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Abstract

The credibility of standard instrumental variables assumptions is often under dispute.

This paper imposes weak monotonicity in order to gain information on counterfactual out-

comes, but avoids independence or exclusion restrictions. The outcome process is assumed

to be sequentially ordered, building up and depending on the information level of agents.

The potential outcome distribution is assumed to weakly increase (or decrease) with the

instrument, conditional on the continuation up to a certain stage. As a general result, the

counterfactual distributions can only be bounded, but the derived bounds are informative

compared to the no-assumptions bounds thus justifying the instrumental variables termi-

nology. The construction of bounds is illustrated in two data examples.
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1 Introduction

The empirical evaluation of interventions is a major task of economic policy-making. One

might be interested, for example, in the effect of a supplementation policy on the education

outcomes of children in disadvantaged families (e.g., Brooks-Gunn 2003), or in the effect of

schooling on fertility (e.g., Sander 1992). The potential outcomes framework (Rubin 1974)

has become a popular tool to assess such interventions. More formally, let Y (s) denote the

potential outcome in state s ∈ S, and let P [Y (s)] denote the distribution of outcomes that

would occur if everybody in the population was observed in state s. The study of policy effects

compares the potential outcome distributions in different states, invoking assumptions on the

nature of the data-generating process and the information available to agents.

The central issues in this framework are twofold. First, treatment states are generally

subject to choice, e.g., a family can decide whether or not to accept a financial aid. Second,

the realized outcome of each individual is only observed in the actual state, the outcomes that

would occur in alternative states are logically unobserved. As a result, the commonly defined

policy effects are fundamentally unidentified (Manski 1994, 2000, 2007, Heckman and Vytlacil

2007a, 2007b, among others). Possible solutions require assumptions on the data-generating

process, either by specifying a parametric model on the potential outcomes (e.g., Haavelmo

1943, Roy 1951, Heckman and Honoré 1990, Heckman 2001, Heckman and Vytlacil 2005),

or by restricting the attention to some features of the population, such as the mean or the

median, and using the observed data combined with some less restrictive assumptions to infer

these parameters (e.g., Imbens and Angrist 1995, Angrist et al. 1996). As a third alternative,

one may impose bounds on the policy effects of interest under weak assumptions on the data

structure (e.g., Manski 1990, 1997, Manski and Pepper 2000, Shaikh and Vytlacil 2005).

This paper follows the latter strategy. It focuses on outcomes that are measured on a

discrete ordinal scale with the agent’s information set being generated by a sequential mecha-

nism. The sequential structure is motivated by an economic model of transitions, where certain

responses are only observed given positive outcomes in the antecedent responses (Amemiya
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1975, 1985). In this model, one may introduce latent variables that represent marginal returns,

based on the net lifetime reward from stopping at some stage (Cunha et al. 2007, Carneiro et

al. 2003). The optimal stopping time is then characterized by that stage when marginal returns

are just above zero, and the marginal returns for all adjacent stages are negative. Examples

include schooling outcomes (Steele et al. 2009), the number of children (Zhang 1994), the

number of unemployment spells (Kahn and Morimune 1979), and the labor force participation

of women (Heckman and Willis 1977).

In order to gain information on the counterfactual outcome distributions, weak assump-

tions are imposed on the sequential decision process. In a first step, I will explore monotone

instrumental variables (MIV) assumptions in the manner of Manski and Pepper (2000, 2009)

but extended to incorporate stochastic dominance. In a second step, I will relax these assump-

tions to allow for partially monotone instrumental variables (PMIV), taking into account the

information set in each stage. As a general result, the counterfactual distributions can only be

bounded, with the width of bounds depending on the strength of the underlying assumptions.

To the best of my knowledge, the PMIV approach is new in the literature.

The analysis is somewhat related to the dynamic treatment literature due to the sequential

ordering of outcomes (e.g., Robins 1989, 1997, Lechner and Miquel 2009, Gill and Robins 2001,

Lechner 2008, 2009, Abbring and Van Den Berg 2003, Navarro and Heckman 2007, Abbring and

Heckman 2007). However, it differs from that literature in the nature of the data-generating

process. Here, potential outcomes arise from a sequential model with available information

depending on previous experience (or outcomes). The model is static in the sense that the

intervention only occurs and affects choices at a particular point in time. The approach also

differs from Boes (2007) who imposes a multiple threshold crossing model that generates the

ordered potential outcomes.

The remainder of the paper is organized as follows. Section 2 provides a heuristic outline of

the analysis. Section 3 develops the concept of PMIV and derives bounds on the counterfactual

distributions. Section 4 illustrates the construction of bounds using a simulated and a real
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data example. The empirical application considers how the number of children born to a

woman varies with realized schooling, under the assumption that fertility decisions are based on

both current circumstances and experiences with previously born children (Zhang 1994). This

example will appear throughout the text in order to motivate the MIV and PMIV assumptions.

Section 5 summarizes the results and concludes.

2 Heuristic Derivation of Bounds

A simple example with J = 3 ordered responses illustrates the strategy of the paper. Let S ∈ S

denote the state in which an individual is observed, and let Y = Y (S) denote the realized

outcome with Y ∈ Y = {1, ..., J}. Outcomes are ordered such that 1 < ... < J , although the

distance between outcomes does not necessarily have an interpretation. The observed data

are the triple (Y, S,X) of realized outcomes Y , realized states S, and covariates X ∈ X . The

problem is to learn the distribution of potential outcomes P [Y (s)] ∀s ∈ S, perhaps conditional

on X, from the observed distribution P (Y, S,X). Consider the distribution of outcomes in

state s

P [Y (s)] = P [Y |S = s]P (S = s) + P [Y (s)|S 6= s]P (S 6= s), (1)

which follows by the law of total probability and the observation rule for Y . The potential

outcome Y (s) is not observed for individuals not in s, and thus the (counterfactual) distribution

P [Y (s)|S 6= s] is not identified from the observed data. All other quantities are identified. By

definition of a probability, it must hold that P [Y (s)|S 6= s] ∈ [0, 1] which yields an identification

region for the distribution of Y (s) (Manski 1995, 2003).

Now rewrite the distribution in terms of conditional transition probabilities, formally

P [Y (s) = y] ≡ P [Y (s) = y|Y (s) ≥ y]P [Y (s) ≥ y], ∀y ∈ Y. All the assumptions on the

data-generating process will be stated with respect to the transition probabilities P [Y (s) =

y|Y (s) ≥ y], reflecting the information that agents have when deciding upon the outcome of
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interest. Consider the counterfactual distribution with J = 3 outcomes:

P [Y (s) = 1|S 6= s] = P [Y (s) = 1|Y (s) ≥ 1, S 6= s] (2)

P [Y (s) = 2|S 6= s] = P [Y (s) = 2|Y (s) ≥ 2, S 6= s]

·{1 − P [Y (s) = 1|Y (s) ≥ 1, S 6= s]}

P [Y (s) = 3|S 6= s] =
2

∏

j=1

{1 − P (Y (s) = j|Y (s) ≥ j, S 6= s]}.

