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Abstract: We provide a framework for analyzing bilateral mergers

when there is two-sided asymmetric information about firms’ types.

We show that there is always a “no-merger” equilibrium where firms

do not consent to a merger, irrespective of their type. There may

also be a “cut-off” equilibrium if the expected merger returns satisfy a

suitable single crossing condition, which will hold if a firm’s merger re-

turns are “essentially monotone decreasing” in its type. Applying our

analysis to the linear Cournot model, we show how the merger pattern

depends on the cost effects of mergers, the extent of uncertainty, and

the way profits are split. Specifically, we show how increasing uncer-

tainty about competitor types may foster mergers as firms hope for

strong rationalization effects.
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1 Introduction

When Dynegy was considering a takeover of Enron in autumn 2001, it was

certainly aware that the potential acquiree was in trouble. Quite clearly,

however, Dynegy initially underestimated the magnitude of the problem.1

After the company had found out more about its target, it invoked a “mate-

rial adverse change” clause to retreat from the deal. Yet, not all firms that

recently considered mergers or acquisitions were lucky enough to find ways

out of a transaction with partners that turned out to be less attractive than

expected. For example, in the merger with the German Hypobank, it took

Hypovereinsbank more than two years “to discover the full horror of its part-

ner’s balance sheet” (The Economist, July 20, 2000). More generally, many

mergers are considered as failures with the benefit of hindsight.2

Such anecdotes suggest that standard results from the analysis of “lemons”

markets (Akerlof 1970) can explain the mechanics of mergers under asymmet-

ric information. However, there are two reasons why this is not clear. First,

even though anecdotes on failed mergers and takeovers typically single out

one of the partners as the lemon, the asymmetric information surrounding

mergers is usually two-sided: Each of the firms knows more about its quality

than the potential partner does. Both parties thus face the risk of joining

a bad partner who adversely affects the profits of the merged entity. In

the present paper, we therefore consider mergers under two-sided asymmet-

ric information about firms’ types.3 High types are defined as having high

1Dynegy’s former CEO C. Watson is cited in The Economist (November 15, 2001) to
have “looked under the hood”, finding that Enron “might need a new paint job and some
new tyres, but its engine is sound.”

2See, for instance, the studies of Ravenscraft and Scherer (1987; 1989), but note also
the results of Healy et al. (1992).

3Hviid and Prendergast (1993) provide an analysis of merger games with one-sided
asymmetric information. Assuming that the target firm has private information about
its profitability, they show that an unsuccessful bid may increase the profitability of the
target but reduce the profitability of the bidding firm (relative to the profitability before
the merger offer) due to learning from rejection.
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stand-alone profits–that is, high profits in the absence of a merger–and as

contributing to high merger profits if the transaction occurs.

Second, while the market for firms resembles a standard lemons market

in the sense that low types have lower stand-alone profits (stand-alone profit

effect), there is a crucial difference: In contrast to the lemons market, lower

types will generally also have lower profits than high types if a transaction

occurs, since low types will drive down profits of the merged entity. Assuming

that lower profits of the merged entity translate into lower profits for the

former owners of each of its constituent parts, low types will expect to earn

less than high types if they become part of a merged firm (post-merger profit

effect).4 This feature distinguishes mergers from transactions like the sale of

used cars, where the seller’s profit is independent of the type of the car, as

all types must sell at the same price.5 As a result, it is not obvious whether

low types have more to gain from entering a merger than high types.

Against this background, we set out to analyze issues that are familiar

from the adverse selection literature. Specifically, we investigate under which

conditions asymmetric information about the firms’ types might lead to a

breakdown of the market for firms, that is, to a no-merger equilibrium where

firms never consent to a transaction. Moreover, we establish conditions under

which, in equilibrium, only the relatively low types are going to merge, as

the lemons analogy would suggest.

To this end, we analyze a merger game in which two firms are matched

whose types zi, i = 1, 2, are drawn from distributions that are common knowl-

edge.6 After having observed their own type, both firms state whether they

consent to a merger. If both firms consent, a merger takes place. If at

4When the transaction is financed with cash, the post-merger profit effect is absent for

the owners of the acquired firm. Even for them, however, knowledge of the competitor’s
type would be helpful for the acquisition decision, as stand-alone profits and thus merger
returns depend on this type.

5We are obviously abstracting from warranty payments here.
6In specific applications, types may be interpreted as cost or demand parameters, with

lower cost or higher demand corresponding to a better type.
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least one firm declines, there is no merger. Following the merger game, an

oligopoly game is played. If no merger occurs, both firms earn their stand-

alone profits. If a merger occurs, the joint profit is shared according to some

predetermined rule.7

We develop our theory in a relatively general reduced-form model and

illustrate its application in a set of examples based on the standard linear

Cournot oligopoly model. For the general model, we first show that the

merger game always has a Bayesian equilibrium where players never consent

to a merger, no matter what their type is. The remaining results depend on

the relation between firm types and merger returns, which are defined as the

difference between the pre- and post-merger profits for the owners of each

firm. For instance, we give conditions on this relation guaranteeing that the

no-merger equilibrium is unique–corresponding to a “no-trade” result.

