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Abstract

Applications of zero-inflated count data models have proliferated in empirical economic

research. There is a downside to this development, as zero-inflated Poisson or zero-inflated

Negative Binomial Maximum Likelihood estimators are not robust to misspecification. In con-

trast, simple Poisson regression provides consistent parameter estimates even in the presence

of excess zeros. The advantages of the Poisson approach are illustrated in a series of Monte

Carlo simulations.
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1 The problem of “excess zeros” and zero-inflated models

The Poisson regression model (PRM) is the benchmark model for regressions with count dependent

variables. The so-called problem of “excess zeros”, however, plagues a majority of count data

applications in the social sciences, as the proportion of observations with zero counts in the

sample is often much larger than that predicted by the PRM. The conventional wisdom of the

pertinent literature is that with “excess zeros”, Poisson regression should be abandoned in favor

of modified count data models which are capable of taking into account the extra zeros explicitly.

By far the most popular of these models are zero-inflated (ZI) count models1 (Mullahy,

1986, Lambert, 1992) such as the zero-inflated Poisson (ZIP) and zero-inflated Negative Bino-

mial (ZINB) models. In their simplest form, these models are specified as having a probability

function (pf)

f(y) =


π + (1− π)f∗(0) for y = 0

(1− π)f∗(y) if y = 1, 2, 3, ...
(1)

where y is a count-valued random variable. The function f∗(·) is a standard count pf, and π ∈ [0, 1]

is a zero-inflation parameter which allows for any fraction of zeros. If π = 0, the ZI pf f(·) reduces

to f∗(·). The two most common choices for f∗(·) are Poisson,

fP(y;λ) =
exp(−λ)λy

y!
, λ > 0

and Negative Binomial,

fNB(y;λ) =
Γ(γ + y)

Γ(γ)Γ(y + 1)

(
γ

λ+ γ

)γ ( λ

λ+ γ

)y
, λ > 0 , γ > 0

Both models’ expectation is equal to λ, which also gives the variance in the Poisson case. The

variance in the Negative Binomial model is λ + γ−1λ2. In a regression context, it is customary

to specify the mean parameter λ as a function of a vector of explanatory variables, x, the usual

choice being the exponential function

λ = exp(α+ x′β) (2)

where β is a parameter vector conformable to x, and α is a constant element. Estimation of ZIP

and ZINB proceeds by Maximum Likelihood (ML). If the equations (1) and (2) as well as f∗(·) are
1Alternative terminology includes with-zeros or zero-altered count models.
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correctly specified, ML theory ensures that these estimators will be consistent and asymptotically

efficient2.

Zero-inflated models for count data are used extensively in many areas of current empirical

economic research. Without any claims of being exhaustive, a list of recent applications using ZI

count models includes job interviews (List, 2001), work absences (Campolieti, 2002), job changes

(Heitmueller, 2004), lateness (Clark et al., 2005), patent applications (Stephan et al., 2007),

cigarette consumption (Sheu et al., 2004), theatre attendance (Ateca-Amestoy, 2008), biking

trips (Zahran et al., 2008) and firm FDI (Ho et al., 2009).

2 Re-enter Poisson

The conditional expectation function of the zero-inflated count data model defined by (1) and (2)

is given by

E(y|x) = (1− π)λ = exp(α̃+ x′β) (3)

The only difference to the CEF of the parent model (2) is a shifted constant α̃ = α + ln(1 − π).

This suggests that α̃ and β can be estimated consistently by any moment based estimator, for

example non-linear least squares.

More relevant, however, estimation based on the PRM is consistent as well. This is the case

because the Poisson distribution is a member of the linear exponential family (LEF), which is the

class of distributions with pf of the form

fLEF(y|µx) = exp{a(µx) + b(y) + c(µx)y}, where µx = µ(x;β) = E(y|x),

for a(µx) = −µx, b(y) = − ln(y!) and c(µx) = ln(µx). LEFs have the property that

∂ log f(y|x)
∂β

= (y − µx)h(x) (4)

where h(x) = dc(µx)/dµxx. Suppose the true model is g0(y|x) 6= f(y|x) but E0(y|x) = µx for

