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Abstract

This paper deals with the identification of treatment effects when the outcome variable

is ordered. If outcomes are measured ordinally, previously developed methods to investigate

the impact of an endogenous binary regressor on average outcomes cannot be applied as the

expectation of an ordered variable, in its strict sense, does not exist, and a shift in focus to

distributional effects is indispensable. Without imposing a fully fledged parametric model the

treatment effects are generally not point-identified. Assuming a threshold crossing model on

both the ordered potential outcomes and the binary treatment variable leaving the distribution

of error terms and functional forms unspecified, it is discussed how the treatment effects can

be bounded and inference on the bounds can be conducted.
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1 Introduction

Suppose one is interested in the effect of a binary treatment D on an ordered response Y . The

treatment variable is such that D = 1 whenever the treatment is received, and D = 0 otherwise.

It is often useful to think of D as a dummy endogenous variable in the model for Y , provided

that the treatment status is determined by self-selected individuals rather than randomly assigned

treatment groups. In terms of potential outcomes (Neyman 1923, Rubin 1974), let Y1 denote the

potential outcome with treatment, and let Y0 denote the potential outcome without treatment.

The measured outcome Y is related to potential outcomes (Y1, Y0) so that

Y = DY1 + (1−D)Y0 (1)

Assume that the total number of categories is independent of the treatment status, i.e., irrespective

of being treated or not the individual will face the same set of mutually exclusive and exhaustive

ordered categories. Without loss of generality, let Y = {1, 2, . . . , J} denote the set of possible

outcomes of Y , where “1” < “2” < . . . < “J”. The assigned values in Y are entirely meaningless,

as long as they keep the ordering, and are just for notational convenience.

One can think of a number of applications with a binary treatment and an ordered response.

For example, in medical research the effectiveness of a new drug may be evaluated regarding

the patient’s health status, in educational economics one may be interested in the effect of out-

of-school training programs on exam grades, and in labor economics the sorting of workers into

public and private sector jobs may be analyzed with respect to their economic performance, the

latter measured as promotion, lateral move, or demotion.

The ordinal nature of Y needs to be taken into account when defining treatment effects. With

quantitative and binary outcomes, the individual treatment effect Y1 − Y0 has potential interest.

For example, if Y measures wages and D is participation in job training, then Y1 − Y0 gives the

wage difference with and without the training program. If Y indicates, for example, one-year

survival after cardiac surgery and D indicates medical treatment, then Y1−Y0 shows whether the

individual would survive with medication and die without (1), is not affected by medication (0), or

would survive without and die with medication (-1). For ordinal variables such an interpretation

does not exist because the distance between outcomes is not defined.
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In practice, only one of two potential outcomes Y1 or Y0 can be observed because each indi-

vidual either receives the treatment, or does not. Thus, it is impossible to recover the individual

treatment effect and the literature typically focuses on averages of Y1 − Y0, such as the average

treatment effect, E(Y1 − Y0), or the average treatment effect on the treated, E(Y1 − Y0|D = 1).

Under certain assumptions, these parameters can at least partly be recovered from observed data

(Heckman and Robb 1985, 1986, Manski 1990, 1994, 1995, Imbens and Angrist 1994, Angrist

et al. 1996, Heckman et al. 1999, among many others). With ordinal data, again, the case is

different: Any rank preserving recoding of the elements in Y should not affect the parameters

of interest. E(Y1) and E(Y0), however, will be affected by such a value conversion, so that the

concept of averages needs to be replaced by a concept insensitive to the definition of Y.

For these reasons I propose to analyze treatment effects for ordinal outcomes in terms of

probabilities rather than expectations. Investigating treatment effects in terms of probabilities is

particularly attractive for discrete responses as each outcome occurs with a positive probability,

and analyzing probability effects is thus of interest on its own. Let the “average” treatment effect

(ATE) be defined as the probability difference of observing a particular outcome with and without

the treatment, formally

∆ATE
y ≡ P (Y1 = y)− P (Y0 = y) y = 1, . . . , J (2)

Note that there are indeed J effects, one for each outcome of Y . If the treatment affects responses

positively — adopting the convention that higher outcomes of Y are in some way “better” —,

then one would expect ∆ATE
y negative for low y and positive for high y. In practice, there may

not exist such a clear systematic indicating whether the treatment has a positive or a negative

effect, but the shift in focus to probability effects allows for a detailed analysis of the effects of

the treatment in all parts of the outcome distribution.

Analogously, the effect on outcome probabilities for individuals who actually received the

treatment can be defined as treatment on the treated parameter (TT)

∆TT
y ≡ P (Y1 = y|D = 1)− P (Y0 = y|D = 1) y = 1, . . . , J (3)

Both treatment parameters are robust against the particular values assigned to outcomes, but

rely on the “same scale” assumption. Yet this assumption is not overly restrictive, as otherwise
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it would be difficult to compare the Y1 and the Y0 distribution. One may also define other

treatment effect parameters in terms of probabilities rather than expectations, such as the local

average treatment effect (LATE) of Imbens and Angrist (1994), or the marginal treatment effect

(MTE) of Heckman (1997). In this paper, I will confine myself on the parameters in (2) and (3),

but some remarks on other parameters will be given below.

∆ATE
y and ∆TT

y are not immediately identified from the population distribution of (Y, D). To

see why, consider the average treatment effect and P (Y1).1 By the law of total probability,

P (Y1) = P (Y1|D = 1)P (D = 1) + P (Y1|D = 0)P (D = 0)

The sampling process identifies the probability of treatment selection, P (D = 1), and the outcome

probability with treatment given treatment has been received, P (Y1|D = 1) = P (Y |D = 1). The

sampling process is uninformative, however, regarding P (Y1|D = 0), which is the outcome prob-

ability with treatment, given the treatment has not been received. In the common terminology

such a term is referred to as counterfactual probability. P (Y0) is not identified either, because

the sampling process does not reveal P (Y0|D = 1), and therefore the average treatment effect is

not identified. Lack of observability of the counterfactual P (Y0|D = 1) also makes identification

of the treatment on the treated parameter fail.

The aim of this paper is to find reasonable bounds on counterfactual probabilities in a setting

with ordinal outcomes and binary treatment, and thus to bound the treatment effect parameters.

As a starting point and without imposing any assumptions on the data-generating process, it

must certainly hold that both counterfactuals, P (Y1|D = 0) and P (Y0|D = 1), are bounded by

zero and one. The average treatment effect is thus bounded by

∆ATE
y ∈

[
LB1ATE

y , UB1ATE
y

]
with (4)

LB1ATE
y = P (D = 1, Y = y)− P (D = 1)− P (D = 0, Y = y)

UB1ATE
y = P (D = 1, Y = y) + P (D = 0)− P (D = 0, Y = y)

1From now on, I will drop the y argument in the probability statements if possible to save some notation, e.g.,
P (Y1) will be shorthand notation for P (Y1 = y), or P (Y1|D = 1) will be shorthand for P (Y1 = y|D = 1). If not
mentioned otherwise, the equations will hold for all y = 1, . . . , J .
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Analogously, the average treatment effect on the treated is restricted to the interval

∆TT
y ∈

[
LB1TT

y , UB1 TT
y

]
with (5)

LB1 TT
y = P (Y = y|D = 1)− 1, UB1 TT

y = P (Y = y|D = 1)

The intervals in (4) and (5) define identification regions for the treatment parameters since all

valid probability distributions P (Y1|D = 0) and P (Y0|D = 1) necessarily yield treatment effects

within the stated bounds (Manski 2000, 2003). Note that the width of the regions is one, which

is the logical maximum for a probability effect. Note too that the bounds are not informative

regarding the sign of both treatment parameters as zero is included in the range of possible

values. The question to be investigated in the following sections is how further assumptions on

the sampling process do narrow these bounds.

More specifically, the paper will explore a nonparametric threshold crossing model on both the

ordered potential outcomes and the treatment selection. Ordinal data modeling is traditionally

based on latent variables and threshold crossing mechanisms. For example, parametric models like

the ordered probit and the ordered logit model follow this structure (McKelvey and Zavoina 1975,

McCullagh 1980), but also semiparametric approaches like Klein and Sherman (2002), Bellemare

et al. (2002), Coppejans (2007), Lewbel (1997, 2003), and Stewart (2004) impose a threshold

crossing model to generate ordinality in the response variable. It therefore seems natural to

analyze the implications of such a model structure in a nonparametric bounding analysis. The

model is nonparametric in the sense that no distributional assumptions, and no functional form

assumptions will be imposed other than the threshold mechanism.

Three recent papers are related to mine. First, Shaikh and Vytlacil (2005) discuss treatment

effect bounds with a binary response variable and a binary treatment. They impose nonparametric

threshold crossing models on both the treatment selection and the binary potential outcomes,

whereas the model here assumes ordinal potential outcomes. As it will be worked out below,

this requires a slightly different bounding strategy, and supplemental interpretations can be given

in the extended setting. Second, Scharfstein et al. (2004) analyze bounds on the distribution of

ordinal outcomes, but their model setup is different from mine because they consider two outcome

variables where the first is always observed and the second (sequentially following the first) is
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potentially missing so that the joint distribution of the two outcomes is not identified. Third, Li

and Tobias (2007) describe Bayesian estimation of treatment effects for ordinal outcomes. They

impose more structure on the model than it is imposed here and focus on mean treatment effect

parameters (and therefore require additional implicit assumptions on the kind of ordinal response

variable that is analyzed).

2 Model and Assumptions

The model for the treatment status and the potential outcomes is a version of the model in Shaikh

and Vytlacil (2005) generalized to the case of ordinal outcomes and defined as

D∗ = s(Z)− ν D = 1(D∗ ≥ 0)

Y ∗
0 = r0(X) + ε0 Y0 =

J∑
y=1

y1(κ0y−1 < Y ∗
0 ≤ κ0y) (6)

Y ∗
1 = r1(X) + ε1 Y1 =

J∑
y=1

y1(κ1y−1 < Y ∗
1 ≤ κ1y)

where (X, Z) is a random vector of observed covariates, ν, ε0, and ε1 are unobserved random

variables, and 1(·) is the logical indicator function. The model is a latent index model with latent

variables D∗, Y ∗
0 , and Y ∗

1 , and a threshold crossing mechanism that generates the treatment

status D and the potential outcomes Y0 and Y1. The model is nonparametric in the sense that

the functional forms of s(Z), r0(X), and r1(X) are left unspecified and no parametric assumption

on the distribution of (ε0, ε1, ν) is made. The model presumes that the error terms and the

functions of observable factors are additively separable; see Vytlacil (2002, 2006) for a discussion

of this property in latent index threshold crossing models. Finally, the observed outcome Y is

generated according to (1), completing the model.