Without imposing further assumptions on the data-generating process, each of the conditional

transition probabilities must lie within the unit interval, and thus

P [Y (s) = y|S 6= s] ∈ [0, 1] ∀y ∈ {1, 2, 3}. (3)

These are the no-assumptions bounds mentioned above. Now assume that the conditional

transition probability for the lowest category can be restricted due to some additional infor-

mation, but there are no restrictions on the transition from the second to the third category

(given the information from the first). This implies

P [Y (s) = 1|Y (s) ≥ 1, S 6= s] ∈ [αl, αu] (4)

P [Y (s) = 2|Y (s) ≥ 2, S 6= s] ∈ [0, 1].

In this case, bounds on the unidentified probability distribution can be derived as follows:

P [Y (s) = 1|S 6= s] ∈ [αl, αu] (5)

P [Y (s) = 2|S 6= s] ∈ [0, 1 − αl]

P [Y (s) = 3|S 6= s] ∈ [0, 1 − αl].

The assumption imposed in the left part of the outcome distribution, in terms of the conditional

transition probability, passes through to all subsequent (unconditional) probabilities and thus

is informative also for the right part of the outcome distribution. Analogous arguments hold

if additional restrictions are imposed on P [Y (s) = 2|Y (s) ≥ 2, S 6= s]. The next two sections

discuss weak (but credible) assumptions on the data-generating process that can be invoked

to bound the conditional transition probabilities.
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3 (Partially) Monotone Instrumental Variables

Manski and Pepper (2000, 2009) introduce monotone instrumental variables (MIV) in order to

weaken conventional instrumental variables (IV) assumptions. IV assumptions typically im-

pose mean or full independence of the response variable and the instrument. MIV assumptions

replace the equality of mean outcomes (or outcome distributions) of standard IV methods by

a weak inequality conditional on the instrument. This section further develops the idea in

the context of an ordered discrete outcome model with sequential update of information. The

notation follows Manski and Pepper (2000, 2009).

Let X = (W,V ) and X = W × V. Each value of (W,V ) characterizes a subpopulation of

individuals. Standard IV methods state that V is an instrument if the distribution of outcomes

for each s ∈ S conditional on W does not change with different values of V . Formally, the IV

assumptions may relate to the entire distribution or the conditional transition probabilities:

Assumption (IV1). Covariate V is an IV in the sense of conditional independence in the

distribution of Y if, for each y ∈ Y, s ∈ S, W ∈ W, and all u1, u2 ∈ V × V,

P [Y (s) = y|W,V = u1] = P [Y (s) = y|W,V = u2]. (6)

Assumption (IV2). Covariate V is an IV in the sense of conditional independence in the

transition probabilities if, for each y ∈ Y, s ∈ S, W ∈ W, and all u1, u2 ∈ V × V,

P [Y (s) = y|Y (s) ≥ y,W, V = u1] = P [Y (s) = y|Y (s) ≥ y,W, V = u2]. (7)

Now assume that V is an ordered set. A distributional equivalent to the MIV assumption

of Manski and Pepper (2000) would be that the distribution of Y (s) for all individuals with a

specified W and value u1 of V weakly dominates the distribution of Y (s) for individuals with

the same W but with u2 ≥ u1, (u2, u1) ∈ V. Formally:

Assumption (MIV1). Covariate V is an IV in the sense of weak stochastic dominance if, for

each y ∈ Y, s ∈ S, W ∈ W, and all u1, u2 ∈ V × V with u1 ≤ u2,

P [Y (s) ≤ y|W,V = u1] ≥ P [Y (s) ≤ y|W,V = u2]. (8)
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An assumption of this type is explored in greater detail in Boes (2009). In the context of

this paper and the sequential mechanism generating the outcomes, it is more reasonable to

specify the MIV assumption in terms of transition probabilities.

Assumption (MIV2). Covariate V is an IV in the sense of weak stochastic dominance in the

transition probabilities if, for each y ∈ Y, s ∈ S, W ∈ W, and all u1, u2 ∈ V ×V with u1 ≤ u2,

P [Y (s) = y|Y (s) ≥ y,W, V = u1] ≥ P [Y (s) = y|Y (s) ≥ y,W, V = u2]. (9)

In order to illustrate how the assumptions IV1 and MIV1 differ, consider the following

example with outcome of interest the number of children born to a woman, S the woman’s

schooling, and V measured marital attractiveness. For V to serve as an instrument in the sense

of IV1, we must assume that the distribution of children for schooling level s is the same for

women with a high attractiveness than for women with a low attractiveness. Assumption MIV1

states that less attractive women tend to have a higher probability of getting few children,

and more attractive women tend to have a higher probability of getting many children. If

attractivenss is a complement to child-rearing, then the latter assumption is consistent with

economic theory (e.g., Boulier and Rosenzweig 1984), assumption IV1 is not.

Likewise, assumption IV2 claims that the probability of having y children, given at least y

children, is the same for those women who are less attractive and those women who are more

attractive in the marital market. Assumption MIV2 states that this probability is weakly

higher for less attractive women than for more attractive women. In the language of discrete

hazard models (Lancaster 1990), the probability of a drop-out at a certain stage (where stage

is a particular number of children), conditional on survival up to this stage (i.e., having at

least that many children), is weakly higher for the less attractive women than for the more

attractive women.

The focus here is on the implications of assumption MIV2. In order to simplify the notation,

I will drop W , but all expressions are implicitly assumed conditional on W . MIV2 implies for
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any u ∈ V with u1 ≤ u ≤ u2 that

P [Y (s) = y|Y (s) ≥ y, V = u2] ≤ P [Y (s) = y|Y (s) ≥ y, V = u] (10)

≤ P [Y (s) = y|Y (s) ≥ y, V = u1], ∀y ∈ Y.

Thus, a lower bound of P [Y (s) = y|Y (s) ≥ y, V = u2] is also a lower bound of P [Y (s) =

y|Y (s) ≥ y, V = u], and an upper bound of P [Y (s) = y|Y (s) ≥ y, V = u1] is also an upper

bound of P [Y (s) = y|Y (s) ≥ y, V = u]. This must hold for all values u1 ≤ u and must hold for

all values u2 ≥ u. Exploiting the full support of V , one can impose bounds on the distribution

of potential outcomes:

Proposition 1. Let assumption MIV2 hold. Then for all y ∈ Y and any u ∈ V,

sup
u2≥u

{P [Y = y|Y ≥ y, S = s, V = u2]P (S = s|V = u2)} (11)

≤ P [Y (s) = y|Y (s) ≥ y, V = u] ≤

inf
u1≤u

{P [Y = y|Y ≥ y, S = s, V = u1]P (S = s|V = u1) + P (S 6= s|V = u1)}.