some value β0. Thus, the CEF is correctly specified. In this case, the expectation of (4) at the

true density is zero, even though the model is misspecified, since the CEF residual y − E(y|x) is
2For more detail on these models and their estimation, see Cameron and Trivedi (1998) or Winkelmann (2008).
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independent of x, and thus has zero covariance with any function h(x). As the empirical score

converges to the expected score by the law of large numbers, the solution to the ML first order

conditions converges in probability to the true CEF parameters as long as the CEF is correctly

specified and (first-order) identified. This holds regardless of misspecification of higher conditional

moment functions but requires using a LEF distribution such as the Poisson for constructing the

likelihood function. An adjustment to the covariance matrix is necessary. Gourieroux, Monfort

and Trognon (1984a) refer to estimators with this property as pseudo-maximum likelihood (PML)

estimators.

While Poisson regression of the zero inflated model cannot provide separate estimates for α

and π, this is of secondary importance in most applied work, since knowledge of α and π is not

needed in order to estimate the CEF and the semi-elasticities of the CEF with respect to some

regressor xk. The former is (3) and the latter is given by

∂E(y|x)/E(y|x)
∂xk

= βk,

the element from β corresponding to the kth regressor. Thus, PRM estimates both these quantities

consistently. Even though the data are zero-inflated, a simple PRM suffices to obtain valid

estimates of the objects of interest if it is the case that the CEF is exponential as in (2).

There are other estimators that could be used to estimate β consistently based on an ex-

ponential CEF specification, such as nonlinear least squares (NLS) and various moment-based

estimators. Without further assumptions, however, it is unclear how these could improve upon

PRM, since PRM’s first order conditions are plain orthogonality conditions between residuals

and regressors. First order conditions of the other estimators either coincide with PRM’s or are

weighted versions of PRM’s, as in the case of NLS. In the context of robust estimation, the choice

of weights is arbitrary and therefore unlikely to enhance estimation3.

Unlike PRM, the ZIP and ZINB models are not LEF members. Indeed, the log-probability

function of a ZIP variable is

ln fZIP (y;λ, π) =
3Furthermore, owing to its simple FOC, optimization of PRM is computationally very stable. This is not always

the case with other estimators. For instance, the objective function of NLS in this context is not concave, as noted

in Gourieroux, Monfort and Trognon (1984b).

3



1(y = 0)[ln(π + (1− π) exp(−λ))] + (1− 1(y = 0))[ln(1− π)− λ+ y lnλ− ln(y!)]

which cannot be written as a(µ) + b(y) + c(µ)y with µ = (1− π)λ, as there is no way of isolating

an additive component that is linear in y –i.e. c(µ)y– due to the (nonlinearity of the) indicator

function 1(y = 0). An analog argument holds for the ZINB log-probability and, in fact, for any ZI

model generated according to (1). An additional result from Gourieroux, Monfort and Trognon

(1984a) states that all PML estimators are LEF members. Consequently, ZIP and ZINB are

not PML estimators and misspecification of higher conditional moments will in general lead to

asymptotic bias in these models. Thus, the cure might be worse than the disease.

Following this line of reasoning, one might wonder whether there are any reasons not to use

PRM in a ZI model context. There are some. First, one might want to predict probabilities of

certain events or elasticities of such probabilities to specific regressors. Using the PRM estimates

with the Poisson pf for this is inappropriate. Second, PRM can be less efficient than the ZI

estimator if the zero-inflated model is correctly specified. Finally, the applicability of large sample

robustness results to small samples is open for discussion. The small sample properties of the

two approaches for estimating model with extra zeros are assessed in the following Monte Carlo

study.

3 Monte Carlo evidence

The basic design of the experiment is as follows. We generate data by drawing n = 100, 1000

observations from the scalar random variable x ∼ N(0, 1), and specify values for the parameters

(α, β) = (0.5, 1) and π = 0.1, 0.5, 0.9. For the pf f∗(·), the Poisson probability function is chosen.

Thus, the data generating model is ZIP with λ = exp(0.5 + x) and zero-inflation ranging from

10% to 90%. The data are fitted to PRM and ZIP models, and the procedure is replicated 10,000

times. We call this data generating process DGP1, results for which are printed in Table 14.