The definition of treatment parameters and the identification regions stated in the introduction

still hold conditional on the vector of observed covariates X. In this case, the average treatment

effect and the average treatment effect on the treated are local (conditional on X), and uncondi-

tional treatment effects may be obtained as weighted averages. The model as presented above also

includes a vector Z that affects the treatment selection. Z may contain all elements of X, and
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additional elements in Z will generally be referred to as instrumental variables. X may or may

not contain an element that is not included in Z. If such an element exists, then this information

can be gainfully employed in the bounding analysis. Let X denote the support of the random

vector X, and let Z denote the support of the random vector Z.

The assumptions imposed on the model (extending Shaikh and Vytlacil 2005) are:

(A1) The threshold parameters κ0j , κ1j , j = 0, . . . , J are fixed and fulfill the order requirement

−∞ = κ00 < κ01 < . . . < κ0J = ∞, and −∞ = κ10 < κ11 < . . . < κ1J = ∞.

(A2) For some x0 ∈ X let r0(x0) = 0, and for some x1 ∈ X let r1(x1) = 0.

(A3) The distribution of ν is absolutely continuous with respect to Lebesgue measure.

(A4) (ε0, ε1, ν) ⊥⊥ (Z,X).

(A5) εj |ν ∼ ε|ν, j = 0, 1.

(A6) The distribution of εj |ν has strictly positive density w.r.t. Lebesque measure on R, j = 0, 1.

(A7) s(Z) is non-degenerate conditional on X.

(A8) The support of the distribution of (X, Z) is compact, and r0(·), r1(·), s(·) are continuous.

For a detailed discussion of assumptions (A3) to (A8) see Shaikh and Vytlacil (2005). Crucial in

the following analysis are the independence assumption (A4) and the restriction to equal distribu-

tions of ε1 and ε0 conditional on ν (A5). The additional assumptions (A1) and (A2) are imposed

due to the ordinal nature of Y . (A1) in combination with the model equation explicitly accounts

for the order information. The threshold parameters are assumed to be unknown, although the

extension to known thresholds (interval data) is possible. In the latter case, knowledge of thresh-

olds in both treatment statuses is required, unless they are independent of treatment and thus

equal. Knowledge of κ0 and κ1 will considerably simplify the analysis, and remarks will be given

at the appropriate places when the additional information can be used.

The model allows for much flexibility in the threshold mechanism since no distributional or

functional form assumptions are imposed and the (unknown) threshold parameters are allowed to
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vary by the treatment status. In particular, the model does not restrict the shape of treatment

effects in a way similar to the single crossing property of probability effects in standard parametric

ordered probit and logit models (Boes and Winkelmann 2006), nor does it require a specific model

for the threshold parameters in order to relax this property.

Assumption (A2) is an identifying assumption that simplifies exposition and is standard in

parametric models. If (A2) is not met, then parametric ordinal response models may only identify

location-normalized instead of absolute threshold parameters, i.e., κ0, κ1 will be replaced by κ0−r0

and κ1−r1, respectively, where r0, r1 denote the constant terms in r0(X), r1(X). As it is irrelevant

for the following analysis if all thresholds are shifted equally to the right or to the left, (A2) is

purely simplifying and does not restrict the analysis in any way.

3 Bounds on Treatment Effects

For the ease of exposition, I will first consider bounds on the treatment effect parameters when

no X covariates are available (Sections 3.1 and 3.2). In this case, the latent potential outcome

equations of the model simplify to Y ∗
1 = ε1 and Y ∗

0 = ε0. The extension to the case when X

covariates are present will be separately discussed below (Section 3.3).

3.1 Bounds under the Independence Assumption

The first bounding strategy follows Manski (1990, 1994). Assume that potential outcomes (Y0, Y1)

are independent of Z, but that treatment selection D varies with Z. One may interpret such a

condition as exclusion restriction, and Z is an instrumental variable. It is easy to verify that

the model assumptions in Section 2 imply this condition but not vice versa, i.e., the assumptions

imposed by the model are stronger than the exclusion restriction alone. Given independence, it

must hold that P (Y1|Z = z) = P (Y1) for all z ∈ Z.2 Moreover, write

P (Y1|Z) = P (Y1|D = 1, Z)P (D = 1|Z) + P (Y1|D = 0, Z)P (D = 0|Z)
2In order to save some notation, I will drop the particular value z (or later on x) that is conditioned on if it

is not critical in the given context. It will be implicitly assumed that all expressions are only evaluated over the
appropriate support, i.e., at all evaluation points the conditional probabilities exist and are well-defined.
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In this expression, all probabilities but the counterfactual P (Y1|D = 0, Z) are identified from the

population distribution (Y, D, Z). The unidentified probability is bounded by zero and one which

in turn imposes upper and lower bounds on P (Y1|Z). Due to the independence assumption, the

smallest of P (D = 1, Y |Z = z)+P (D = 0|Z = z) — which is the upper bound of P (Y1|Z = z) —

over all z ∈ Z may be used as a new upper bound for P (Y1), and the largest of P (D = 1, Y |Z = z)

— which is the lower bound of P (Y1|Z = z) — over all z ∈ Z may be used as a new lower bound

for P (Y1). Analogously, new upper and lower bounds for P (Y0) may be obtained and the average

treatment parameter can be bounded by

∆ATE
y ∈

[
LB2ATE

y , UB2ATE
y

]
with (7)

LB2ATE
y = sup

z∈Z
{P (D = 1, Y = y|Z = z)}

− inf
z∈Z

{P (D = 1|Z = z) + P (D = 0, Y = y|Z = z)}

UB2ATE
y = inf

z∈Z
{P (D = 1, Y = y|Z = z) + P (D = 0|Z = z)}

− sup
z∈Z

{P (D = 0, Y = y|Z = z)}

where sup{·} denotes the supremum and inf{·} the infimum of the argument in curly brackets

over the values indicated in the subscript.

For the treatment on the treated effect note that in general P (Y0|D = 1, Z) 6= P (Y0|D = 1),

i.e., Y0|D = 1 is not independent of Z, as the instrument does affect the treatment status. One

option to proceed would be to re-define the treatment on the treated parameter conditional on

Z, or conditional on P (D = 1|Z), and then obtain the unconditional parameter by integration. I

follow an alternative strategy and rewrite the counterfactual P (Y0|D = 1) in terms of an identified

probability and a probability that can be bounded under independence. It must hold that

P (Y0 = y|D = 1) = P (D = 1, Y0 = y)/P (D = 1)

= [P (Y0 = y)− P (D = 0, Y0 = y)]/P (D = 1)

by Bayes’ theorem and the law of total probability. The sampling process identifies P (D = 1)

and P (D = 0, Y0) = P (D = 0, Y ), but only partially identifies P (Y0). Given Y0 ⊥⊥ Z, one may
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construct upper and lower bounds on P (Y0) in the same manner as above. Rewrite the treatment

on the treated parameter as

∆TT
y = [P (D = 1, Y1 = y)− P (D = 1, Y0 = y)]/P (D = 1)

= [P (D = 1, Y = y)− P (Y0 = y) + P (D = 0, Y = y)]/P (D = 1)

= [P (Y = y)− P (Y0 = y)]/P (D = 1) (8)

so that

∆TT
y ∈

[
LB2TT

y , UB2 TT
y

]
with (9)

LB2TT
y =

[
P (Y = y)− inf

z∈Z
{P (D = 1|Z = z) + P (D = 0, Y = y|Z = z)}

]
/P (D = 1)

UB2TT
y =

[
P (Y = y)− sup

z∈Z
{P (D = 0, Y = y|Z = z)}

]
/P (D = 1)

Note that the bounds in (7) and (9) do not exploit the ordinal nature of the response variable,

nor do they exploit the threshold crossing structure of the model. The analysis may therefore

be applied to any nominal response Y and binary treatment D. The question to be investigated

in the following is how such additional assumptions on the structure of the data can be used to

improve upon (7) and (9).

3.2 Bounds Under the Threshold Crossing Model Structure

The bounding strategy of this section generalizes Heckman and Vytlacil (2001) and Shaikh and

Vytlacil (2005) to the case of ordinal potential outcomes. Given the threshold crossing structure

of the treatment selection equation and the independence assumption, it follows that for any two

evaluation points z1, z0 ∈ Z

P (D = 1|Z = z1) > P (D = 1|Z = z0) ⇔ P (s(z1) ≥ ν) > P (s(z0) ≥ ν)

⇔ s(z1) > s(z0)

Furthermore, let

zu = arg sup
z∈Z

P (D = 1|Z = z)

zl = arg inf
z∈Z

P (D = 1|Z = z)
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This information can be used in two ways. First, by definition of zu and zl it must hold that

s(zu) ≥ s(z) and s(zl) ≤ s(z) for all z ∈ Z. The following lemma then simplifies the supremum

and infimum expressions in the bounds on the average treatment and the treatment on the treated

parameters as stated in (7) and (9):

Lemma 1 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A4) and (A7)-(A8) are fulfilled. Then,

(a) sup
z∈Z

{P (D = 1, Y = y|Z = z)} = P (D = 1, Y = y|Z = zu)

(b) sup
z∈Z

{P (D = 0, Y = y|Z = z)} = P (D = 0, Y = y|Z = zl)

(c) inf
z∈Z

{P (D = 1, Y = y|Z = z) + P (D = 0|Z = z)}

= P (D = 1, Y = y|Z = zu) + P (D = 0|Z = zu)

(d) inf
z∈Z

{P (D = 1|Z = z) + P (D = 0, Y = y|Z = z)}

= P (D = 1|Z = zl) + P (D = 0, Y = y|Z = zl)

Proof. First consider part (a) of the lemma. Recall that at all evaluation points the conditional

probabilities exist and are well-defined. The assumptions of the lemma ensure that

P (D = 1, Y |Z = zu)− P (D = 1, Y |Z = z) (10)

= P (ν ≤ s(zu), Y1)− P (ν ≤ s(z), Y1)

= P (s(z) < ν ≤ s(zu), Y1) ≥ 0

where the weak inequality follows by definition of zu. The supremum of P (D = 1, Y = y|Z = z)

over z is equivalent to the infimum of (10) over z. As (10) must be non-negative, necessary and

sufficient condition for an infimum of (10) is that z = zu. Analogously,

P (D = 0, Y |Z = zl)− P (D = 0, Y |Z = z) (11)

= P (ν > s(zl), Y0)− P (ν > s(z), Y0)

= P (ν ≤ s(z), Y0)− P (ν ≤ s(zl), Y0)

= P (s(zl) < ν ≤ s(z), Y0) ≥ 0

10



where the weak inequality follows by definition of zl. The supremum in part (b) of the lemma

is equivalent to the infimum of (11) over z, and, by the assumptions of the model and given the

weak inequality, z = zl is necessary and sufficient for a supremum of P (D = 0, Y = y|Z = z). In

order to show part (c) of the lemma, write

P (D = 1, Y |Z = zu) + P (D = 0|Z = zu)− P (D = 1, Y |Z = z)− P (D = 0|Z = z) (12)

= P (D = 1, Y |Z = zu)− P (D = 1, Y |Z = z)

− [P (D = 1|Z = zu)− P (D = 1|Z = z)]

= P (s(z) < ν ≤ s(zu), Y1)− P (s(z) < ν ≤ s(zu)) ≤ 0

where the weak inequality follows by definition of zu and the law of total probability. The infimum

of P (D = 1, Y = y|Z = z) + P (D = 0|Z = z) is equivalent to the supremum of (12) both over z.