In the absence of other information, these bounds are sharp.

Bounds on P [Y (s) = y|Y (s) ≥ y] can be obtained by integrating out over the support of

V (subject to conditions of measurability). Proposition 1 is similar to the one in Manski and

Pepper (2000), taking into account that probabilities are equivalent to expectations of value

indicators of Y . It differs from the proposition in Manski and Pepper in the conditioning

argument, reflecting the sequential update of information in the data-generating process.

It is exactly the sequential structure that can be explored to further relax the monotone

instrumental variables assumptions. More specifically, there is no need to impose weak domi-

nance throughout the entire support of Y , and one might relax assumption MIV2 to a partially

monotone instrumental variables (PMIV) assumption. Two versions of the PMIV assumptions

can be stated. These are:

Assumption (PMIV1). Covariate V is an IV in the sense of partially weak stochastic dom-

inance with monotone switch in the transition probabilities if, for each y ∈ Y, s ∈ S, W ∈ W,
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and all u1, u2 ∈ V × V with u1 ≤ u2,

P [Y (s) = y|Y (s) ≥ y, V = u1] ≥ P [Y (s) = y|Y (s) ≥ y, V = u2], y ≤ t (12)

P [Y (s) = y|Y (s) ≥ y, V = u1] ≤ P [Y (s) = y|Y (s) ≥ y, V = u2], y > t

where t ∈ Y is a fixed threshold value.

Assumption (PMIV2). Covariate V is an IV in the sense of partially weak stochastic dom-

inance in the transition probabilities if, for y, y′ ∈ Y × Y and y 6= y′, and for each s ∈ S,

W ∈ W, and all u1, u2 ∈ V × V with u1 ≤ u2,

P [Y (s) = y|Y (s) ≥ y, V = u1] ≥ P [Y (s) = y|Y (s) ≥ y, V = u2], (13)

P [Y (s) = y′|Y (s) ≥ y′, V = u1] ≤ P [Y (s) = y′|Y (s) ≥ y′, V = u2].

In order to illustrate assumptions PMIV1 and PMIV2, consider the schooling and fertility

example again. Assumption PMIV1 states that the probability of getting a low number of

children (y ≤ t, for some fixed t), given the information from previously born children (if

any), is weakly higher for the less attractive women (V = u1) compared to the more attractive

women (V = u2). The drop-out rate given a high number of children (y > t), however, may

be higher for the more attractive women than the less attractive women, e.g., due to the

counteraction of income and substitution effects (again see Boulier and Rosenzweig 1984). If

there does not exist a unique threshold t at which the order of weak inequalities changes (e.g.,

due to the characteristics of the population), then there might be some y ∈ Y where the drop-

out rate is higher for the more attractive women, and some other y′ ∈ Y where the drop-out

rate is higher for the less attractive women, without particular order. The latter is consistent

with assumption PMIV2.

Since PMIV1 is a special case of PMIV2, only the implications of the latter will be discussed

(with the implications of the former being immediate). Given assumption PMIV2 it must hold

that for any u ∈ V with u1 ≤ u ≤ u2 and y, y′ ∈ Y ×Y, y 6= y′ as specified by the assumption,

P [Y (s) = y|Y (s) ≥ y, V = u1] ≥ P [Y (s) = y|Y (s) ≥ y, V = u] (14)
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≥ P [Y (s) = y|Y (s) ≥ y, V = u2],

P [Y (s) = y′|Y (s) ≥ y′, V = u1] ≤ P [Y (s) = y′|Y (s) ≥ y′, V = u] (15)

≤ P [Y (s) = y′|Y (s) ≥ y′, V = u2].

Thus, it follows from (14) that a lower bound of P [Y (s) = y|Y (s) ≥ y, V = u2] is also a lower

bound of P [Y (s) = y|Y (s) ≥ y, V = u], and an upper bound of P [Y (s) = y|Y (s) ≥ y, V = u1]

is also an upper bound of P [Y (s) = y|Y (s) ≥ y, V = u]. This must hold for all u1 ≤ u and

all u2 ≥ u. Similar arguments, but with opposite signs, hold for the transition probabilities of

category y′ 6= y as captured by the second part of assumption PMIV2 and (15). Exploiting

the full support of V yields:

Proposition 2. Let assumption PMIV2 hold. Then for any u ∈ V,

sup
u2≥u

{P [Y = y|Y ≥ y, S = s, V = u2]P (S = s|V = u2)} (16)

≤ P [Y (s) = y|Y (s) ≥ y, V = u] ≤

inf
u1≤u

{P [Y = y|Y ≥ y, S = s, V = u1]P (S = s|V = u1) + P (S 6= s|V = u1)},

and

sup
u1≤u

{P [Y = y′|Y ≥ y′, S = s, V = u1]P (S = s|V = u1)} (17)

≤ P [Y (s) = y′|Y (s) ≥ y′, V = u] ≤

inf
u2≥u

{P [Y = y′|Y ≥ y′, S = s, V = u2]P (S = s|V = u2) + P (S 6= s|V = u2)}.

In the absence of other information, these bounds are sharp.

Proposition 2 consists of two parts that reflect the different information on the sequential

decision process, depending on the outcome level itself. (16) is derived from the first part of

PMIV2 and the inequalities in (14). The bounds in (17) are derived from the second part of

PMIV2 and the inequalities in (15). Since no other assumptions on the data-generating process

are imposed than PMIV2, it is difficult to draw general conclusions regarding the properties

of the bounds. Nevertheless, some remarks can be made. First, the bounds in (16) are not
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informative if the lower and upper no-assumptions bounds on P [Y (s) = y|Y (s) ≥ y, V = u]

weakly decrease with u, in which case they coincide with the no-assumptions bounds. Second,

the bounds coincide with the standard IV bounds (under IV2) if the no-assumptions lower and

upper bounds on P [Y (s) = y|Y (s) ≥ y, V = u] weakly increase with u. The opposite holds

for the second part of proposition 2, i.e., the stated bounds coincide with the no-assumptions

bounds (with the IV2 bounds) if the lower and upper no-assumptions bounds on P [Y (s) =

y|Y (s) ≥ y, V = u] weakly increase (decrease) with u.

Monotone treatment selection

A special case is obtained if V is the treatment indicator itself. Assumption IV1 then states

that the potential outcome distribution is the same irrespective of the treatment status, for-

mally P [Y (s)|S = u1] = P [Y (s)|S = u2] for all u1, u2 ∈ S × S. This the exogenous treatment

selection assumption known from the literature (e.g., Manski and Pepper 2000). Note that

further covariates W are kept implicit in the conditioning part. Now suppose that S is an

ordered set and V = S. In this case assumptions MIV1, MIV2, PMIV1, and PMIV2 relax

the exogenous treatment selection assumption to monotone treatment selection (MTS) as-

sumptions (cf. Manski and Pepper 2000), or partially monotone treatment selection (PMTS)

assumptions. For example, assumption MIV2 states that the drop-out rate for those with a

low value of S is weakly higher than the drop-out rate for those with a high value of S. Like-

wise, assumption PMIV2 states that the sign of the weak inequality between drop-out rates

depends on the outcome level.