— Table 1 about here —
4The Monte Carlo study was programmed in STATA/MP 10.1; program code and full output are available on

request. Appendix A contains an overview of the entire Monte Carlo design.
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Considering the results with n = 1000 first, it is evident that Poisson and ZIP estimators

are both consistent estimates of the semi-elasticity β. As ZIP correctly specifies the DGP, it

estimates α consistently, while the corresponding estimate of PRM are close to the true α̃ which

for π = (0.1, 0.5, 0.9) corresponds to 0.3946, -0.1931 and -1.8026. To compare efficiency of the

estimators, the numbers in parentheses in the table provide the standard deviation of α̂ and

β̂ computed over the 10’000 replications. The efficiency gains of using the ZIP estimator are

substantial. The standard deviation of the estimator more than halves when passing from PRM

to the ZIP estimate of β.

With 100 observations, both estimators still do fairly well. Larger biases and high imprecision

become apparent only in the presence of very large fractions of zeros (π = 0.9). The efficiency

gains of ZIP in relation to PRM melt away as the sample size shrinks.

The scenario of a correctly specified model is quite unlikely in practice. More realistically,

certain features of the model are invalid, raising concerns of potentially large biases. To illustrate

this, we generate data from a second process, DGP2, in which we introduce an additional random

error in λ that is ignored in the estimation procedures. This error can be thought of as an omitted

variable that affects the mean of the count but is unobserved to the econometrician. It is well

known that such unobserved heterogeneity will induce overdispersion in the Poisson part of the

model. As the presence of unobserved heterogeneity is ubiquitous in empirical economic work it

is particularly interesting to investigate its effects on these models.

Thus, let λ = exp(0.5+x+v) with v ∼ N(−0.5, 1). The expectation of v is set to −0.5 to have

E[ev] = 1. This specification leads to a quadratic variance or, equivalently, linear overdispersion

function at the level of the count distribution f∗(·) conditional on observables, in the sense that

Var(y∗|x) = E(y∗|x) + ω[E(y∗|x)]2, or
Var(y∗|x)
E(y∗|x)

= 1 + ωE(y∗|x)

where ω ≈ 1.7 and y∗ denotes the count variable with pf f∗(·). To estimate this model we now

also include the ZINB estimator. This is a potentially good choice since the ZINB assumes a

quadratic variance function for the count part f∗(·). Therefore, ZINB specifies DGP2 correctly

in the first two moments. ZINB is not quite the right model, however, as higher moments are
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misspecified5. The resulting bias may be small in finite samples, however, an issue we want to

explore in the Monte Carlo experiments. We know that the Poisson estimator is robust to this

kind of misspecification. While the negative binomial model (without zero inflation) is a LEF as

well, for a given dispersion parameter γ, it is not if γ is estimated, and we refrain from using it.

Table 2 thus compares results for the ZIP, the ZINB and the Poisson models under DGP2.

— Table 2 about here —

The ZIP estimates both for α and for β are subject to serious bias in all cases reported in

Table 2. The PRM estimates, on the other hand, are practically unaffected by the change in

the DGP. The new DGP does make itself noticed in the larger standard deviations of the PRM

estimates, though. Not surprisingly, ZINB estimates β closely. However, the misspecification of

moments higher than the variance has a perceivable effect on the estimates of α, which are clearly

inconsistent.

Next, we investigate estimation of two models with overdispersed f∗(y|x), as before, but where

this overdispersion is a constant or hyperbolic rather than a linear function of the mean. Under

the new DGPs, both ZIP and ZINB will only specify the CEF correctly, while misspecifying the

conditional variance function. To produce a DGP with constant overdispersion in f∗(y), DGP3,

the unobserved heterogeneity term v is drawn from a normal distribution with mean µ = −0.5σ2

and variance σ2 = ln(exp(−0.5 − x) + 1), resulting in Var(y∗|x) = 2E(y∗|x). To obtain a DGP

with hyperbolic overdispersion, DGP4, the error variance is set to σ2 = ln(2 exp(−2(0.5−x))+1)

(see Appendix A for details). Results corresponding to DGP3 and DGP4 are displayed in Tables

3 and 4.