As (12) must be non-positive, necessary and sufficient condition for a supremum of (12) is that

z = zu. Analogous arguments prove part (d) of the lemma. �

A direct implication of Lemma 1 is that the bounds on the average treatment and the treatment

on the treated parameters as stated in Section 3.1 simplify to

∆ATE
y ∈

[
LB3ATE

y , UB3ATE
y

]
with (13)

LB3ATE
y = P (D = 1, Y = y|Z = zu)− P (D = 1|Z = zl)− P (D = 0, Y = y|Z = zl)

UB3ATE
y = P (D = 1, Y = y|Z = zu) + P (D = 0|Z = zu)− P (D = 0, Y = y|Z = zl)

and

∆TT
y ∈

[
LB3TT

y , UB3 TT
y

]
with (14)

LB3TT
y = [P (Y = y)− P (D = 1|Z = zl)− P (D = 0, Y = y|Z = zl)]/P (D = 1)

UB3TT
y = [P (Y = y)− P (D = 0, Y = y|Z = zl)]/P (D = 1)

Compared to the bounds in (7) and (9), the bounds in (13) and (14) can be readily evaluated once

zu and zl are determined. It is also possible to calculate their width; for the average treatment
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effect the width is given by P (D = 0|Z = zu) + P (D = 1|Z = zl), and for the treatment on

the treated parameter the width is given by P (D = 1|Z = zl)/P (D = 1). Both are smaller

than one given that treatment selection varies with Z, i.e., for both treatment parameters the

independence assumption together with the threshold crossing treatment selection is informative

and yields narrower bounds than the identification regions stated in the introduction. Note

however that the bounds in (13) and (14) do not yield tighter bounds than those in (7) and

(9), because the former are simply a special case of the latter, but the imposed model structure

considerably simplifies the form and the calculation of the bounds.

The second implication of the threshold crossing treatment selection can be derived in combi-

nation with the threshold model for the potential outcomes. Let

sgn(a) =


−1 if a < 0

0 if a = 0

1 if a > 0

denote the sign function, and consider the following lemma:

Lemma 2 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A8) are fulfilled. Then for any two evaluation points z1, z0 with

P (D = 1|Z = z1) > P (D = 1|Z = z0),

sgn[P (Y ≤ y|Z = z1)− P (Y ≤ y|Z = z0)] = sgn(κ1y − κ0y) ≡ δy

so that δy can take three values -1,0,1 depending on whether the difference κ1y − κ0y is negative,

zero, or positive, respectively.

Proof. Consider the cumulative outcome probability conditional on the instrument

P (Y ≤ y|Z) = P (D = 1, Y ≤ y|Z) + P (D = 0, Y ≤ y|Z)

= P (D = 1, Y1 ≤ y|Z) + P (D = 0, Y0 ≤ y|Z)

= P (ν ≤ s(z), ε1 ≤ κ1y) + P (ν > s(z), ε0 ≤ κ0y)

= P (ν ≤ s(z), ε ≤ κ1y) + P (ν > s(z), ε ≤ κ0y)

where the first equality follows by the law of total probability, the second equality follows by (1),

the third equality follows by the model and the independence assumption, and the last equality

12



follows by assumption (A5). Now take the difference of the cumulative outcome probabilities

evaluated at any two evaluation points z1, z0 with P (D = 1|Z = z1) > P (D = 1|Z = z0) such

that s(z1) > s(z0). Then,

P (Y ≤ y|Z = z1)− P (Y ≤ y|Z = z0)

= P (s(z0) < ν ≤ s(z1), ε ≤ κ1y)− P (s(z0) < ν ≤ s(z1), ε ≤ κ0y)

=


P (s(z0) < ν ≤ s(z1), κ0y < ε ≤ κ1y) iff κ1y > κ0y

0 iff κ1y = κ0y

−P (s(z0) < ν ≤ s(z1), κ1y < ε ≤ κ0y) iff κ1y < κ0y

Thus, the sign of the difference in the cumulative probabilities can be used to identify the relative

magnitude of threshold parameters. More precisely, the difference will be positive if and only if

the difference between upper treated and upper nontreated threshold parameters is positive. The

difference will be zero if and only if the upper thresholds are equal, and negative if and only if

the difference between upper treated and upper non-treated thresholds is negative. �

Lemma 2 is analogous to Lemma 4.2 of Shaikh and Vytlacil (2005), but now with respect to

the properties of ordinal potential outcomes. Information on the relative magnitude of threshold

parameters can be used to tighten the bounds on the unidentified probabilities P (Y0|D = 1, Z)

and P (Y1|D = 0, Z). Consider P (Y1|D = 0, Z) and recall that so far it was assumed that this

probability was bounded by zero and one. Now write

P (Y1 = y|D = 0, Z) = P (Y1 ≤ y|D = 0, Z)− P (Y1 ≤ y − 1|D = 0, Z)

which follows from the ordinal nature of Y . Furthermore, the difference

P (Y1 ≤ y|D = 0, Z)− P (Y0 ≤ y|D = 0, Z) (15)

= P (ε1 ≤ κ1y|ν > s(z))− P (ε0 ≤ κ0y|ν > s(z))

= P (ε ≤ κ1y|ν > s(z))− P (ε ≤ κ0y|ν > s(z))

has the same sign as κ1y−κ0y, and δy ≡ sgn(κ1y−κ0y) is identified by Lemma 2. This must hold

for all possible outcomes y, so that by the model assumptions, the sign of the difference

P (Y1 ≤ y − 1|D = 0, Z)− P (Y0 ≤ y − 1|D = 0, Z) (16)
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= P (ε1 ≤ κ1y−1|ν > s(z))− P (ε0 ≤ κ0y−1|ν > s(z))

= P (ε ≤ κ1y−1|ν > s(z))− P (ε ≤ κ0y−1|ν > s(z))

equals δy−1 ≡ sgn(κ1y−1 − κ0y−1). The strategy to bound the unidentified probabilities is a

pairwise comparison of terms in the difference

P (Y1 = y|D = 0, Z)− P (Y0 = y|D = 0, Z) (17)

= [P (Y1 ≤ y|D = 0, Z)− P (Y1 ≤ y − 1|D = 0, Z)]

−[P (Y0 ≤ y|D = 0, Z)− P (Y0 ≤ y − 1|D = 0, Z)]

= [P (Y1 ≤ y|D = 0, Z)− P (Y0 ≤ y|D = 0, Z)]

−[P (Y1 ≤ y − 1|D = 0, Z)− P (Y0 ≤ y − 1|D = 0, Z)]

With three different outcomes of both δy and δy−1 there are in total nine possibilities to consider.

The following lemma states and summarizes the results for both unidentified probabilities:

Lemma 3 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A8) are fulfilled. Then,

δy > δy−1

⇔ P (Y1 = y|D = 0, Z) > P (Y0 = y|D = 0, Z) = P (Y = y|D = 0, Z)

P (Y0 = y|D = 1, Z) < P (Y1 = y|D = 1, Z) = P (Y = y|D = 1, Z)

δy = δy−1 = 0

⇔ P (Y1 = y|D = 0, Z) = P (Y0 = y|D = 0, Z) = P (Y = y|D = 0, Z)

P (Y0 = y|D = 1, Z) = P (Y1 = y|D = 1, Z) = P (Y = y|D = 1, Z)

δy < δy−1

⇔ P (Y1 = y|D = 0, Z) < P (Y0 = y|D = 0, Z) = P (Y = y|D = 0, Z)

P (Y0 = y|D = 1, Z) > P (Y1 = y|D = 1, Z) = P (Y = y|D = 1, Z)

If δy = δy−1 = ±1, then the sign of the difference P (Y1 = y|D = 0, Z)− P (Y0 = y|D = 0, Z) and

the sign of the difference P (Y0 = y|D = 1, Z)− P (Y1 = y|D = 1, Z) are indeterminate.

14



Proof. Immediately follows by application of Lemma 2, (15), (16) and (17). Note that the case

δy > δy−1 includes possibilities (1, 0), (1,−1), and (0,−1) for pairs (δy, δy−1), and δy < δy−1

includes possibilities (0, 1), (−1, 1), and (−1, 0). �

Lemma 2 identifies δy ≡ sgn(κ1y − κ0y) for all y ∈ Y. Lemma 3 then uses the information to

impose bounds on counterfactual probabilities tighter than the logical unit range. Without loss

of generality, take the two evaluation points zl and zu with s(zu) > s(zl), and apply Lemma 2

to identify the relative magnitude of threshold parameters. Suppose, the information is revealed

that δy > δy−1. Then P (Y = y|D = 0, Z) can be used as a lower bound for P (Y1 = y|D = 0, Z)

instead of zero, and P (Y = y|D = 1, Z) can be used as an upper bound for P (Y0 = y|D = 1, Z)

instead of one. Bounds on P (Y1|Z) and P (Y0|Z) are thus given by

P (Y = y|Z) ≤ P (Y1 = y|Z) ≤ P (D = 1, Y = y|Z) + P (D = 0|Z)

P (D = 0, Y = y|Z) ≤ P (Y0 = y|Z) ≤ P (Y = y|Z)

If alternatively the information is revealed that δy < δy−1, then the bounds on P (Y1|Z), P (Y0|Z)

can be derived as

P (D = 1, Y = y|Z) ≤ P (Y1 = y|Z) ≤ P (Y = y|Z)

P (Y = y|Z) ≤ P (Y0 = y|Z) ≤ P (D = 1|Z) + P (D = 1, Y = y|Z)

If upper and lower treated and non-treated thresholds are equal, then the outcome of Y does

not vary with the treatment status because the cumulative probabilities are unchanged, and the

unidentified probabilities become identified, i.e., P (Y1|Z) = P (Y |Z) = P (Y0|Z). The bounds

imposed by Lemma 3 thus depend on the category under consideration, i.e., one may have δy >

δy−1, but δy+1 < δy, such that the restrictions on counterfactual probabilities in category y

are different from the restrictions in category y + 1. If Lemmas 2 and 3 do not reveal further

information on the counterfactual probabilities, then the lower bound zero and the upper bound

one on P (Y1|D = 0, Z) and P (Y0|D = 1, Z) still apply.