The following corollary summarizes the results under the partially monotone treatment

selection version of assumption PMIV2:

Corollary 1. Let S be an ordered set and let assumption PMIV2 hold for V = S. Then, for

any u ∈ S the bounds in Proposition 2 reduce to

u < s ⇒ P (Y = y|Y ≥ y, S = s) ≤ P [Y (s) = y|Y (s) ≥ y, S = u] ≤ 1 (18)

u = s ⇒ P [Y (s) = y|Y (s) ≥ y, S = u] = P (Y = y|Y ≥ y, S = s)
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u > s ⇒ 0 ≤ P [Y (s) = y|Y (s) ≥ y, S = u] ≤ P (Y = y|Y ≥ y, S = s)

and

u < s ⇒ 0 ≤ P [Y (s) = y′|Y (s) ≥ y′, S = u] ≤ P (Y = y′|Y ≥ y′, S = s) (19)

u = s ⇒ P [Y (s) = y′|Y (s) ≥ y′, S = u] = P (Y = y′|Y ≥ y′, S = s)

u > s ⇒ P (Y = y′|Y ≥ y′, S = s) ≤ P [Y (s) = y′|Y (s) ≥ y′, S = u] ≤ 1

In the absence of further information, these bounds are sharp.

Corollary 1 provides informative upper or lower bounds on the counterfactual transition

probabilities, and point identification if u = s. The bounds are informative also with respect to

the unconditional distribution P [Y (s)], ∀s ∈ S following the arguments outlined in Section 2.

The MIV and PMIV assumptions with V = S thus have identifying power on the distributions

of interest, but relax the standard exogeneity assumptions often imposed in the literature.

The following section motivates the PMIV assumptions within a structural model context and

illustrates the construction of bounds in a simple simulated data environment.

4 Illustrations

4.1 Simulated Data Example

Suppose a simple structural model with two treatment states (S = {0, 1}), J = 3 outcomes,

and no covariates, that reflects the information structure of agents in the decision process:

S = I(ν ≥ α) (20)

Y (s) = 1 if ε1 ≤ τs,1, s = 0, 1

Y (s) = 2 if ε2 ≤ τs,2 and ε1 > τs,1

Y (s) = 3 if ε2 > τs,2 and ε1 > τs,1,

where I(A) is the logical indicator function that returns 1 if A is true. The selection process is

modelled as a binary choice problem, the outcome process is modelled as a sequence of binary
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choices, one for each step, conditional on the continuation up to this step. Only the pair (Y, S)

is observed, where Y = Y (S).

The structural model in (20) does not impose a-priori restrictions on the joint distribution

of (ν, ε1, ε2), and in particular on the correlations between the error term of the selection

process and the error terms of the outcome processes (except for common regularity conditions

such as finite and positive definite covariance matrix). Moreover, the model allows for arbitrary

behavioral assumptions on the sequential decisions since no a-priori assumptions are imposed

on the correlation between the error terms in each step. The parameters α and τ are thresholds

that determine the propensity to be selected into one of the two states, and the likelihood of

dropping out of the sequential process in a perticular stage in each of the two states.

The model as presented in (20) imposes the restriction that the error terms in both states

are generated by the same process. This assumption substantially simplifies the illustration

below, by allowing to focus on the influence of the main parameters on the construction and

properties of the bounds, but it can be relaxed in further analyses such that ε does also carry

a subscript s. The model can be extended to allow for covariates X by making α and τs,y,

∀s, y functions of X. However, in line with the notion of the paper, the model avoids exclusion

restrictions (i.e, non-overlapping subsets of X appear in α and τ), such that accounting for

covariates amounts to defining treatment effects (and deriving bounds) for subpopulations

described by X.

In order to illustrate the construction of bounds, the error terms (ν, ε1, ε2) are assumed

jointly normal with zero means and covariance matrix

Σ =











1 σν,1 σν,2

σν,1 1 σ1,2

σν,2 σ1,2 1











.

The threshold values in state s = 0 are fixed at τ0,1 = 0.8 and τ0,2 = 0.3, and the construction

of bounds is illustrated if one of α, σν,1, σν,2, σ1,2, τ1,1, or τ1,2 is varied. Table 1 provides

an overview of the design. Each of the following six figures shows the true potential outcome

distribution, the no-assumptions lower and upper bounds, and the lower and upper bounds of

13



Proposition 2/Corollary 1, assuming no uncertainty about the sign of the inequalities.

— Insert Table 1 about here —

Figure 1 displays the potential outcome distribution if α is varied from -2 to 2 (and all

other parameters are fixed as shown in Table 1). Here, and in the following figures, the upper

two diagrams show the probability that the potential outcome takes value 1 in state 1 (on

the left) and in state 0 (on the right). The middle and bottom diagrams show the according

probabilities for outcomes 2 and 3, respectively. Since α does only affect the selection status

but does not affect the potential outcome process, the true outcome probabilities in each of

the two states are constant (indicated by the thick black line). The construction and the

properties of the bounds, however, depend on the value of α because only (Y, S) is observed.

— Insert Figure 1 about here —

Consider outcome 1 in state 1. The potential outcome probability can be written as

P [Y (1) = 1] = P (S = 1, Y = 1) + P [Y (1) = 1|S = 0]P (S = 0) by the law of total probability

and the observation rule for Y . The no-assumptions bounds, indicated by the small grey

circles and triangles, impose P [Y (1) = 1|S = 0] ∈ (0, 1) by the definition of a probability. The

bounds on P [Y (1) = 1] are relatively tight if P (S = 0) is small, and relatively wide if P (S = 0)

is large. The former case is associated with α small, the latter with α large, as shown in the

figure. Analogous arguments hold for the no-assumptions bounds and outcome levels 2 and

3. The role of α is reversed if the potential outcome probabilities in state 0 are considered,

with the bounds being relatively wide if P (S = 1) is large (or α small) and the bounds being

relatively tight if P (S = 0) is small (or α large).