— Tables 3 and 4 about here —

Having a look at Table 3, ZIP estimation again yields estimators that are not consistent for

the true values of α and β, as to be expected. At 1000 observations, while the ZINB estimates

are not as highly biased as ZIP’s, the best performance is delivered by PRM. The same is true for
5DGP2 is a zero-inflated Poisson-log-normal model. To simulate the ZINB model, the distribution of log v would

have to be Gamma.
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the case with 100 observations, except for the DGP with π = 0.9, where ZINB’s bias is smaller,

although ZINB displays unusually high standard deviations in this DGP. A similar impression

is obtained by considering Table 4. PRM consistently outperforms its competitors, and in the

DGPs with low zero-inflation its efficiency is in the same order as the ZI estimators’.

These experiments demonstrate the robustness of the PRM estimator of semi-elasticities in

zero-inflated, finite samples, and the biases that can arise when using its two most common ZI

competitors. Next, we want to analyze whether this result is extendable to another popular class

of ZI models, namely models with non-constant zero-inflation.

4 Non-constant zero-inflation

Model (1)-(2) is often generalized to allow for non-constant zero-inflation. To do so, π is specified

as a function of covariates, for example as a probit or logit model. These models allow to distin-

guish between determinants of so-called ‘structural’ zeros that are due to the binary model and

‘incidental’ zeros stemming from the count distribution part of the model. For instance, consid-

ering job mobility, a person might not have changed job in a given time period because she is not

looking for a new one (structural zero) or because despite searching she has not found another

job (incidental zero). Here, we limit ourselves to logit-type zero-inflation as it is more widely

represented in the existing literature. The principal issue applies, however, to any parametric

models for binary variables. Under the logit assumption

π ≡ π(z) =
exp(z′δ)

1 + exp(z′δ)
, and 1− π =

1
1 + exp(z′δ)

(5)

where z is a vector of covariates (possibly including a constant) determining the zero-inflation

process, and δ is a conformable parameter vector. When z is correlated with x, the CEF of

the new model is no longer given by (3). In this case, all of the three previous estimators are

inconsistent. The CEF of the model with logit-type ZI is

E(y|x, z) = (1− π)λ =
exp(α+ x′β)
1 + exp(z′δ)

(6)

The conventional way in which the literature has opted to estimate these models is by mod-

ifying the constant ZI models’ log-likelihood function to accommodate the function of the logit
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model. Thus, ZIP and ZINB estimators for this model are obtained by maximizing the corre-

sponding log-likelihood functions with respect to θ = (α, β, δ) for ZIP and with respect to (θ, γ)

for ZINB. As before, if the assumed model is equal to the underlying DGP, these estimators are

consistent and asymptotically efficient. Under mispecification, inconsistency arises and one might

again be interested in more robust estimators. By virtue of its PML property, PRM will work

again, as it requires only the correct specification of the CEF which in this case is given by (6).

The resulting model is formally identical with the Poisson-logit or Pogit model for underreported

counts discussed by Winkelmann and Zimmermann (1993). In general, some constraints on the

relationship between x and z need to hold for θ to be identified (see Papadopoulos and Santos

Silva, 2008), a sufficient condition being the availability of an element in z that is excluded from

x.

The following Monte Carlo results illustrate estimation of these three models in the generalized

setting with nonconstant zero-inflation. To accommodate zero-inflation of the logit type, DGP1

is modified by specifying π = exp(δ0 + δ1z)/(1 + exp(δ0 + δ1z)). The (scalar) variable z is jointly

drawn from a bivariate standard normal distribution with x, and the correlation is set to 50%;

i.e., (x, z) ∼ BV N(0, 0, 1, 1, 0.5). The percentage of zeros in the logit part of the model is thus

determined by the vector (δ0, δ1). We fix δ1 = 1 and let δ0 = −2.564, 0, 2.564 which on average

produces datasets where 10%, 50% and 90%, respectively, of the observations are zeros stemming

from the binary process. Results for this DGP – DGP5 – are reported in Table 5.