As argued above in the derivation of bounds under independence, the model assumptions

imply that P (Y1|Z) = P (Y1) and P (Y0|Z) = P (Y0). P (Y1) and P (Y0) must therefore necessarily
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lie within the intersection over all possible z so that lower bounds can be replaced by supremum

expressions, and upper bounds can be replaced by infimum expressions. With the exception of

supz∈Z{P (Y = y|Z = z)} and infz∈Z{P (Y = y|Z = z)}, all terms reduce according to Lemma 1.

Simplification of the former is possible as well:

Lemma 4 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A8) are fulfilled. Then,

(a1) sup
z∈Z

{P (Y = y|Z = z)} = P (Y = y|Z = zu) if δy > δy−1

(a2) inf
z∈Z

{P (Y = y|Z = z)} = P (Y = y|Z = zu) if δy < δy−1

(b1) inf
z∈Z

{P (Y = y|Z = z)} = P (Y = y|Z = zl) if δy > δy−1

(b2) sup
z∈Z

{P (Y = y|Z = z)} = P (Y = y|Z = zl) if δy < δy−1

Proof. Consider part (a1) and recall that s(zu) ≥ s(z) for all z. The assumptions ensure that

P (Y = y|Z = zu)− P (Y = y|Z = z) (18)

= P (D = 0, Y = y|Z = zu) + P (D = 1, Y = y|Z = zu)

−P (D = 0, Y = y|Z = z)− P (D = 1, Y = y|Z = z)

= P (ν > s(zu), κ0y−1 < ε ≤ κ0y) + P (ν ≤ s(zu), κ1y−1 < ε ≤ κ1y)

−P (ν > s(z), κ0y−1 < ε ≤ κ0y)− P (ν ≤ s(z), κ1y−1 < ε ≤ κ1y)

= P (s(z) < ν ≤ s(zu), κ1y−1 < ε ≤ κ1y)− P (s(z) < ν ≤ s(zu), κ0y−1 < ε ≤ κ0y) ≥ 0

where the last inequality follows by definition of s(zu) and δy > δy−1. Since the supremum in

part (a1) of the lemma is equivalent to the infimum of (18) over z and (18) must be non-negative,

necessary and sufficient condition for an infimum of (18) is that z = zu.

If δy < δy−1, then (18) holds under the weak inequality ≤ 0, and the infimum in part (a2) of

the lemma is equivalent to the supremum of (18) over z. As (18) must be non-positive, necessary

and sufficient condition for a supremum is that z = zu. Following analogous arguments for the

infimum in the case δy > δy−1 and the supremum in the case δy < δy−1 proves parts (b1) and

(b2) of the lemma. �
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The following proposition uses the bounds on P (Y0) and P (Y1) under the threshold crossing

model structure of treatment selection and potential outcomes to bound the average treatment

and the treatment on the treated parameters:

Proposition 1 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A8) are fulfilled. Then,

∆ATE
y ∈

[
LB4ATE

y , UB4ATE
y

]
with (19)

LB4ATE
y =



P (Y = y|Z = zu)− P (Y = y|Z = zl) if δy > δy−1

0 if δy = δy−1 = 0

LB3ATE
y if δy < δy−1

LB3ATE
y if δy = δy−1 = ±1

UB4ATE
y =



UB3ATE
y if δy > δy−1

0 if δy = δy−1 = 0

P (Y = y|Z = zu)− P (Y = y|Z = zl) if δy < δy−1

UB3ATE
y if δy = δy−1 = ±1

and

∆TT
y ∈

[
LB4TT

y , UB4TT
y

]
with (20)

LB4 TT
y =



[P (Y = y)− P (Y = y|Z = zl)]/P (D = 1) if δy > δy−1

0 if δy = δy−1 = 0

LB3 TT
y if δy < δy−1

LB3 TT
y if δy = δy−1 = ±1

UB4 TT
y =



UB3TT
y if δy > δy−1

0 if δy = δy−1 = 0

[P (Y = y)− P (Y = y|Z = zl)]/P (D = 1) if δy < δy−1

UB3TT
y if δy = δy−1 = ±1

For known threshold parameters (interval data), (19) and (20) still hold, but δy and δy−1 can

a-priori be determined and there is no uncertainty about the four cases.
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Proof. Follows directly by Lemmas 1, 2, 3, and 4, and the discussion preceding Lemma 4.

For known threshold parameters the identification strategy of Lemma 2 becomes redundant.

Given the additional information, bounds on the unidentified counterfactuals P (Y0|D = 1, Z) and

P (Y1|D = 0, Z) can be directly imposed as described in Lemma 3 with δy, δy−1 known. �

Note that the width of the bounds in (19) and (20) is at maximum the same and in many

cases smaller than the width of the bounds in (13) and (14). If δy > δy−1, then the upper bound

in (19) corresponds to the upper bound in (13), but the lower bound in (19) is larger than the

lower bound in (13), since

LB4ATE
y − LB3ATE

y = P (D = 0, Y = y|Z = zu)

−P (D = 1, Y = y|Z = zl) + P (D = 1|Z = zl) > 0

With the same argument, if δy < δy−1, then the lower bounds in (19) and (13) are the same, but

the upper bound in (19) is lower than the upper bound in (13), i.e., UB4ATE
y − UB3ATE

y < 0.

Analogously, for the treatment on the treated parameter and a positive sign of the difference

δy−δy−1, the lower bound in (20) is larger than the lower bound in (14), i.e., LB4TT
y −LB3TT

y > 0,

with the upper bounds unchanged, and if δy − δy−1 is negative, then the upper bound in (20) is

lower than the upper bound in (14), i.e., UB4TT
y −UB3 TT

y < 0, with the lower bounds unchanged.

If δy = δy−1 = 0, then both treatment parameters become point-identified to be zero. Only if

δy = δy−1 = ±1, then the width of the bounds does not change and the threshold mechanism is

uninformative on the treatment parameters.

Note that unlike for the bounds constructed before, the sign of ∆ATE
y and ∆TT

y as bounded

by Proposition 1 can be identified if δy ≶ δy−1 or δy = δy−1 = 0. This follows because the lower

bounds LB4ATE
y and LB4TT

y of both treatment parameters are positive in the case δy > δy−1,

and in the case δy < δy−1 the upper bounds UB4ATE
y and UB4 TT

y are negative. Finally, if

δy = δy−1 = 0, then the sign of the treatment effects is point-identified to be zero.

The final remark on (19) and (20) is related to the case of known thresholds. Given the

assumptions of the model and provided that no X covariates are available, the only way that

treated and non-treated individuals may differ are the threshold parameters. If the thresholds do
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not vary by the treatment status, and are thus equal, then δy = δy−1 = 0 in all cases and the

treatment parameters are point-identified to be zero, as predicted by Proposition 1.

3.3 Including Covariates

I now turn to the case when X covariates are available and to the full model (6). The treatment

parameters conditional on X are defined as

∆ATE
y (x) = P (Y1 = y|X = x)− P (Y0 = y|X = x) (21)

∆TT
y (x) = P (Y1 = y|D = 1, X = x)− P (Y0 = y|D = 1, X = x)

= [P (Y = y|X = x)− P (Y0 = y|X = x)]/P (D = 1|X = x) (22)

By the preceding discussion, it is straightforward to show that P (Y1|X) and P (Y0|X) are only

partially identified, and so are the treatment parameters. The offending terms are, as before, the

counterfactuals P (Y1|D = 0, X) and P (Y0|D = 1, X), respectively. All the results derived before

in (7) and (9), Lemma 1, and (13) and (14) are trivially extended to X conditioned on.

In principle, the same holds true for the whole discussion in the preceding section, i.e., Lemmas

2, 3, 4, and Proposition 1 may easily be extended to hold conditional on X. There is, however, a

potential source of narrowing the bounds, given that X varies conditional on Z, i.e., there exists

at least one element in X that is not included in Z. This extra variation can be explored as

follows. Consider a modified version of Lemma 2:

Lemma 5 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A8) are fulfilled. Then for any evaluation points x0, x1, z0, z1 with

P (D = 1|X = xj , Z = z1) > P (D = 1|X = xj , Z = z0), j = 0, 1,

sgn
{

[P (D = 1, Y ≤ y|X = x1, Z = z1)− P (D = 1, Y ≤ y|X = x1, Z = z0)]

−[P (D = 0, Y ≤ y|X = x0, Z = z0)− P (D = 0, Y ≤ y|X = x0, Z = z1)]
}

= sgn(κ1y(x1)− κ0y(x0)) ≡ δy(x1, x0)

so that δy(x1, x0) can take three values −1, 0, 1 depending on whether the difference between

κ1y(x1) ≡ κ1y − r1(x1) and κ0y(x0) ≡ κ0y − r0(x0) is negative, zero, or positive, respectively.
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Proof. Consider the probability differences in the sign function separately:

P (D = 1, Y ≤ y|X = x1, Z = z1)− P (D = 1, Y ≤ y|X = x1, Z = z0) (23)

= P (D = 1, Y1 ≤ y|X = x1, Z = z1)− P (D = 1, Y1 ≤ y|X = x1, Z = z0)

= P (ν ≤ s(z1), ε1 ≤ κ1y − r1(x1))− P (ν ≤ s(z0), ε1 ≤ κ1y − r1(x1))

= P (s(z0) < ν ≤ s(z1), ε1 ≤ κ1y(x1)) = P (s(z0) < ν ≤ s(z1), ε ≤ κ1y(x1))

and

P (D = 0, Y ≤ y|X = x0, Z = z0)− P (D = 0, Y ≤ y|X = x0, Z = z1) (24)