Now consider the bounds derived in Proposition 2/Corollary 1 (indicated by the large

hollow circles and triangles). These bounds are often tighter, and never wider, than the no-

assumptions bounds, which can be explained as follows. By the assumption of normality,

σν,1 = 0.3, and σν,2 = 0.5 it follows that P [Y (s) = 1|Y (s) ≥ 1, S = 0] > P [Y (s) = 1|Y (s) ≥

1, S = 1] and P [Y (s) = 2|Y (s) ≥ 2, S = 0] > P [Y (s) = 2|Y (s) ≥ 2, S = 1] for s = 0, 1.
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The former is implied by σν,1 being positive, the latter by the joint set of assumptions. It

follows from the former that A1 ≡ P (Y = 1|Y ≥ 1, S = 1) can be used as a lower bound

for P [Y (1) = 1|Y (1) ≥ 1, S = 0] instead of zero, and B1 ≡ P (Y = 1|Y ≥ 1, S = 0) can

be used as an upper bound for P [Y (0) = 1|Y (0) ≥ 1, S = 1] instead of one. Moreover,

A2 ≡ P (Y = 2|Y ≥ 2, S = 1) can be used as a lower bound for P [Y (1) = 2|Y (1) ≥ 2, S = 0]

instead of zero, and B2 ≡ P (Y = 2|Y ≥ 2, S = 0) can be used as an upper bound for

P [Y (0) = 2|Y (0) ≥ 2, S = 1] instead of one.

Since the counterfactual probability for outcome 1 in state 1 can be written as P [Y (1) =

1|S = 0] = P [Y (1) = 1|Y (1) ≥ 1, S = 0], it lies in the interval (A1, 1) by the argument above.

Thus, the lower bound on P [Y (1) = 1] is shifted upwards compared to the no-assumptions

lower bound, and the upper bound remains the same. For outcome 2, write P [Y (1) = 2|S =

0] = P [Y (1) = 2|Y (1) ≥ 2, S = 0]{1 − P [Y (1) = 1|Y (1) ≥ 1, S = 0]} which lies in the interval

(0, A2(1 − A1)). Thus, the upper bound on P [Y (1) = 2] is smaller than the no-assumptions

upper bound and the lower bound remains the same. The potential outcome probability for

the highest category 3 can be written as P [Y (1) = 3|S = 0] = {1 − P [Y (1) = 2|Y (1) ≥ 2, S =

0]}{1 − P [Y (1) = 1|Y (1) ≥ 1, S = 0]} which lies in the interval (0, (1 − A1)(1 − A2)) by the

assumptions above, and thus again only the upper bound is shifted downwards.

Analogous arguments hold for the three outcomes in state 0. The counterfactual probability

for outcome 1 lies in the interval (0, B1), it lies in the interval (0, B2) for outcome 2, and in

the interval ((1 − B1)(1 − B2), 1) for outcome 3. Thus, in comparison to the no-assumptions

bounds, the upper bounds as implied by Proposition 2/Corollary 1 are shifted downwards for

the outcome levels 1 and 2, and the lower bound is shifted upwards for the outcome level 3.

The magnitude of the shift depends on the magnitude of B1 and B2, as well as the selection

probability P (S = 1) (which depends on α).

In the setup of the simulation, the width of the bounds as implied by Proposition 2/Corol-

lary 1 is substantially smaller than the no-assumptions bounds for all outcomes in state 1,

while the information gain in terms of width is less pronounced for state 0. This result is
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not determined by a single parameter but by the overall setup of the study and the imposed

assumptions on the parameters.

Figure 2 displays the results if the correlation between the error term in the selection

process and the error term of the first step in the sequential process, σν,1, is varied from -0.5

to 0.5. If there is no selection on unobservables in the first step of the sequential process, i.e.,

if σν,1 = 0, then the counterfactual probabilities become point identified because P [Y (s) =

1|S = 0] = P [Y (s) = 1|S = 1] for s = 0, 1. This is indicated in the graph at that point when

the large hollow circle and triangle coincide with the true outcome probability (the thick black

line). If σν,1 is negative (positive), then

P [Y (s) = 1|Y (s) ≥ 1, S = 0] < (>)P [Y (s) = 1|Y (s) ≥ 1, S = 1], s = 0, 1

In all cases, P [Y (s) = 2|Y (s) ≥ 2, S = 0] > P [Y (s) = 2|Y (s) ≥ 2, S = 1] for s = 0, 1 by the

assumptions of the setup. This example is interesting for the comparison of PMTS and MTS.

If σν,1 is positive, then the two are equivalent. However, if σν,1 is negative, then the MTS

assumption is violated while the PMTS assumption is not.

— Insert Figure 2 about here —

According to Proposition 2/Corollary 1, the counterfactual probabilities in state 1 and in

the case of σν,1 negative can be bounded by P [Y (1) = 1|S = 0] ∈ (0, A1), P [Y (1) = 2|S =

0] ∈ (A2(1 − A1), 1), and P [Y (1) = 3|S = 0] ∈ (0, 1 − A2), and in state 0, the bounds can

be derived as P [Y (0) = 1|S = 1] ∈ (B1, 1), P [Y (1) = 2|S = 0] ∈ (0, B2(1 − B1)), and

P [Y (1) = 3|S = 0] ∈ (0, 1 − B1). If σν,1 is positive, then the bounds are the same as the ones

described above when α is varied.

Comparing the two cases σν,1 positive and σν,1 negative, it can be observed that there

is no uni-directional shift in the bounds compared to the no-assumptions case. The sign

and magnitude of the shift depends on all parameters such that no general conclusion can

be drawn, even from this simple model. However, compared to the no-assumptions case,

the information gain can be substantial, cutting the possible range of the potential outcome

16



distribution by more than a third (e.g., for outcomes 2 and 3 in state 0). Thus, while the

weak monotonicity assumption may not always have point-identifying power, it is nevertheless

informative regarding the outcome process. As a further result, the bounds derived by wrongly

imposing the MTS assumption may not always include the true probability given PMTS. In

the given example, this happens for P [Y (1) = 3] and P [Y (0) = 3], and σν,1 about -0.2.

Figure 3 displays the results when σν,2 is varied from -0.5 to 0.5. A variation in σν,2 does

not alter the first stage in the sequential process, and since σν,1 is assumed to be positive (Table

1), the potential transition probabilities fulfill the assumption P [Y (s) = 1|Y (s) ≥ 1, S = 0] >

P [Y (s) = 1|Y (s) ≥ 1, S = 1], s = 0, 1. The setup is chosen such that there is a unique shift in

the sign of the inequalities for the potential transition probabilities for the second category at

σν,2 ≈ 0.112. If σν,2 < 0.112, then P [Y (s) = 1|Y (s) ≥ 1, S = 0] < P [Y (s) = 1|Y (s) ≥ 1, S = 1]

for s = 0, 1, and if σν,2 > 0.112, then P [Y (s) = 1|Y (s) ≥ 1, S = 0] > P [Y (s) = 1|Y (s) ≥

1, S = 1] for s = 0, 1. While the latter case is analogous to the scenario when α is varied, the

former case implies the following bounds on the counterfactual probabilities:

P [Y (1) = 1|S = 0] ∈ (A1, 1)

P [Y (1) = 2|S = 0] ∈ (0, A2(1 − A1))

P [Y (1) = 3|S = 0] ∈ (0, 1 − A1)

and

P [Y (0) = 1|S = 1] ∈ (0, B1)

P [Y (0) = 2|S = 1] ∈ (B2(1 − B1), 1)

P [Y (0) = 3|S = 1] ∈ (0, 1 − B2)

Thus, in state 1 the lower bound is shifted upwards for outcome 1, and the upper bounds are

shifted downwards for outcomes 2 and 3 compared to the no-assumptions bounds. In state 0,

the lower bound is identical to the no-assumptions lower bound for outcomes 1 and 3 while

the upper bound is smaller, and the opposite holds for outcome 2.