— Table 5 about here —

The results for this DGP are broadly similar to the case with constant zero-inflation. Both

ZIP and PRM provide virtually unbiased estimates of β, except for the case of both small samples

and many zeros. The efficiency gains of ZIP are comparable to the ones discussed in DGP1, i.e.

a reduction of the standard deviation of around 50% in large samples and of less in smaller ones.

Estimation of α, on the other hand, turns out to be often problematic for PRM, resulting in

biased and imprecise estimates.

As a next step, we introduce normally distributed unobserved heterogeneity to generate DGP6,

the logit-type zero-inflation version of DGP2. Additionally to ZIP and PRM, the model is es-
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timated by a correspondig ZINB, which specifies correctly the expectation and variance of the

standard count variable. Table 6 depicts the corresponding means and standard deviations.

— Table 6 about here —

As before, inconsistency of ZIP is reflected in substantial biases in all reported mean estimates

of Table 6, most of which are of the order of -15% to -20%. Estimation of the model with ZINB

yields good results as would be expected. PRM’s estimates, however, perform equally well in this

setting. The efficiency advantage of ZINB is about 50% in most of the cases for β. Both models

exhibit difficulties to estimate the constant, unbiased estimation of which appears to be possible

only in large samples with moderate amount of zero-inflation.

To complete the simulation results, Tables 7 and 8 show the results of the logit-type zero-

inflation equivalents of DGP3 and DGP4, the case of the count variable displaying constant or

hyperbolic overdispersion due to an unobserved variable. Estimation of α is again difficult. While

PRM does provide some acceptable results with 1’000 observations, the ZINB estimates of α are

much more precise. In terms of bias in the more interesting estimate β̂, on the other hand, PRM

clearly outperforms its two competitors.

— Tables 7 and 8 about here —

As a whole, the results from the experiments in this section show that Poisson regression with

an appropriately modified mean function is able to estimate the semi-elasticities in zero-inflated

count models robustly compared to ZIP and ZINB.

5 Conclusions

In applied practice, by far the main quantities of interest in count models are the conditional

expectation function and its semi-elasticities with respect to some regressors. Positive evidence

of this can be found, for instance, in the fact that all the applications cited in Section 1 without

exception limited the discussion of their estimation results to them. In this paper a case was

made for the use of Poisson regression to estimate these quantities, regardless of the presence of

“excess zeros”.
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If zero-inflation is given either by a constant factor or by a binary stochastic process unrelated

to the count random variable, simple estimation of the standard Poisson regression model (PRM)

yields consistent estimates of the semi-elasticities of the mean with respect to the independent

variables. Otherwise, a modification of the mean function is needed. In both cases, however,

estimation of the parameters needed to estimate the conditional expectation and semi-elasticities

is straightforward, as was illustrated in a set of Monte Carlo experiments.

The advantage of using PRM over zero-inflated count models is its robustness to misspecifi-

cation. Given the pervasive uncertainty about the data generating processes in practice, using

estimators for ZI models seems unwise if concerns about bias from higher order misspecification

exist. The relatively mild misspecifications of the DGP presented in the Monte Carlo experi-

ments frequently resulted in noticeable biases, suggesting that, strong a priori information about

the DGP being absent, PRM may be the better choice for estimating ZI models compared to ZI

estimators.
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Table 1: Mean estimated α and β with 10’000 replications (DGP1)

Estimator Mean α̂ Mean β̂

π = 0.1 π = 0.5 π = 0.9 π = 0.1 π = 0.5 π = 0.9

ZIP n=100 0.4932 0.488 0.3310 1.0012 1.0032 1.0591

(0.1025) (0.1515) (1.0254) (0.0757) (0.1155) (1.7935)

n=1000 0.4995 0.4987 0.4935 1.0000 1.0003 1.0016

(0.0317) (0.0457) (0.1058) (0.0216) (0.0310) (0.0759)

PRM n=100 0.3879 -0.2147 -1.9651 0.9986 0.9822 0.8624

(0.1026) (0.1837) (0.6137) (0.0977) (0.2207) (0.612)

n=1000 0.3941 -0.1947 -1.8159 0.9999 0.9975 0.9804

(0.0328) (0.0628) (0.1709) (0.0310) (0.0743) (0.2056)