= P (D = 0, Y0 ≤ y|X = x0, Z = z0)− P (D = 0, Y0 ≤ y|X = x0, Z = z1)

= P (ν > s(z0), ε0 ≤ κ0y − r0(x0))− P (ν > s(z1), ε0 ≤ κ0y − r0(x0))

= P (s(z0) < ν ≤ s(z1), ε0 ≤ κ0y(x0)) = P (s(z0) < ν ≤ s(z1), ε ≤ κ0y(x0))

by the assumptions of the lemma, and κ1y(x1) ≡ κ1y− r1(x1) and κ0y(x0) ≡ κ0y− r0(x0). Taking

the difference between (23) and (24) yields

P (D = 1, Y ≤ y|X = x1, Z = z1)− P (D = 1, Y ≤ y|X = x1, Z = z0)

−[P (D = 0, Y ≤ y|X = x0, Z = z0)− P (D = 0, Y ≤ y|X = x0, Z = z1)]

=


P (s(z0) < ν ≤ s(z1), κ0y(x0) < ε ≤ κ1y(x1)) iff κ1y(x1) > κ0y(x0)

0 iff κ1y(x1) = κ0y(x0)

−P (s(z0) < ν ≤ s(z1), κ1y(x1) < ε ≤ κ0y(x0)) iff κ1y(x1) < κ0y(x0)

Thus, the sign of the double difference in the cumulative probabilities can be used to identify the

relative magnitude of κ1y(x1) and κ0y(x0). More precisely, the double difference will be positive if

and only if the difference between κ1y(x1) ≡ κ1y−r1(x1) and κ0y(x0) ≡ κ0y−r0(x0) is positive. It

will be zero if and only if the indices, accounting for the upper bound of the threshold mechanism,

are equal, and negative if and only if κ1y(x1)− κ0y(x0) is negative. �

Lemma 5 can be used to obtain bounds on the counterfactuals P (Y1 = y|D = 0, X, Z) and

P (Y0 = y|D = 1, X, Z) tighter than the logical unit range. Consider the former counterfactual
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probability, and recall that

P (Y1 = y|D = 0, X, Z) = P (Y1 ≤ y|D = 0, X, Z)− P (Y1 ≤ y − 1|D = 0, X, Z)

by the ordinal nature of Y . Take the first cumulative probability, evaluated at x1, and subtract

the identified probability P (Y ≤ y|D = 0, X, Z) evaluated at x0 to obtain

P (Y1 ≤ y|D = 0, X = x1, Z)− P (Y0 ≤ y|D = 0, X = x0, Z)

= P (ε ≤ κ1y(x1)|ν > s(z))− P (ε ≤ κ0y(x0)|ν > s(z))

The sign of the (unidentified) difference only depends on the sign of the difference κ1y(x1)−κ0y(x0),

which is identified by Lemma 5. Thus, if δy(x1, x0) > 0, and hence κ1y(x1) > κ0y(x0), then the

above difference will be positive. If δy(x1, x0) < 0, then the above difference will be negative, and

if δy(x1, x0) = 0, then P (Y1 ≤ y|D = 0, X, Z) = P (Y0 ≤ y|D = 0, X, Z) becomes point-identified.

Since Lemma 5 holds for all y ∈ Y, analogous arguments prove that the difference

P (Y1 ≤ y − 1|D = 0, X = x1, Z)− P (Y0 ≤ y − 1|D = 0, X = x0, Z)

= P (ε ≤ κ1y−1(x1)|ν > s(z))− P (ε ≤ κ0y−1(x0)|ν > s(z))

has the same sign as δy−1(x1, x0). A pairwise comparison of terms in the difference

P (Y1 = y|D = 0, X = x1, Z)− P (Y0 = y|D = 0, X = x0, Z) (25)

= P (Y1 ≤ y|D = 0, X = x1, Z)− P (Y1 ≤ y − 1|D = 0, X = x1, Z)

−[P (Y0 ≤ y|D = 0, X = x0, Z)− P (Y0 ≤ y − 1|D = 0, X = x0, Z)]

= P (Y1 ≤ y|D = 0, X = x1, Z)− P (Y0 ≤ y|D = 0, X = x0, Z)

−[P (Y1 ≤ y − 1|D = 0, X = x1, Z)− P (Y0 ≤ y − 1|D = 0, X = x0, Z)]

= P (ε ≤ κ1y(x1)|ν > s(z))− P (ε ≤ κ0y(x0)|ν > s(z))

−[P (ε ≤ κ1y−1(x1)|ν > s(z))− P (ε ≤ κ0y−1(x0)|ν > s(z))]

may thus be used to obtain bounds on the unidentified counterfactual probabilities. For example,

if Lemma 5 reveals the information that δy(x1, x0) > δy−1(x1, x0), then the difference between the

former two probabilities after the last equality in (25) must be larger than the difference between

the latter two, so that the overall sign is positive, and P (Y0 = y|D = 0, X = x0, Z) can be used
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as lower bound for P (Y1 = y|D = 0, X = x1, Z) instead of zero. By the same arguments, bounds

on the counterfactual probability P (Y0 = y|D = 1, X, Z) can be obtained. The following lemma

summarizes and states the results:

Lemma 6 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A8) are fulfilled. Then,

(a) δy(x, x̃) > δy−1(x, x̃)

⇔ P (Y1 = y|D = 0, X = x,Z) > P (Y = y|D = 0, X = x̃, Z)

δy(x, x̃) = δy−1(x, x̃) = 0

⇔ P (Y1 = y|D = 0, X = x,Z) = P (Y = y|D = 0, X = x̃, Z)

δy(x, x̃) < δy−1(x, x̃)

⇔ P (Y1 = y|D = 0, X = x,Z) < P (Y = y|D = 0, X = x̃, Z)

If δy(x, x̃) = δy−1(x, x̃) = ±1, then the sign of the difference P (Y1 = y|D = 0, X = x,Z)−P (Y0 =

y|D = 0, X = x̃, Z) is indeterminate. And,

(b) δy(x̃, x) > δy−1(x̃, x)

⇔ P (Y0 = y|D = 1, X = x,Z) < P (Y = y|D = 1, X = x̃, Z)

δy(x̃, x) = δy−1(x̃, x) = 0

⇔ P (Y0 = y|D = 1, X = x,Z) = P (Y = y|D = 1, X = x̃, Z)

δy(x̃, x) < δy−1(x̃, x)

⇔ P (Y0 = y|D = 1, X = x,Z) > P (Y = y|D = 1, X = x̃, Z)

If δy(x̃, x) = δy−1(x̃, x) = ±1, then the sign of the difference P (Y0 = y|D = 1, X = x,Z)−P (Y1 =

y|D = 1, X = x̃, Z) is indeterminate.

Proof. Part (a) follows directly by application of Lemma 5 and (25). Part (b) follows by analogous

arguments applying Lemma 5 and P (Y0 = y|D = 1, X = x0, Z) − P (Y1 = y|D = 1, X = x1, Z)

replacing the probability difference in (25). �
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Lemma 6 holds for all evaluation points x̃ in the support of X. Clearly, there might be some

evaluation points x̃ for that δy(x, x̃) > δy−1(x, x̃), and other evaluation points x̃ for that δy(x, x̃) <

δy−1(x, x̃), or δy(x, x̃) = δy−1(x, x̃) = 1, for example. In order to use the full information, let

X l
0(x1) = {x0 : δy(x1, x0) > δy−1(x1, x0)}

X u
0 (x1) = {x0 : δy(x1, x0) < δy−1(x1, x0)}

and

X l
1(x0) = {x1 : δy(x1, x0) < δy−1(x1, x0)}

X u
1 (x0) = {x1 : δy(x1, x0) > δy−1(x1, x0)}

It is made explicit in the definition of sets that these are either over x0 for x1 fixed (and thus

are a function of x1), or over x1 for x0 fixed (and thus are a function of x0). Bounds on the

counterfactual probability P (Y1 = y|D = 0, X, Z), conditional on all values z in the support of Z

can then be derived as

sup
x̃∈X l

0(x)

{P (Y = y|D = 0, X = x̃, Z)}

≤ P (Y1 = y|D = 0, X = x,Z) ≤ inf
x̃∈Xu

0 (x)
{P (Y = y|D = 0, X = x̃, Z)}

If there exists x̃ such that δy(x, x̃) = δy−1(x, x̃) = 0 (for x fixed), then point-identification of the

counterfactual probability follows, i.e., P (Y1 = y|D = 0, X = x,Z) = P (Y = y|D = 0, X = x̃, Z).

If no such x̃ exists, and no x̃ for that Lemma 6 yields tighter bounds than the unit range, then

X l
0 and X u

0 are empty and it is understood that the bounds zero and one still apply. Analogously,

for P (Y0 = y|D = 1, X, Z) the bounds can be derived as

sup
x̃∈X l

1(x)

{P (Y = y|D = 1, X = x̃, Z)}

≤ P (Y0 = y|D = 1, X = x,Z) ≤ inf
x̃∈Xu

1 (x)
{P (Y = y|D = 1, X = x̃, Z)}

with point-identification P (Y0 = y|D = 1, X = x,Z) = P (Y = y|D = 1, X = x̃, Z) if there exists

x̃ such that δy(x̃, x) = δy−1(x̃, x) = 0, and bounds zero and one if X l
1 and X u

1 are empty.