— Insert Figure 3 about here —
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The different role of the information set in the construction of bounds should be noted

when comparing Figures 2 and 3. For example, the sign of the correlation between the first

step error term and the error term of the selection process affects the bounds in all outcome

categories. If economic theory is informative regarding the sign of the correlation, then this

affects the information available on the entire outcome distribution. The correlation between

the second step error term and the selection error term does not affect the probability of the

lower outcome 1 (due to the sequential structure of the model), and thus is only informative on

the same and the subsequent categories. The magnitude of the information gain depends on the

particular characteristics of the model (i.e., the covariance matrix, the threshold parameters,

and the number of outcomes), but any weak information that can be credibly imposed on

these determinants can be successfully employed to derive bounds on the potential outcome

distribution that are tighter than the no-assumptions bounds.

The last three figures display the results when the correlation between the first step and

the second step error term (σ1,2) is varied (Figure 4), and the threshold parameters τ1,1 and

τ1,2 are varied (Figures 5 and 6). In all cases, the setup of the study ensures conformability

with the PMIV assumptions in the sense that P [Y (s) = y|Y (s) ≥ y, S = 0] > P [Y (s) =

y|Y (s) ≥ y, S = 1] for s = 0, 1 and y = 1, 2 such that the construction of bounds is analogous

to the case when α is varied. It should be noted that while τ1,1 and τ1,2 are the threshold

parameters in state 1, they also affect the bounds on the potential outcome distribution in

state 0 because they affect what is observed by the researcher and what assumptions can be

imposed on the potential conditional transition probabilities. While this information does not

vary with τ1,1 and τ1,2, it is already sufficient to obtain bounds that are more informative than

the no-assumptions bounds.

— Insert Figures 4 to 6 about here —

If X covariates are present, then the construction of the bounds as presented above is local

(conditional on X) and the overall bounds (unconditional on X) can be obtained as a weighted
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average. The PMIV assumptions that can be imposed in each sub-population described by

X may differ such that either more informative upper bounds or more informative lower

bounds can be imposed, conditional on X. It is also consistent with the concept of the PMIV

assumptions if for some sub-populations no additional information can be invoked and hence

the no-assumptions bounds still apply.

4.2 Schooling and Fertility

As an empirical example, I will consider how the number of children ever born to a woman

varies with her level of schooling. I will impose weak assumptions on the data-generating

process that are consistent with the related literature. These assumptions are also consis-

tent with the PMIV assumptions, as discussed below. However, compared to most previous

analyses, I will neither make distributional or functional form assumptions, nor invoke strong

independence or exclusion restrictions. Instead, I will discuss the implications of the PMIV

assumptions on the counterfactual distributions of interest.

Unfortunately, economic theory alone does not provide a clear-cut prediction on the sign of

the correlation between education and fertility. In the traditional perspective, more educated

women face higher opportunity costs of childbearing, which on average reduces the expected

number of children, but they also tend to have higher wages, and/or a higher educated partner

with a higher income (Becker 1991, Pollak and Watkins 1993), which may contribute to a higher

fertility of the more educated women (although the latter conclusion is not without debate,

see for example Becker and Lewis 1973 for a discussion on the quality-quantity aspect). In

addition, higher educated women tend to postpone their marriage and fertility decisions, they

tend to have different views about family formation and female autonomy, and also tend to

have a better knowledge about fertility control (Boulier and Rosenzweig 1984, Rosenzweig and

Schultz 1985, Mason 1986, Schultz 1993, Cheng and Nwachukwu 1997, Lam and Duryea 1999,

Basu 2002, Bratti 2003), which are all factors that may reduce the number of children of the

more educated women.
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The empirical findings on the correlation between education and fertility mainly point to a

negative sign (Rosenzweig and Schultz 1985, Easterlin 1987, Becker 1991, Sander 1992, Schultz

1993, Lam and Duryea 1999). However, some studies provide evidence in favor of a positive

association (e.g., Moffitt 1984), although the effects are weakly significant or insignificant.

In the following analysis, I will combine the results from the above cited literature (mainly

the model of Boulier and Rosenzweig 1984) with the literature on fertility expectations and

ideal family size (e.g., Blake 1974, Coombs 1978, Ajzen (1985), and Schoen et al. 1999). In

this view, fertility decisions follow a sequential process and the effect of schooling depends on

the actual number of children. The higher educated women more often stay childless than the

lower educated women, on average. However, given already one child, i.e., the decision in favor

of getting children, the higher educated women will on average be better able to achieve ideal

family size goals. In the US, where the employed data come from, this amounts to an ideal

of two children (the median and modal value over time). Thus, the decision for one child as

opposed to two or more children is more likely for the low educated women than for the high

educated women, but the conditional transition probabilities for the second and more children

will be higher for the more than the lower educated women. Formally,

P (Y (s) = 0|S = u1) ≤ P (Y (s) = 0|S = u2)

P (Y (s) = 1|Y (s) ≥ 1, S = u1) ≥ P (Y (s) = 1|Y (s) ≥ 1, S = u2)

P (Y (s) = y|Y (s) ≥ y, S = u1) ≤ P (Y (s) = y|Y (s) ≥ y, S = u2), y ≥ 2

where Y (s) is the number of children if the woman were to receive s years of schooling, S is

the realized schooling, and u1 < u2.

The data used for the analysis are taken from the General Social Survey (GSS) 1972-2008

(see the website of the National Opinion Research Center www.norc.org for further details on

the data). I restrict attention to the (sub-) population of white women aged 55-70 that are

not in the labor force. Table 2 gives the estimates of the schooling distribution in a sample of

2,976 randomly selected women from this population, with the schooling variable aggregated
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to four categories: less than 12 years, 12 years, 13-15 years, and 16 or more years of schooling.

— Insert Table 2 about here —

The estimates of the conditional transition probabilities in the fertility distribution, for

given levels of schooling, are also shown in Table 2 (the numbers of observations used to

estimate each quantity are provided in square brackets). The observed drop-out rates (fertility

transitions) tend to increase with the education level for each but the first child. This may

be interpreted as an indicator for the imposed PMTS assumptions, though it cannot be used

as a test because the estimated numbers are based on the observed instead of the potential

outcomes. Stronger assumptions on the relationship between schooling and the number of

children would be necessary in order to conduct a valid test of the (combined) assumptions.