Notes: Standard deviations in parenthesis.
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Table 2: Mean estimated α and β with 10’000 replications (DGP2)

Estimator Mean α̂ Mean β̂

π = 0.1 π = 0.5 π = 0.9 π = 0.1 π = 0.5 π = 0.9

ZINB n=100 0.4211 0.2782 -0.1787 1.0001 0.9993 1.0966

(0.1797) (0.3573) (3.9084) (0.1791) (0.2692) (4.3761)

n=1000 0.3969 0.2695 0.2103 0.9993 1.0026 0.9988

(0.0542) (0.1422) (0.4476) (0.0567) (0.0823) (0.1966)

ZIP n=100 0.7722 0.7688 0.3106 0.8578 0.8329 0.9090

(0.2505) (0.3337) (3.9447) (0.2464) (0.3273) (4.5169)

n=1000 0.7873 0.8081 0.8073 0.8837 0.8653 0.8345

(0.0939) (0.1238) (0.251) (0.1034) (0.1326) (0.2483)

PRM n=100 0.3717 -0.2444 -2.0574 0.9743 0.9437 0.7947

(0.2091) (0.3097) (0.8443) (0.2344) (0.3397) (0.7120)

n=1000 0.3911 -0.1988 -1.8264 0.9962 0.9898 0.9498

(0.0747) (0.1091) (0.2626) (0.0955) (0.1347) (0.2890)

Notes: Standard deviations in parenthesis.
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Table 3: Mean estimated α and β with 10’000 replications (DGP3)

Estimator Mean α̂ Mean β̂

π = 0.1 π = 0.5 π = 0.9 π = 0.1 π = 0.5 π = 0.9

ZINB n=100 0.5085 0.5255 0.2769 0.9908 0.9685 1.0165

(0.1522) (0.2259) (1.1205) (0.1215) (0.1803) (1.3769)

n=1000 0.5215 0.5568 0.5606 0.9838 0.9587 0.9500

(0.0472) (0.068) (0.1589) (0.0364) (0.0524) (0.1255)

ZIP n=100 0.5957 0.6202 0.4356 0.9490 0.9236 0.9463

(0.159) (0.2213) (1.0558) (0.1148) (0.1694) (1.4011)

n=1000 0.6029 0.6354 0.6453 0.9505 0.9301 0.9161

(0.0494) (0.0690) (0.1576) (0.0334) (0.0483) (0.1173)

PRM n=100 0.3848 -0.2210 -1.9941 0.9989 0.9810 0.8648

(0.1377) (0.2248) (0.6865) (0.1201) (0.2398) (0.6435)

n=1000 0.3937 -0.1959 -1.8171 1.0001 0.9981 0.9786

(0.0436) (0.0726) (0.1918) (0.0370) (0.079) (0.2177)

Notes: Standard deviations in parenthesis.
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Table 4: Mean estimated α and β with 10’000 replications (DGP4)

Estimator Mean α̂ Mean β̂

π = 0.1 π = 0.5 π = 0.9 π = 0.1 π = 0.5 π = 0.9

ZINB n=100 0.5195 0.5488 0.2721 0.9803 0.9449 1.0638

(0.1672) (0.2443) (1.8518) (0.1431) (0.2022) (3.4095)

n=1000 0.5360 0.5954 0.5988 0.9745 0.9259 0.9118

(0.0530) (0.0758) (0.1847) (0.0533) (0.0676) (0.1485)

ZIP n=100 0.6068 0.6415 0.4031 0.9385 0.9060 1.0024

(0.1941) (0.2608) (1.8226) (0.1393) (0.2007) (3.4145)

n=1000 0.6145 0.6596 0.6732 0.9321 0.9112 0.8929

(0.0636) (0.0854) (0.1906) (0.0450) (0.0581) (0.1406)

PRM n=100 0.3825 -0.2252 -2.0043 1.0015 0.9866 0.8888

(0.1535) (0.2404) (0.7348) (0.1258) (0.2438) (0.6470)

n=1000 0.3939 -0.1968 -1.8202 0.9922 0.9985 0.9809

(0.0508) (0.0795) (0.2043) (0.0539) (0.0807) (0.2211)