Replacing the bounds for the counterfactual probabilities in the expressions for P (Y1|X, Z)

and P (Y0|X, Z) and following the same arguments as under the independence assumption, the
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bounds on P (Y1|X) and P (Y0|X) are given by

LB1
y(x) ≡ sup

z∈Z

{
P (D = 1, Y = y|X = x, Z = z)

+ sup
x̃∈X l

0(x)

{P (Y = y|D = 0, X = x̃, Z = z)}P (D = 0|X = x,Z = z)
}

≤ P (Y1 = y|X = x) ≤ (26)

UB1
y(x) ≡ inf

z∈Z

{
P (D = 1, Y = y|X = x,Z = z)

+ inf
x̃∈Xu

0 (x)
{P (Y = y|D = 0, X = x̃, Z = z)}P (D = 0|X = x,Z = z)

}
and

LB0
y(x) ≡ sup

z∈Z

{
sup

x̃∈X l
1(x)

{P (Y = y|D = 1, X = x̃, Z = z)}P (D = 1|X = x,Z = z)

+P (D = 0, Y = y|X = x,Z = z)
}

≤ P (Y0 = y|X = x) ≤ (27)

UB0
y(x) ≡ inf

z∈Z

{
inf

x̃∈Xu
1 (x)

{P (Y = y|D = 1, X = x̃, Z = z)}P (D = 1|X = x,Z = z)

+P (D = 0, Y = y|X = x,Z = z)
}

The following proposition uses the bounds in (26) and (27) under the threshold crossing model

structure and the full model to impose bounds on the average treatment effect and the average

treatment effect on the treated conditional on X:

Proposition 2 Assume that (Y0, Y1, D) are generated according to model (6), and assume that

conditions (A1)-(A8) are fulfilled. Then,

∆ATE
y (x) ∈

[
LB5ATE

y (x), UB5ATE
y (x)

]
with (28)

LB5ATE
y (x) = LB1

y(x)− UB0
y(x)

UB5ATE
y (x) = UB1

y(x)− LB0
y(x)

and

∆TT
y (x) ∈

[
LB5 TT

y (x), UB5TT
y (x)

]
with (29)
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LB5TT
y (x) = [P (Y = y|X = x)− UB0

y(x)]/P (D = 1|X = x)

UB5TT
y (x) = [P (Y = y|X = x)− LB0

y(x)]/P (D = 1|X = x)

Proof. Follows directly by Lemmas 5, 6, and the discussion preceding the proposition. �

The bounds imposed by Proposition 2 depend on the amount of variation in X conditional

on Z, and therefore it is difficult to make a general statement about their properties. However,

two important conclusions can be drawn. First, if X does not vary conditional on Z, then the

bounds in (28) and (29) simplify to the bounds in (19) and (20) with X conditioned on, but there

is no possibility to further narrow the bounds. The reason is that if X is degenerate conditional

on Z, then there exists only one x̃ = x in Lemma 6, which then becomes equivalent to Lemma 3

conditional on X. Thus, the cases δy(x, x) ≶ δy−1(x, x), δy(x, x) = δy−1(x, x) = 0 allow to impose

new upper or / and lower bounds on the counterfactual probabilities, if δy(x, x) = δy−1(x, x)± 1,

then the bounds zero and one still apply, and as a consequence, the bounds in Proposition 2

collapse to those in Proposition 1 (conditional on X).

Second, the sign of the treatment effects is always identified by the bounds in Proposition 2.

First consider the bounds in (28) and assume that the true average treatment effect is positive,

i.e., P (Y1 = y|X = x) > P (Y0 = y|X = x). Then δy(x, x) > δy−1(x, x) so that x ∈ X l
0(x) and

x ∈ X u
1 (x) by Lemma 5. Thus, for the lower bound it must hold that

LB1
y(x)− UB0

y(x)

= sup
z∈Z

{P (D = 1, Y = y|X = x,Z = z) + P (D = 0, Y = y|X = x,Z = z)}

− inf
z∈Z

{P (D = 1, Y = y|X = x,Z = z) + P (D = 0, Y = y|X = x,Z = z)}

= P (Y = y|X = x,Z = zu)− P (Y = y|X = x,Z = zl) > 0

which follows by Lemma 4 conditional on X, Lemma 6, and the definition of zu and zl. The

inequality holds for x̃ = x, if other x̃ ∈ X l
0(x) and x̃ ∈ X u

1 (x) exist, then LB1
y(x) may get larger

but never can get smaller by the supremum condition, and UB0
y(x) may get smaller but never

can get larger by the infimum condition, so that the inequality will still hold, and the lower

bound in (28) will strictly be positive. By similar arguments, one can show that for the upper
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bound in the case of P (Y1 = y|X = x) < P (Y0 = y|X = x), UB1
y(x) − LB0

y(x) is negative

for x̃ = x, and will always be negative for all x̃ ∈ X u
0 (x) and x̃ ∈ X l

1(x) other than x. If

P (Y1 = y|X = x) = P (Y0 = y|X = x), then δy(x, x) = δy−1(x, x) = 0, so that the counterfactual

probabilities become identified by Lemma 6, and the average treatment effect is point-identified

to be zero.

Next consider the treatment on the treated parameter and assume that the true parameter is

positive. Then δy(x, x) > δy−1(x, x) by Lemma 5 so that x ∈ X u
1 (x). The sign of LB5 TT

y (x) is

determined by the sign of P (Y = y|X = x)− UB0
y(x). Simplifying terms yields

P (Y = y|X = x)− P (Y = y|X = x,Z = zl) > 0

by Lemma 4 conditional on X, Lemma 6, and the definition of zl. Thus, the lower bound is

positive for x̃ = x, and will always be positive for all x̃ ∈ X u
1 (x) other than x due to the infimum

condition. By analogous steps, one can show that the upper bound of the treatment on treated

parameter will always be negative if the true parameter is negative, and the bounds collapse to

zero and thus provide point-identification if the true parameter is zero.

4 Inference

Shaikh and Vytlacil (2005) describe the construction of confidence sets given a discontinuity in

the form of the bounds. Special attention to inference is necessary in this case because the usual

approach of estimating probabilities by relative frequencies (or replacing population features by

sample counterparts) will be inconsistent at the jump points. Their approach is based on the

construction of a random set CI that will asymptotically cover, with probability at least 1 − α

for fixed α ∈ (0, 1), all treatment effects as identified by the population bounds.

The confidence set approach can also be implemented here. To simplify exposition, let the

observed data be n independently and identically distributed drawings (Yi, Di, Xi, Zi) from the

population of interest, and let X and Z be discrete random variables. Furthermore, assume that

the probability of treatment selection varies with each single outcome of Z, i.e., for all evaluation

points z1 6= z0 we have that P (D = 1|X, Z = z1) 6= P (D = 1|X, Z = z0). In order to illustrate

ideas, consider first the construction of confidence sets for the average treatment parameters
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defined by (13), i.e., in the case of no X covariates, threshold crossing treatment selection, but

without further assumptions on the mechanism generating the outcome variable. Let

P̂ (z) =
1

|{i : Zi = z}|
∑

i:Zi=z

Di

denote a consistent estimator of P (D = 1|Z = z). The evaluation points zl and zu may then

be estimated by ẑl = minz P̂ (z) and ẑu = maxz P̂ (z). Given the assumptions and with n large

enough, one can show that plim ẑl = zl and plim ẑu = zu. Consistent estimators of the bounds

LB3ATE
y and UB3ATE

y can be obtained by

L̂B3
ATE

y =
1

|{i : Zi = ẑu}|
∑

i:Zi=ẑu

DiYiy −
1

|{i : Zi = ẑl}|
∑

i:Zi=ẑl

Di

− 1
|{i : Zi = ẑl}|

∑
i:Zi=ẑl

(1−Di)Yiy

ÛB3
ATE

y =
1

|{i : Zi = ẑu}|
∑

i:Zi=ẑu

DiYiy +
1

|{i : Zi = ẑu}|
∑

i:Zi=ẑu

(1−Di)

− 1
|{i : Zi = ẑl}|

∑
i:Zi=ẑl

(1−Di)Yiy

where Yiy is a dummy variable taking the value one if Yi = y, and zero otherwise. Each of these

estimators contains sums of means of binary variables, such that large sample theorems can be

evoked to establish, for example,

√
n

(
L̂B3

ATE

y − LB3ATE
y

)
d→ N(0, σ2

lb3,y)

with asymptotic variance σ2
lb3,y. Analogously, asymptotic normality of the estimated upper bound

can be established, and aymptotically valid confidence intervals for LB3ATE
y and UB3ATE

y can be

found by the estimated lower and upper bounds plus/minus a measure of variation. The confidence

intervals for the bounds in turn can be used to construct a random set that will asymptotically

cover, with probability at least 1− α, the average treatment effects as defined by the population

bounds in (13). Let q1−α denote the (1−α)-quantile of the standard normal distribution, and let

σ̂2
lb3,y, σ̂2

ub3,y denote consistent estimators of the variances in the asymptotic distributions of the

estimated lower and upper bounds, respectively. Then,

P

(
LB3ATE

y > L̂B3
ATE

y −
σ̂lb3,yq1−α√

n

)
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and

P

(
UB3ATE

y < ÛB3
ATE

y +
σ̂ub3,yq1−α√

n

)
both converge in probability to 1−α. For each ∆ATE

y in the interval
[
LB3ATE

y , UB3ATE
y

]
it must

therefore hold that in the limit the probability of L̂B3
ATE

y − σ̂lb3,yq1−α/
√

n being smaller than

the true average treatment effect, and the probability of ÛB3
ATE

y + σ̂ub3,yq1−α/
√

n being larger

than the true average treatment effect are at least 1− α, with equality if ∆ATE
y is exactly at the

lower (upper) boundary. Thus, with probability at least 1− α and for large n, the interval

CI3ATE
y =

[
L̂B3

ATE

y −
σ̂lb3,yq1−α√

n
, ÛB3

ATE

y +
σ̂ub3,yq1−α√

n

]
(30)

will cover the true average treatment effects as defined by (13). For details on this approach

see also Imbens and Manski (2004). Alternative approaches of obtaining asymptotically valid

confidence sets exist, such as Horowitz and Manski (2000), or Chernozhukov et al. (2007), but I

will restrict myself to the confidence set approach as outlined above.