Figure 7 shows the estimated potential outcome distributions for each of the four schooling

categories. The horizontal axes display the number of children y, where 5 and more children

are summarized into a single category, and the vertical axes display the according probabilities

P [Y (s) = y]. Using the empirical evidence alone the potential outcome probabilities can only

be bounded with the estimated range being marked by the light grey bars.

— Insert Figure 7 about here —

The bounds under the PMTS assumptions are indicated by the black bars. For comparison,

the bounds obtained under the MTS assumption (with weak inequality for the transition

from one child reversed) are indicated by the grey bars. Imposing these assumptions does

substantially narrow the no-assumptions bounds, although point identification of any of the

potential outcome probabilities is not achieved. The shrinkage in the estimated range depends

on the schooling and the outcome level. The lower PMTS bound for outcomes greater than

or equal to two is always zero since, by assumption, the lower bound on at least one of the

conditional transitions is zero in these cases. The lowering of the upper PMTS bound is the

greater, the more the lower bound on the conditional transitions in the previous steps is raised.

Nonparametric bounds on the treatment effects, if defined as the differences in the outcome
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distributions, can be derived from these graphs by taking differences between the according

bars. If the only information imposed on the data-generating process is the PMTS structure,

then the bounds in Figure 7 are sharp (noting the additional variation that arises due to

sampling error). Tighter bounds on the counterfactual distributions can only be obtained by

imposing stronger assumptions.

5 Conclusion

Manski and Pepper (2000) discuss monotone instrumental variables in order to relax common

IV assumptions. In a nutshell, the equality of mean responses is replaced by a weak inequality

conditional on the variation in the instrument (under suitable order conditions). While the

MIV assumptions generally do not point-identify the potential outcome distribution, they

can be successfully explored to derive informative bounds. Manski and Pepper point to the

extension of their MIV idea to stochastic dominance. To the best of my knowledge, this paper

is the first that investigates the MIV concept in the context of a sequentially ordered outcome

process, thereby exploring a particular form of stochastic dominance.

Assuming that agents make decisions under a sequential update of information, the paper

applies the MIV idea in order to impose weak stochastic dominance on the conditional tran-

sition probabilities. Reflecting the sequential order, the sign of stochastic dominance might

depend on the outcome level itself. This concept is well-founded in economic demand models

with heterogenous preferences and where income and substitution effects interact. Since the

paper does not impose independence assumptions or exclusion restrictions, the results derived

above have implications for a large number of applications where no such assumptions can

be credibly imposed, but where a sequential process can be motivated and weak information

about the direction of effects is available.

Further research might combine some sort of (weak) independence condition with the struc-

tural model imposed in Section 4 in order to gain further insights on the sign of the inequalities

in the PMIV assumptions. Moreover, two issues should receive attention regarding inference.
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First, the potential finite sample bias in the analogue estimates needs to be appropriately cor-

rected (see also Kreider and Pepper 2007, Manski and Pepper 2009). Second, the uncertainty

in the sign of the weak inequalities in the PMIV assumptions must be accounted for in order

to derive confidence intervals with a pre-defined coverage probability.
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Heckman, J.J. and B.E. Honoré (1990), The empirical content of the Roy model, Economet-

rica, 58, 1121-1149.

Heckman, J.J. and S. Navarro (2007), Dynamic Discrete Choice and Dynamic Treatment

Effects, Journal of Econometrics, 136, 341-396.

Heckman, J.J and R.J. Willis (1977), A Beta-logistic Model for the Analysis of Sequential

Labor Force Participation by Married Women, Journal of Political Economy, 85, 27-58.

Heckman, J.J. and E.J. Vytlacil (2005), Structural equations, treatment effects and econo-

metric policy evaluation, Econometrica, 73, 669-738.

Heckman, J.J. and E.J. Vytlacil (2007a), Econometric evaluation of social programs, part I:

Causal models, structural models and econometric policy evaluation, in: J.J. Heckman

and E. Leamer (eds.) Handbook of Econometrics, Volume 6B, Elsevier, 4779-4874.

Heckman, J.J. and E.J. Vytlacil (2007b), Econometric evaluation of social programs, part

II: Using the marginal treatment effect to organize alternative economic estimators to

evaluate social programs and to forecast their effects in new environments, in: J.J.

Heckman and E. Leamer (eds.) Handbook of Econometrics, Volume 6B, Elsevier, 4875-

5144.

Imbens, G.W. and J.D. Angrist (1994), Identification and Estimation of Local Average Treat-

ment Effects, Econometrica, 62, 467-476.

Kahn, L.M. and K. Morimune (1979), Unions and employment stability: a sequential logit

approach, International Economic Review, 20, 217-235.

Kreider, B. and J. Pepper (2007), Disability and employment: Reevaluating the evidence in

light of reporting errors, Journal of the American Statistical Association, 102, 432441.

Lam, D. and S. Duryea (1999), Effects of Schooling on Fertility, Labor Supply and Investments

in Children, with Evidence from Brazil. Journal of Human Resources, 34, 160-192.

Lancaster, T. (1992), The Econometric Analysis of Transition Data, Econometrics Society

Monographs, Cambridge University Press.

26



Lechner, M. (2008), Matching estimation of dynamic treatment models: Some practical issues,

in: D. Millimet, J. Smith, and E. Vytlacil (eds.), Advances in Econometrics, Volume 21,

Modelling and Evaluating Treatment Effects in Econometrics, 289-333.

Lechner, M. (2009), Sequential Causal Models for the Evaluation of Labor Market Programs,

Journal of Business & Economic Statistics, 27, 71-83.

Lechner, M. and R. Miquel (2009), Identification of the Effects of Dynamic Treatments by

Sequential Conditional Independence Assumptions, Empirical Economics, forthcoming.

Manski, C.F. (1990), Nonparametric Bounds on Treatment Effects, American Economic Re-

view, Papers and Proceedings, 80, 319-323.

Manski, C.F. (1994), The Selection Problem, in: C. Manski and D. McFadden (eds.) Advances

in Econometrics: Sixth World Congress, Cambridge University Press, Cambridge.

Manski, C.F. (1997), Monotone Treatment Response, Econometrica, 65, 1311-1334.

Manski, C.F. (2000), Identification problems and decisions under ambiguity: empirical analy-

sis of treatment response and normative analysis of treatment choice, Journal of Econo-

metrics, 95, 415-442.

Manski, C.F. (2007), Identification for Prediction and Decision, Harvard University Press.

Manski, C.F. and J. Pepper (2000), Monotone instrumental variables: with an application to

the returns to schooling, Econometrica, 68, 997-1010.

Manski, C.F. and J. Pepper (2009), More on monotone instrumental variables, Econometrics

Journal, S1, S200-S216.

Mason, K.O. (1986), The Status of Women: Conceptual and Methodological Issues in Demo-

graphic Studies. Sociological Forum, 1, 284-300.