Notes: Standard deviations in parenthesis.
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Table 5: Mean estimated α and β with 10’000 replications (DGP5)

Estimator Mean α̂ Mean β̂

E(π) = 0.1 E(π) = 0.5 E(π) = 0.9 E(π) = 0.1 E(π) = 0.5 E(π) = 0.9

ZIP n=100 0.4963 0.4834 0.3323 0.9981 1.0024 1.0764

(0.1014) (0.1516) (0.6299) (0.0795) (0.1325) (0.9923)

n=1000 0.4993 0.4989 0.4871 1.0003 1.0002 1.0044

(0.0311) (0.0459) (0.1142) (0.0221) (0.0357) (0.1047)

PRM n=100 1.0734 0.5052 0.0848 0.9763 0.9628 0.9230

(1.8325) (1.1331) (2.6202) (0.1265) (0.2469) (0.9151)

n=1000 0.5573 0.5506 -0.0829 0.9925 0.9939 0.9609

(0.2757) (0.4554) (1.0294) (0.0449) (0.0873) (0.2282)

Notes: Standard deviations in parenthesis.
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Table 6: Mean estimated α and β with 10’000 replications (DGP6)

Estimator Mean α̂ Mean β̂

E(π) = 0.1 E(π) = 0.5 E(π) = 0.9 E(π) = 0.1 E(π) = 0.5 E(π) = 0.9

ZINB n=100 0.4269 0.3504 0.0938 0.9382 0.9580 1.0741

(0.1793) (0.3196) (1.0229) (0.1834) (0.2779) (1.7519)

n=1000 0.4051 0.3365 0.1014 0.9515 0.9865 0.9960

(0.0561) (0.1011) (0.5016) (0.0604) (0.0852) (0.2186)

ZIP n=100 0.7886 0.7838 0.5094 0.8212 0.8006 0.8974

(0.239) (0.3002) (1.0762) (0.2436) (0.3152) (2.0353)

n=1000 0.8081 0.8199 0.8159 0.8624 0.8520 0.8128

(0.0859) (0.1041) (0.2148) (0.0952) (0.1263) (0.254)

PRM n=100 0.9289 0.5276 0.2113 0.9378 0.9400 0.9362

(1.7203) (1.3644) (2.8565) (0.2597) (0.3640) (1.0876)

n=1000 0.5665 0.4997 -0.3083 0.9827 0.9837 0.9446

(0.3198) (0.5595) (1.1770) (0.0976) (0.1448) (0.3068)

Notes: Standard deviations in parenthesis.
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Table 7: Mean estimated α and β with 10’000 replications (DGP7)

Estimator Mean α̂ Mean β̂

E(π) = 0.1 E(π) = 0.5 E(π) = 0.9 E(π) = 0.1 E(π) = 0.5 E(π) = 0.9

ZINB n=100 0.4877 0.4811 0.1445 0.9615 0.9681 1.0652

(0.1551) (0.2628) (0.8796) (0.1309) (0.2117) (1.0670)

n=1000 0.5002 0.5350 0.4440 0.9820 0.9631 0.9535

(0.0585) (0.0702) (0.3783) (0.0420) (0.0598) (0.1665)

ZIP n=100 0.6031 0.6313 0.4302 0.9381 0.9091 0.9633

(0.1621) (0.2248) (0.7876) (0.1236) (0.2024) (1.2085)

n=1000 0.6086 0.6483 0.6688 0.9465 0.9173 0.8822

(0.0519) (0.0698) (0.1633) (0.0359) (0.0553) (0.1547)

PRM n=100 0.9898 0.5215 0.1659 0.9721 0.9689 0.9702

(1.7354) (1.1552) (2.7091) (0.1537) (0.2726) (1.8048)

n=1000 0.5640 0.5566 -0.1296 0.9914 0.9951 0.9705

(0.3045) (0.5087) (1.0932) (0.0514) (0.0944) (0.2476)

Notes: Standard deviations in parenthesis.
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Table 8: Mean estimated α and β with 10’000 replications (DGP8)