The confidence set for the average treatment on the treated parameters, as bounded by (14),

can be derived by parallel arguments. Consistent estimators of the lower and the upper bounds

of the average treatment on the treated effect can be found by

L̂B3
TT

y =

 1
n

n∑
i=1

Yiy −
1

|{i : Zi = ẑl}|
∑

i:Zi=ẑl

Di

− 1
|{i : Zi = ẑl}|

∑
i:Zi=ẑl

(1−Di)Yiy

/( 1
n

n∑
i=1

Di

)

ÛB3
TT

y =

 1
n

n∑
i=1

Yiy −
1

|{i : Zi = ẑl}|
∑

i:Zi=ẑl

(1−Di)Yiy

/( 1
n

n∑
i=1

Di

)

Furthermore, let ς2
lb3,y, ς2

ub3,y denote the asymptotic variances of the estimated lower and upper

bounds of the average treatment on the treated parameter, respectively, and ς̂2
lb3,y, ς̂2

ub3,y the

corresponding consistent estimators. Then, the random set constructed as

CI3TT
y =

[
L̂B3

TT

y −
ς̂lb3,yq1−α√

n
, ÛB3

TT

y +
ς̂ub3,yq1−α√

n

]
(31)

will cover asymptotically the true average treatment on the treated parameter, as defined by the

bounds in (14), with probability at least 1− α.
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The construction of confidence sets for the average treatment and average treatment on the

treated parameters as bounded by Proposition 1 proceeds in a similar way. Consider first ∆ATE
y

and the bounds in (19), and let AATE
y ≡ P (Y = y|Z = zu) − P (Y = y|Z = zl) which can be

consistently estimated by

ÂATE
y =

1
|{i : Zi = ẑu}|

∑
i:Zi=ẑu

Yiy −
1

|{i : Zi = ẑl}|
∑

i:Zi=ẑl

Yiy

Large sample results ensure that

√
n
(
ÂATE

y −AATE
y

)
d→ N(0, σ2

a,y)

where σ2
a,y denotes the variance of the asymptotic normal distribution. For the average treatment

on the treated parameter and bounds (20), let ATT
y ≡ [P (Y = y)− P (Y = y|Z = zl)]/P (D = 1)

which can be consistently estimated by

ÂTT
y =

 1
n

n∑
i=1

Yiy −
1

|{i : Zi = ẑl}|
∑

i:Zi=ẑl

Yiy

/( 1
n

∑
i

Di

)

and again, by large sample arguments

√
n
(
ÂTT

y −ATT
y

)
d→ N(0, ς2

a,y)

with asymptotic variance ς2
a,y. Thus, for each of the terms in (19) and (20) a consistent estimator

exists and an asymptotically valid confidence interval can be constructed.

An additional complication arises because the bounds in (19) and (20) are discontinuous

functions of δy and δy−1. This discontinuity needs to be taken into account when constructing

the random set that will asymptotically cover the true parameter with predefined probability.

In order to do that, the uncertainty about δy should be considered as well. For an analogous

argument in a nonparametric regression context see also Gijbels et al. (2004). Recall that δy

was defined as the sign of the difference between two cumulative probabilities, specifically as the

sign of dy ≡ P (Y ≤ y|Z = z1) − P (Y ≤ y|Z = z0) for any two evaluation points z1, z0 with

P (D = 1|Z = z1) > P (D = 1|Z = z0). A consistent estimator of dy can be obtained as

d̂y(z1, z0) =
1

|{i : Zi = z1}|
∑

i:Zi=z1

y∑
j=1

Yij −
1

|{i : Zi = z0}|
∑

i:Zi=z0

y∑
j=1

Yij
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with z1, z0 such that P̂ (z1) > P̂ (z0). The estimator d̂y(z1, z0) uses the information of only two

evaluation points, but it is possible to account for the additional information of all combinations

z1, z0 satisfying the condition P (D = 1|Z = z1) > P (D = 1|Z = z0), which will generally improve

the precision of the estimator. The modified version

d̂y =
1

|{(z1, z0) : P̂ (z1) > P̂ (z0)}|

∑
(z1,z0):P̂ (z1)>P̂ (z0)

d̂y(z1, z0) (32)

will therefore be used in the following. The estimator in (32) can be constructed for each outcome

y ∈ Y, and pairs d̂y,y−1 = (d̂y, d̂y−1) will asymptotically be bivariate normally distributed with

√
n
(
d̂y,y−1 − dy,y−1

)
d→ N(0,Σy,y−1)

The asymptotic covariance matrix Σy,y−1 has V ar(d̂y) and V ar(d̂y−1) the main diagonal entries,

and Cov(d̂y, d̂y−1) the off-diagonal entries. An asymptotic confidence ellipse for dy,y−1 can be

constructed as

(d̂y,y−1 − dy,y−1)′Σ̂−1
y,y−1(d̂y,y−1 − dy,y−1) ≤ χ2

2,1−α (33)

where Σ̂y,y−1 is a consistent estimator of Σy,y−1, and χ2
2,1−α is the 1−α quantile of the Chi-square

distribution with two degrees of freedom. For n growing large, the ellipse defined by (33) will

cover the true dy,y−1 with probability 1− α.

The confidence sets for the average treatment effects and the average treatment on the treated

effects as defined by Proposition 1 can then be constructed as follows. In the dy, dy−1-plane (where

dy is on the abscissa and dy−1 is on the ordinate), if the confidence ellipse defined by (33)

1. . . . lies entirely in the fourth quadrant (dy positive, dy−1 negative), or intersects with the

abscissa (dy−1 = 0) only in the first/fourth quadrant, or intersects with the ordinate (dy = 0)

only in the third/fourth quadrant, then use the random set

CI4aATE
y =

[
ÂATE

y − σ̂a,yq1−α√
n

, ÛB3
ATE

y +
σ̂ub3,yq1−α√

n

]
CI4aTT

y =
[
ÂTT

y − ς̂a,yq1−α√
n

, ÛB3
TT

y +
ς̂ub3,yq1−α√

n

]
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2. . . . intersects with both axes, then use the random set

CI4 bATE
y =

[
L̂B3

ATE

y −
σ̂lb3,yq1−α√

n
, ÛB3

ATE

y +
σ̂ub3,yq1−α√

n

]
CI4 bTT

y =
[
L̂B3

TT

y −
ς̂lb3,yq1−α√

n
, ÛB3

TT

y +
ς̂ub3,yq1−α√

n

]

3. . . . lies entirely in the second quadrant (dy negative, dy−1 positive), or intersects with the

abscissa (dy−1 = 0) only in the second/third quadrant, or intersects with the ordinate

(dy = 0) only in the first/second quadrant, then use the random set

CI4 cATE
y =

[
L̂B3

ATE

y −
σ̂lb3,yq1−α√

n
, ÂATE

y +
σ̂a,yq1−α√

n

]
CI4 cTT

y =
[
L̂B3

TT

y −
ς̂lb3,yq1−α√

n
, ÂTT

y +
ς̂a,yq1−α√

n

]

4. . . . lies entirely in the first quadrant (both dy and dy−1 are positive), or entirely in the third

quadrant (both dy and dy−1 are negative), then use the random set

CI4dATE
y =

[
L̂B3

ATE

y −
σ̂lb3,yq1−α√

n
, ÛB3

ATE

y +
σ̂ub3,yq1−α√

n

]
CI4dTT

y =
[
L̂B3

TT

y −
ς̂lb3,yq1−α√

n
, ÛB3

TT

y +
ς̂ub3,yq1−α√

n

]

One can show that asymptotically the random sets CI4ATE
y , consisting of CI4aATE

y to CI4dATE
y ,

and CI4 TT
y , consisting of CI4aTT

y to CI4dTT
y , cover the true average treatment effect and the

average treatment effect on the treated, respectively, with probability at least 1− α. In order to

see why the intervals constructed as such will cover the true parameter with probability at least

1− α, consider the average treatment effect and assume that ∆ATE
y > 0 such that δy > δy−1 and

∆ATE
y ∈

[
AATE

y , UB3ATE
y

]
. With probability approaching one, the confidence interval constructed

in (33) will fulfill the conditions to choose CI4aATE
y , and CI4aATE

y covers all parameters ∆ATE
y ∈[

AATE
y , UB3ATE

y

]
with probability at least 1− α, as desired. Analogous arguments show that in

all other cases the desired coverage probability is obtained.

The confidence sets for the average treatment and the average treatment on the treated effects

in the case of X covariates present, i.e., for the parameters as identified by Proposition 2, can
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be constructed following a similar strategy as in the case of no X covariates available. The steps

involved are as follows. To begin with, let

P̂ (x, z) =
1

|{i : Xi = x, Zi = z}|
∑

i:Xi=x,Zi=z

Di

denote a consistent estimator of P (D = 1|X = x,Z = z), and define

dy(x1, x0; z1, z0) ≡

[P (D = 1, Y ≤ y|X = x1, Z = z1)− P (D = 1, Y ≤ y|X = x1, Z = z0)]

−[P (D = 0, Y ≤ y|X = x0, Z = z0)− P (D = 0, Y ≤ y|X = x0, Z = z1)]

which can be consistently estimated by

d̂y(x1, x0; z1, z0) =
1

|{i : Xi = x1, Zi = z1}|
∑

i:Xi=x1,Zi=z1

y∑
j=1

DiYij

− 1
|{i : Xi = x1, Zi = z0}|

∑
i:Xi=x1,Zi=z0

y∑
j=1

DiYij

−

 1
|{i : Xi = x0, Zi = z0}|

∑
i:Xi=x0,Zi=z0

y∑
j=1

(1−Di)Yij

− 1
|{i : Xi = x0, Zi = z1}|

∑
i:Xi=x0,Zi=z1

y∑
j=1

(1−Di)Yij


with z1, z0 such that P̂ (xj , z1) > P̂ (xj , z0), j = 0, 1. Accounting for the information of all such

evaluation points z1, z0 yields the estimator

d̂y(x1, x0) =

∑
(z1,z0):P̂ (xj ,z1)>P̂ (xj ,z0),j=0,1

d̂y(x1, x0; z1, z0)

|{(z1, z0) : P̂ (xj , z1) > P̂ (xj , z0), j = 0, 1}|

Then consider the estimator either as a function of x1 keeping x0 fixed, d̂y(x1|x0), or as a function

of x0 keeping x1 fixed, d̂y(x0|x1), and note that the estimators hold for all y ∈ Y such that pairs(
d̂y(x1|x0), d̂y−1(x1|x0)

)
or
(
d̂y(x0|x1), d̂y−1(x0|x1)

)
can be created. From these pairs, one may

construct asymptotically valid confidence ellipses with regions as defined in the construction of

CI4 (entirely in each quadrant, and the 5 intersection possibilities with the axes).

The bounds LB1
y(x), UB1

y(x), LB0
y(x), UB0

y(x) depend on the sets X l
0(x), X u

0 (x), X l
1(x), X u

1 (x),

the latter defined by δy(x1, x0) relative to δy−1(x1, x0). This dependence needs to be taken into
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account when constructing the confidence sets for the parameters. Let AX l
0(x1) denote an alterna-

tive set of all x0 (given x1) satisfying that in the dy(x0|x1), dy−1(x0|x1)-plane the confidence ellipse

lies entirely in the fourth quadrant (dy(x0|x1) positive, dy−1(x0|x1) negative), or intersects with

the abscissa (dy−1(x0|x1) = 0) only in the first/fourth quadrant, or intersects with the ordinate

(dy(x0|x1) = 0) only in the third/fourth quadrant. Similarly, define AX u
0(x1) as an alternative

set of all x0 (given x1) satisfying that in the dy(x0|x1), dy−1(x0|x1)-plane the confidence ellipse

lies entirely in the second quadrant (dy(x0|x1) negative, dy−1(x0|x1) positive), or intersects with

the abscissa (dy−1(x0|x1) = 0) only in the second/third quadrant, or intersects with the ordinate

(dy(x0|x1) = 0) only in the first/second quadrant. Analogously, define sets AX l
1(x0) and AX u

1(x0)

in the dy(x1|x0), dy−1(x1|x0)-plane. These alternative sets can be interpreted as estimators of the

population sets X k
j (x), j = 0, 1, k = l, u.