Pollak, R.A. and S.C. Watkins (1993), Cultural and Economic Approaches to Fertility: Proper

Marriage or Mesalliance? Population and Development Review, 19, 467-496.

Robins, J.M. (1989), The analysis of randomized and non-randomized aids treatment trials

using a new approach to causal inference in longitudinal studies, in: L. Sechrest, H.

27



Freeman, A. Mulley (eds.), Health Services Research Methodology: A Focus on AIDS.

U.S. Department of Health and Human Services, National Center for Health Services

Research and Health Care Technology Assessment, Rockville, MD, 113-159.

Robins, J.M. (1997), Causal inference from complex longitudinal data, in: M. Berkane (ed.),

Latent Variable Modeling and Applications to Causality. Lecture Notes in Statistics.

Springer-Verlag, New York, 69-117.

Rosenzweig, M.R. and T.P. Schultz (1985), The Demand for and Supply of Births: Fertility

and Its Life Cycle Consequences. American Economic Review, 75, 992-1015.

Roy, A. (1951), Some thoughts on the distribution of earnings, Oxford Economic Papers, 3,

135-146.

Rubin, D.B. (1974), Estimating causal effects of treatments in randomized and nonrandom-

ized studies, Journal of Educational Psychology, 66, 688-701.

Sander, W. (1992), The effect of women’s schooling on fertility, Economics Letters, 40, 229-33.

Schoen, R., N.M. Astone, Y.J. Kim, C.A. Nathanson and J.M. Fields (1999), Do Fertility

Intentions Affect Fertility Behavior? Journal of Marriage and the Family, 61, 790-799.

Schultz, T.P. (1993), Returns to Women’s Education, in: E.M. King and M.A. Hill (eds.)

Women’s Education in Developing Countries: Barriers, Benefits, and Policies. Johns

Hopkins University Press for the World Bank, 51-99.

Shaikh, A.M. and E. Vytlacil (2005), Threshold Crossing Models and Bounds on Treatment

Effects: A Nonparametric Analysis, unpublished working paper.

Steele, F., W. Sigle-Rushton, and O. Kravdal (2009), Consequences of Family Disruption on

Childrens Educational Outcomes in Norway. Demography, forthcoming.

Zhang, J. (1994), Socioeconomic determinants of fertility in Hebei Province, China: an ap-

plication of the sequential logit model, Economic Development and Cultural Change, 43,

67-90.

28



Figures and Tables

Table 1: Design Simulation Study

α σν,1 σν,2 σ1,2 τ1,1 τ1,2

Figure 1 -2 to 2 0.3 0.5 0.4 0.5 0

2 0 -0.5 to 0.5 0.5 0.4 0.5 0

3 0 0.3 -0.5 to 0.5 0.4 0.8 0

4 0 0.3 0.5 -0.5 to 0.5 0.5 0

5 0 0.3 0.5 0.4 -2 to 2 0

6 0 0.3 0.5 0.4 0.5 -2 to 2
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Table 2: Schooling and Fertility - Empirical Distribution Functions

Years of schooling (S)

≤ 11 12 13-15 ≥ 16

P (S) 0.364 0.367 0.160 0.109

[1,082] [1,092] [476] [326]

Conditional transitions in the fertility distribution

P (Y = 0|S) 0.106 0.127 0.149 0.221

[1,082] [1,092] [476] [326]

P (Y = 1|Y ≥ 1, S) 0.155 0.162 0.131 0.126

[967] [953] [405] [254]

P (Y = 2|Y ≥ 2, S) 0.285 0.362 0.367 0.441

[817] [799] [352] [222]

P (Y = 3|Y ≥ 3, S) 0.355 0.488 0.498 0.629

[584] [510] [223] [124]

P (Y = 4|Y ≥ 4, S) 0.377 0.529 0.580 0.522

[377] [261] [112] [46]

Source: GSS 1972-2008, own calculations. Notes: The estimates are based on

a random sample of 2,976 observations on white women aged 55-70 not in the

labor force. The numbers of observations used to estimate each probability

are reported in square brackets. Y denotes the number of children.
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Figure 1: Bounds on Potential Outcome Distributions – Variation of α
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Notes: Thick black lines denote the true potential outcome probability P [Y (s) = y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 1/Corollary 1 under the partial monotone

treatment selection (PMTS) assumptions.
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Figure 2: Bounds on Potential Outcome Distributions – Variation of σν,1
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Notes: Thick black lines denote the true potential outcome probability P [Y (s) = y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 1/Corollary 1 under the partial monotone

treatment selection (PMTS) assumptions. For comparison, the graph also shows the bounds obtained if a

monotone treatment selection (MTS) assumption is imposed (dark diamonds).
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Figure 3: Bounds on Potential Outcome Distributions – Variation of σν,2
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Notes: Thick black lines denote the true potential outcome probability P [Y (s) = y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 1/Corollary 1 under the partial monotone

treatment selection (PMTS) assumptions. For comparison, the graph also shows the bounds obtained if a

monotone treatment selection (MTS) assumption is imposed (dark diamonds).
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Figure 4: Bounds on Potential Outcome Distributions – Variation of σ1,2
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Notes: Thick black lines denote the true potential outcome probability P [Y (s) = y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 1/Corollary 1 under the partial monotone

treatment selection (PMTS) assumptions.
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Figure 5: Bounds on Potential Outcome Distributions – Variation of τ1,1
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Notes: Thick black lines denote the true potential outcome probability P [Y (s) = y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 1/Corollary 1 under the partial monotone

treatment selection (PMTS) assumptions.
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Figure 6: Bounds on Potential Outcome Distributions – Variation of τ1,2
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Notes: Thick black lines denote the true potential outcome probability P [Y (s) = y] as indicated on the vertical

axes, small grey triangles (circles) denote the no-assumptions upper (lower) bounds, large hollow triangles

(circles) denote the upper (lower) bounds as derived in Proposition 1/Corollary 1 under the partial monotone

treatment selection (PMTS) assumptions.
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Figure 7: Bounds on the Distribution of the Number of Children by Schooling Level
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Source: GSS 1972-2008, own calculations. Notes: P [Y (1) = y] denotes the potential distribution of the number

of children if everybody in the population (defined as white women aged 55-70 years not in the labor force)

was observed with an education level of less than 12 years. P [Y (2) = y] denotes the same distribution if

everybody was observed with 12 years of schooling, P [Y (3) = y] with 13-15 years of schooling, and P [Y (4) = y]

with 16 years or more, respectively. Left bars are obtained using the empirical evidence alone, middle bars

are obtained under partial monotone treatment selection (PMTS) assumptions imposing that the potential

conditional transition probabilities are higher (lower) for the high educated than the low educated women for

the outcome levels 0, (1), 2, 3, and 4. Outcome 5m stands for 5 or more children. Right bars are obtained

under the presumption of monotone treatment selection (MTS) with the transition probabilities higher for the

high eductated women over the entire support of Y .
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