

observations are in state 1; the higher ψ, the more observations are in state 3. Thus, for low

values of ψ, the bounds on the potential outcome distribution in state 1 is tightest, but the

bounds on the distribution in state 3 are wide, and vice versa for high values of ψ. An (inverse)

u-shaped effect of ψ on the bounds can be observed for the distribution in state 2. Again,

if both assumptions are imposed jointly, then MMTS and MMTR may yield a substantial

improvement over the no-assumptions bounds.

— Insert Figures 7 to 9 about here —
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5.2 The Effect of Education on Smoking

As an empirical example, I consider the effect of schooling (S) on health behavior (Y ), the latter

measured as the number of cigarette packs smoked per day. The relationship between education

and smoking has been thoroughly studied before (e.g., Grossman 1972, Farrell and Fuchs 1982,

Kenkel 1991, Rosenzweig 1995, Currie and Moretti 2003, Kenkel et al. 2006, de Walque 2007,

Grimard and Parent 2007, Gilman et al. 2008, and Tenn et al. 2008). The evidence suggests

that the more educated people have a smaller likelihood to smoke, a higher likelihood to quit,

and smoke less on average. The literature is not conclusive, however, regarding the magnitude

of the impact, ranging from negligibly small to negative and significant. The studies differ

in the identification strategies and data used to estimate the causal effect, if present, though

none of them has explicitly accounted for schooling effects on the entire smoking distribution.

The framework above is well-suited to address this problem.

The analysis is based on the Smoking Supplement of the 1979 US National Health Inter-

view Survey which contains information on the respondent’s socioeconomic characteristics and

smoking behavior. Details on the data can be found in Mullahy (1985). The population has

been restricted to employed white men aged between 35 and 60, which gives a total of 1,981

observations. Table 1 provides estimates of the smoking distribution conditional on schooling.

The results indicate a global minimum in P (Y ≤ y|S) between 9 and 11 years of schooling.

Thus, the joint (modified) assumptions MMTS with 2 = arg minu∈S P [Y (s) ≤ y|S = u] and

MMTR with 2 = arg mins∈S P [Y (s) ≤ y|S = u] are not rejected by the empirical evidence

alone, and I will maintain these assumptions in what follows.

— Insert Table 1 about here —

Figure 10 displays the bounds on the potential smoking distributions for each of the stated

schooling levels. The no-assumptions bounds provide the widest consensus possible, imposing

bounds zero and one on each counterfactual quantity (left bars). The bounds obtained under

the MMTS assumption (middle left bars) make use of the monotonicity condition to the left
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and to the right of the global minimum point. Similar arguments apply for the bounds under

the MMTR assumption (middle right bars). The matrix representation provides an intuitive

way to determine which bounds apply:

P [Y |S = 1] ≥ P [Y (1)|S = 2] ≤ P [Y (1)|S = 3] ≤ P [Y (1)|S = 4] ≤ P [Y (1)|S = 5]

≥ ≥ ≥ ≥ ≥

P [Y (2)|S = 1] ≥ P [Y |S = 2] ≤ P [Y (2)|S = 3] ≤ P [Y (2)|S = 4] ≤ P [Y (2)|S = 5]

≤ ≤ ≤ ≤ ≤

P [Y (3)|S = 1] ≥ P [Y (3)|S = 2] ≤ P [Y |S = 3] ≤ P [Y (3)|S = 4] ≤ P [Y (3)|S = 5]

≤ ≤ ≤ ≤ ≤

P [Y (4)|S = 1] ≥ P [Y (4)|S = 2] ≤ P [Y (4)|S = 3] ≤ P [Y |S = 4] ≤ P [Y (4)|S = 5]

≤ ≤ ≤ ≤ ≤

P [Y (5)|S = 1] ≥ P [Y (5)|S = 2] ≤ P [Y (5)|S = 3] ≤ P [Y (5)|S = 4] ≤ P [Y |S = 5]

where the weak inequalities between columns follow from the MMTS assumption, and the weak

inequalities between rows follow from the MMTR assumption. Imposing both assumptions

jointly yields an intersection of the bounds on each counterfactual distribution, and thus the

overall bounds on the potential outcome distribution (right bars) are never wider than the

intersection of the bounds under each assumption alone. Moreover, the bounds can be tighter

than the intersection of bounds since MMTS and MMTR both can make contributions to more

informative lower and more informative upper bounds.