Empirical analogues of the upper and lower bounds on P (Y1 = y|X = x) and P (Y0 = y|X = x)

can be derived from (26) and (27) replacing the population sets by the alternative sets defined

above and the probabilities by the appropriate relative frequencies. From these estimators, one

may construct estimators of the upper and lower bounds for the average treatment effect and the

average treatment effect on the treated. Because of the dependence on the (estimated) alternative

sets, obtaining an upper bound of an one-sided 1 − α confidence interval for UB5ATE
y (x), and a

lower bound of an one-sided 1−α confidence interval for LB5ATE
y (x) is not straightforward. One

option, also referred to by Shaikh and Vytlacil (2005), is subsampling; see Politis et al. (1999)

for details, in particular Chapter 2. Let L̂B5
ATE

y;1−α−(x) and ÛB5
ATE

y;1−α+(x) denote such bounds of

the confidence interval, then an asymptotically valid confidence interval for the average treatment

effect can be obtained by

CI5ATE
y =

[
L̂B5

ATE

y;1−α−(x), ÛB5
ATE

y;1−α+(x)
]

(34)

By analogous arguments, an asymptotically valid confidence interval

CI5 TT
y =

[
L̂B5

TT

y;1−α−(x), ÛB5
TT

y;1−α+(x)
]

(35)

for the average treatment on the treated effect can be constructed.
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5 Moving Beyond ATE and TT

The previous sections have focused on two treatment parameters, namely the average treatment

effect and the average treatment effect on the treated. Both parameters were defined in terms of

probabilities rather than expectations to circumvent the problem of ordinal but arbitrary coding

of the elements in Y. The term “average” was introduced because the parameters reflect how

an individual’s probability of responding in each of the J ordinal categories will change with and

without the receipt of treatment, and where probability was defined from a frequentist perspective

as what would happen on average if the same individual was considered repeatedly.

The average treatment effect and the average treatment effect on the treated certainly are

the treatment parameters that occur most often in the literature. The former is defined for an

individual that is randomly drawn from the entire population of interest, the latter is defined

for an individual randomly drawn from those that actually received the treatment. However,

alternative parameters have been considered as well for different subgroups of the population.

For example, the local average treatment effect (LATE) of Imbens and Angrist (1994) is defined

as the average treatment effect for the subgroup of compliers, i.e., those individuals who would

comply with the exogenous modification of instruments. This concept can also be translated to

probabilities. Let z1, z0 denote two evaluation points with P (D = 1|Z = z1) > P (D = 0|Z = z0)

such that, by the threshold crossing treatment selection, s(z1) > s(z0). Then,

P (Y = y|Z = z1)− P (Y = y|Z = z0) (36)

= P (D = 1, Y = y|Z = z1) + P (D = 0, Y = y|Z = z1)

−P (D = 1, Y = y|Z = z0)− P (D = 0, Y = y|Z = z0)

= P (ν ≤ s(z1), Y1 = y) + P (ν > s(z1), Y0 = y)

−P (ν ≤ s(z0), Y1 = y)− P (ν > s(z0), Y0 = y)

= P (s(z0) < ν ≤ s(z1), Y1 = y)− P (s(z0) < ν ≤ s(z1), Y0 = y)

=
[
P (Y1 = y|s(z0) < ν ≤ s(z1))− P (Y0 = y|s(z0) < ν ≤ s(z1))

]
P (s(z0) < ν ≤ s(z1))

where the first equality follows by the law of total probability, the second equality follows by

the observation rule in (1), the threshold crossing treatment selection, and the independence
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assumption (A4), the third equality follows by s(z1) > s(z0), and the last equality follows by

Bayes’ theorem.

From (36) define the local average treatment effect as

∆LATE
y (z1, z0) ≡ P (Y1 = y|s(z0) < ν ≤ s(z1))− P (Y0 = y|s(z0) < ν ≤ s(z1)) (37)

=
P (Y = y|Z = z1)− P (Y = y|Z = z0)

P (s(z0) < ν ≤ s(z1))

=
P (Y = y|Z = z1)− P (Y = y|Z = z0)

P (ν ≤ s(z1))− P (ν ≤ s(z0))

=
P (Y = y|Z = z1)− P (Y = y|Z = z0)
P (D = 1|Z = z1)− P (D = 1|Z = z0)

where the second equality follows by the derivation above, and the last equalities follow by the

assumptions of the treatment selection model. Thus, the local average treatment effect gives the

change in the probability distribution for those individuals who would not select into treatment

if Z was externally set to z such that s(z) ≤ s(z0), and who would select into treatment if Z was

externally set to z such that s(z) ≥ s(z1). An important aspect of the local average treatment

effect is that it is identified from the population distribution of (Y, D, Z) for all combinations

z1, z0 with P (D = 1|Z = z1) > P (D = 1|Z = z0), which is made explicit in the definition of

∆LATE
y (z1, z0) including z1 and z0 in the argument.

A marginal version of the local average treatment effect has been introduced in Heckman

(1997). Consider the limit s(z0) → s(z1) of (37) and define the marginal treatment effect as

∆MTE
y (z1) ≡ P (Y1 = y|ν = s(z1))− P (Y0 = y|ν = s(z1)) (38)

Thus, the marginal treatment effect gives the change in the probability distribution for those

individuals that would just be indifferent between being selected into or out of the treatment if

Z was externally set to z such that s(z) = s(z1). Starting from (38), one can show that the other

treatment parameters, ∆ATE
y , ∆TT

y , and ∆LATE
y , are integrated versions of ∆MTE

y over different

intervals and with different weighting functions (Heckman and Vytlacil 2001). An estimator of

∆MTE
y can be obtained by ∂P (Y = y|Z = z1)/∂P (D = 1|Z = z1) given that the derivative

exists and is finite in a small neighborhood of z1. Since both ∆MTE
y and ∆LATE

y are identified,

identification of ∆ATE
y and ∆TT

y in principle is possible. However, this requires observability of
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a sufficiently large support of P (D = 1|Z = z), which must not necessarily hold in practice, and

therefore the bounding analysis of Section 3 is more general by imposing identification regions for

the treatment parameters.

While the previous treatment parameters were defined for different subgroups of the popula-

tion, the ordinal nature of the response variable allows for a more thorough analysis of the effect

on the outcome distribution, either in the entire population or in the subgroup of treated individ-

uals. In particular, analyzing probabilities rather than expectations provides a much richer set

of treatment parameters beyond the common mean effects. For example, consider the concept of

stochastic order (SO) in two random variables (Mann and Whitney 1947). Let

∆SO
y ≡ P (Y1 ≤ y)− P (Y0 ≤ y) (39)

If ∆SO
y ≤ 0 for all y, then Y0 is said to be stochastically smaller than Y1, i.e., Y0 tends to have

higher probability for low y, and smaller probability for high y compared to Y1. Analogously, if

∆SO
y ≥ 0 for all y, then Y0 is said to be stochastically larger than Y1, and if ∆S0

y = 0 for all y, then

Y0 and Y1 are said to be stochastically equivalent. Clearly, one may also analyze the stochastic

order of Y1 and Y0 in the subgroup of the treated (SOT)

∆SOT
y ≡ P (Y1 ≤ y|D = 1)− P (Y0 ≤ y|D = 1) (40)

where, for example, Y1 is said to be stochastically larger than Y0, now conditional on D = 1, if

∆SOT
y ≤ 0 for all y. If neither of the three cases is true for all y, i.e., Y1 is not stochastically larger

or smaller than, nor equivalent to Y0, then one may at least analyze the degree of stochastic order

starting from y = 1 moving to y = J , or the other way round.

Yet another way to look at the effect of treatment on the outcome distribution, related to the

concept of stochastic ordering, is in terms of the relative odds, specifically,

Ωy ≡
P (Y0 ≤ y)/P (Y0 > y)
P (Y1 ≤ y)/P (Y1 > y)

(41)

and

ΩT
y ≡

P (Y0 ≤ y|D = 1)/P (Y0 > y|D = 1)
P (Y1 ≤ y|D = 1)/P (Y1 > y|D = 1)

(42)

These parameters show the factor by which the ratio of the odds Y0 ≤ y relative to Y0 > y in the

non-treatment group change compared to the odds Y1 ≤ y relative to Y1 > y in the treatment
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group. With a positive treatment effect, i.e., the probability of higher outcomes increases with the

receipt of treatment, this factor should be larger than one. If, on the other hand, the treatment

effect is negative, then the odds ratio is smaller than one, and if the treatment effect is zero, then

the odds ratio is one. Note that there exist J − 1 odds ratios, one for each y = 1, . . . , J − 1.

Neither the stochastic order parameters, nor the odds ratios are immediately identified from

the population distribution of (Y, D, Z), by the same argument as the average treatment and the

average treatment on the treated are not identified. However, one may impose bounds on the

unidentified probabilities and thus impose bounds on the parameters in (39)-(42).

6 Conclusion

The properties of ordinally measured variables, in a strict sense, require the shift in focus from

mean treatment effects to probability treatment effects. Parametric ordered response models to

estimate such effects already exist and are typically based on threshold crossing mechanisms.

This is the first paper, to the best of my knowledge, that discovers the informational content of a

threshold crossing mechanism in a nonparametric bounding analysis with ordinal potential out-

comes; only Scharfstein et al. (2004) consider bounds on treatment effects with ordinal responses,

but in a very particular prospective data situation.

The approach taken here is closely related to Shaikh and Vytlacil (2005), who consider a model

with binary instead of ordinal outcomes, and the results obtained here therefore complement

their work. The extension to ordinal outcomes requires a slightly different identification and

bounding strategy, where multiple thresholds need to be taken into account. As a central result,

the imposed bounds always identify whether the treatment effect is positive, zero, or negative,

although point-identification except for the zero treatment effect fails in the nonparametric setting.

It is interesting to note that an additional set of parameters becomes available with ordinal

outcomes that might be of interest in evaluating the effect of a treatment.
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