Estimator Mean α̂ Mean β̂

E(π) = 0.1 E(π) = 0.5 E(π) = 0.9 E(π) = 0.1 E(π) = 0.5 E(π) = 0.9

ZINB n=100 0.5025 0.4923 0.1578 0.9592 0.9547 1.0833

(0.1774) (0.2822) (1.1012) (0.1579) (0.2466) (1.8613)

n=1000 0.5159 0.5531 0.3966 0.9744 0.9316 0.9159

(0.0602) (0.0825) (0.4843) (0.0528) (0.0816) (0.2052)

ZIP n=100 0.6171 0.6619 0.4586 0.9266 0.8801 0.9617

(0.2002) (0.2716) (1.0513) (0.1533) (0.2504) (2.0508)

n=1000 0.6266 0.6873 0.7265 0.9321 0.8849 0.8259

(0.0663) (0.0932) (0.2098) (0.0441) (0.0753) (0.2103)

PRM n=100 0.9999 0.5121 0.1495 0.9770 0.9783 1.0341

(1.7644) (1.0828) (2.7692) (0.1622) (0.2803) (2.1014)

n=1000 0.5639 0.5628 -0.1397 0.9921 0.9958 0.9757

(0.3159) (0.5363) (1.1115) (0.0537) (0.0979) (0.2544)

Notes: Standard deviations in parenthesis.
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Appendix A Overview of the Monte Carlo design

Eight different data generating processes (DGPs) have been examined. They all are special cases

of the following specification:

y =


0 with probability π

y∗ with probability 1− π

y∗ ∼ Poisson(λ), λ = exp(α+ βx+ v), (x, z) ∼ BVN(0, 0, 1, 1, 0.5), π =
exp(δ0 + δ1z)

1 + exp(δ0 + δ1z)

where α = 0.5, β = 1, δ1 = 1 and v ∼ N(µ, σ2). In DGP1 and DGP5, we let µ = σ2 = 0, i.e.

there is no unobserved heterogeneity. With σ2 > 0 the variance function for y∗ is given by

Var(y∗|x) = Ev[Var(y∗|x, v)] + Varv[E(y∗|x, v)]

= exp(α+ x′β)Ev[ev] + exp(α+ x′β)2Varv[ev]

= exp(α+ x′β)eµ+ 1
2
σ2

+ exp(α+ x′β)2(eσ
2 − 1)eµ+ 1

2
σ2

= E(y∗|x) + E(y∗|x)2(eσ
2 − 1)e−µ−

1
2
σ2

The mean and variance of v are specified as

µ = −0.5σ2

σ2 = ln{1 + c exp [(k − 1)(α+ βx)]}

The parameter k controls the nonlinearity of the variance function, while c is a free overdis-

persion parameter. Thus, setting k = 1 results in a quadratic variance function

Var(y∗|x) = E(y∗|x) + cE(y∗|x)2

In DGP2 and DGP6, we set c = e− 1 which incidentally implies v ∼ N(−0.5, 1).

Linear variance functions as in DGP3 and DGP7 are obtained with k = 0, so that Var(y∗|x) =

(1 + c)E(y∗|x). In these DGP we set c equal to 1.

Last, hyperbolic overdispersion functions Var(y∗|x)/E(y∗|x) = 1 + c/E(y∗|x) are produced

by setting k = −1. In DGP4 and DGP8, parameter c was set to 2.

The different values for π (DGP1-3) or E(π) (DGP4-6) were obtained setting specific values

for δ0. Thus, when z is constant and equal to zero, δ0 = −2.1972, 0, 2.1972 yields π = 0.1, 0.5, 0.9;

and with z ∼ N(0, 1), setting δ0 = −2.564, 0, 2.564 gives E(π) equal to the same values as before.
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Table 9 summarizes the different DGPs.

Table 9: Data generating processes of Monte Carlo simulations

Var(y∗|x)/E(y∗|x)

=1 = 1 + E(y∗|x) = 2 = 1 + 2/E(y∗|x)

Zero inflation type (Equidispersion) (Lin. Overdisp.) (Const. Overdisp.) (Hyperbol. Overdisp.)

Constant zero inflation
z = 0 DGP1 DGP2 DGP3 DGP4

Logit-type zero inflation DGP5 DGP6 DGP7 DGP8
z ∼ N(0, 1)
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