— Insert Figure 10 about here —

The bounds in Figure 10 demonstrate that the MMTS and the MMTR assumptions jointly

can have substantial identifying power compared to the no-assumptions bounds. For example,

the possible range of the probability of non-smoking if everybody in the population were

to receive 12 years of schooling shrinks from [0.201; 0.857] to [0.518; 0.674]. However, the

bounds are still too wide to identify the stochastic order of the distributions since they share

common elements over all schooling levels. Thus, the analysis presented here cannot reject

the hypothesis that the statistical association between schooling and smoking is only caused

by unobserved confounding factors.
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6 Conclusion

Constraints on functional form provide a powerful yet not overly restrictive strategy to analyze

counterfactual distributions. Two sets of assumptions are analyzed here. First, the maximum

(or minimum) monotone instrumental variables assumption, which imposes constraints on the

variation of the potential outcome distribution conditional on the instrument. And second, the

maximum (or minimum) monotone treatment response assumption, which restricts the shape

of the outcome distribution over potential states. As a general result, point identification can

only be achieved in special cases. However, if both types of assumptions are imposed jointly,

then they may significantly improve over the no-assumptions bounds.

The bounding strategy poses two limits on the analysis of causal effects. First, it requires

sufficiently large and rich data since the outcome distribution in each state is estimated sepa-

rately. Furthermore, without additional assumptions it is generally not possible to extrapolate

to outcomes not actually observed. Second, while in some cases it is possible to test the joint

set of assumptions, and thus to evaluate their plausibility, the imposed structure may still be

too weak to allow drawing informative conclusions regarding the stochastic order, even par-

tially. It might therefore be desirable to combine the assumptions of this paper with additional

restrictions, such as concavity or convexity, some sort of exclusion restriction, or additional

information regarding the outcome mechanism.

A crucial issue in the construction of bounds is credible knowledge of the extremum points,

which may not always exist, and it would be helpful to develop a data driven criterion to

identify global minima or maxima. Further research is also needed regarding inference. First,

the potential finite sample bias in the analogue estimates needs to be appropriately corrected

(see Kreider and Pepper 2007, and Manski and Pepper 2009, for related results). Second,

the uncertainty in the sign of the inequalities and the location of the extremum points in

the MMIV/MMTS and the MMTR assumptions must be accounted for in order to derive

confidence intervals with a pre-defined coverage probability.
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Tables and Figures

Table 1: Smoking distribution conditional on schooling

Schooling categories (years)

≤ 8 9-11 12 13-15 ≥ 16

P(S) 0.090 0.136 0.343 0.172 0.259

[178] [270] [681] [340] [512]

P (cigs = 0|S) 0.523 0.485 0.584 0.627 0.760

P (cigs ≤ 1/2 pack|S) 0.618 0.548 0.648 0.688 0.799

P (cigs ≤ 1 pack|S) 0.781 0.752 0.824 0.835 0.883

P (cigs ≤ 1 1/2 packs|S) 0.860 0.856 0.888 0.915 0.920

Source: Smoking Supplement of the 1979 US National Health Interview

Survey, own calculations. Notes: The estimates are based on a random

sample of 1,981 observations on employed white men aged 35-60. The

numbers of observations used to estimate each cumulative distribution are

reported in square brackets. cigs denotes the number of cigarette packs

smoked per day, S denotes the years of schooling in categories as shown.
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Figure 1: Bounds under MMTS only – Scenario 1
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Notes: Thick black lines denote the true potential outcome distribution P [Y (s) ≤ y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Corollary 1 under the MMTS assumption only.
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Figure 2: Bounds under MMTR only – Scenario 1
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Notes: Thick black lines denote the true potential outcome distribution P [Y (s) ≤ y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 3 under the MMTR assumption only.
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Figure 3: Bounds under MMTS/MMTR assumptions – Scenario 1
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Notes: Thick black lines denote the true potential outcome distribution P [Y (s) ≤ y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds under the MMTS/MMTR assumptions.
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Figure 4: Bounds under MMTS only – Scenario 2
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axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Corollary 1 under the MMTS assumption only.
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Figure 5: Bounds under MMTR only – Scenario 2
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Notes: Thick black lines denote the true potential outcome distribution P [Y (s) ≤ y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 3 under the MMTR assumption only.
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Figure 6: Bounds under MMTS/MMTR assumptions – Scenario 2
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axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds under the MMTS/MMTR assumptions.
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Figure 7: Bounds under MMTS only – Scenario 3
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(circles) denote the upper (lower) bounds as derived in Corollary 1 under the MMTS assumption only.
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Figure 8: Bounds under MMTR only – Scenario 3
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(circles) denote the upper (lower) bounds as derived in Proposition 3 under the MMTR assumption only.
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Figure 9: Bounds under MMTS/MMTR assumptions – Scenario 3
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Figure 10: Bounds on the potential smoking distribution by schooling level
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Source: Smoking Supplement of the 1979 US National Health Interview Survey, own calculations. Notes: The

estimates are based on a random sample of 1,981 observations on employed white men aged 35-60. Left bars

are obtained using the empirical evidence alone. The MMTS assumption asserts that 2 = arg minu∈S P [Y (s) ≤

y|S = u] (middle left bars), the MMTR assumption asserts that 2 = arg mins∈S P [Y (s) ≤ y|S = u] (middle

right bars). The right bars indicate the bounds obtained under the joint set of assumptions MMTS and MMTR.
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