Next, we analyze the merger pattern, i.e., we ask what types of firms

consent to mergers under two-sided asymmetric information. Unsurprisingly,

when the merger returns are decreasing in the type of a firm, the equilibria

will be of the cut-off type where only low types consent to a merger. This

result is potentially relevant to the “Merger Puzzle” (Scherer 2002), that, in

spite of their ubiquity, mergers are often considered as failures: If bad types

are more likely to merge than good types (adverse selection), this would

suggest that merged entities do badly because they consist of bad firms.

The cut-off result for monotone merger returns is useful in our applica-

tions, but it has some limitations: First, as argued before, the monotonicity

of the merger returns is not guaranteed in general. Therefore, we show that

the cut-off result generalizes to the class of “essentially monotone decreasing

7We realize that our model is highly reduced. Obviously, the terms of a merger are

usually the outcome of a complex bargaining process. However, the literature on bar-
gaining with two-sided incomplete information (e.g. Ausubel et al. 2002) shows that such
models often admit a multitude of equilibria, and the outcomes often depend delicately
on the details of the bargaining protocol. Therefore, we believe that the reduced form
approach adopted in this paper is useful for making progress with respect to the issues we
are interested in.
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functions”, which contains many single-peaked functions. Second, the cut-off

result does not preclude degenerate cases where either all types consent to

a merger or only the “no-trade” equilibrium exists.8 We thus provide both

necessary and sufficient conditions for non-degenerate cut-off equilibria to

exist.

We then apply our results in a linear Cournot setting. We show how

merger patterns depend on the following underlying conditions:

(i) The technology of the merged firm and, specifically, the effect of the

merger on the marginal cost of the merged firm;

(ii) The profit sharing rule, that is, the mechanism determining how post-

merger profits are split between the owners of the two constituent firms;

(iii) The extent of uncertainty surrounding the transaction.

We start with the case of rationalization mergers, where the merged firm

produces with the minimum of the marginal costs of its constituent parts.

Under symmetric information, such mergers increase joint profits if the firms

are sufficiently heterogenous because the more efficient firm rationalizes the

less efficient competitor (Barros 1998), whereas this is impossible for homo-

geneous firms (Salant et al. 1983). With this in mind, we prove the following

results. First, if firms have to commit to a fixed split of profits before a

merger takes place, then there can be no symmetric equilibrium where a

positive measure of firms consents to a merger under uncertainty. Second,

when firms commit to fixed shares of the joint surplus or pay cash for the

transaction, mergers will only take place when the uncertainty is sufficiently

large. Intuitively, when uncertainty is large, firms can hope that they will

turn out to be sufficiently asymmetric ex post for rationalization effects in

the sense of Barros to materialize, whereas for small uncertainty they know

they will essentially be in the Salant et al. case ex post.

8In these degenerate cases, the cut-off value are identical to the highest or the lowest
possible type, respectively.
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Finally, we compare the results for rationalization mergers with those for

synergy mergers, where the merged entity produces with the best available

technology. Here, we focus on the case where firms commit to a fixed split

of profits. In this setting, we generally obtain cut-off equilibria.

The remainder of the paper is organized as follows. In section 2, we

introduce the main assumptions of our model. Section 3 characterizes the

Bayesian equilibria for the class of games under consideration, primarily fo-

cussing on the case where merger returns are monotone decreasing in the

firms’ types. Section 4 provides a detailed analysis of horizontal mergers in

the linear Cournot setting when there is two-sided asymmetric information.

In section 5, we generalize our analysis to cases where merger returns are not

monotone decreasing in firm types. Section 6 concludes.

2 Assumptions

We consider an oligopoly with an exogenous number of firms n ≥ 2. Two
of these firms, denoted as i = 1, 2, play a merger game. The firms may

be active in the same market (and thus contemplate a horizontal merger).

Alternatively, they might be operating in a vertical relationship (vertical

merger), or producing unrelated goods (conglomerate merger). Each firm is

characterized by a type zi ∈ R, which influences its profitability. There is
asymmetric information about the value of zi, i.e. firms know their own zi,

but not their competitor’s zj, j 6= i. The ex ante probability of zi is described

by a probability distribution Fi with density fi and compact support [zi, zi] ⊂
R.9 Fi is common knowledge. Note that we allow for ex ante heterogeneity

between firms, i.e. firms’ types zi may be drawn from different distributions.10

9It is possible to extend the analysis to the case where the support of Fi is not compact,
though we do not pursue this issue here.
10This is of particular importance for vertical or conglomerate mergers where firms

are producing entirely different goods. Even the interpretation of the firms’ types might
differ. For vertical mergers, for instance, the types might correspond to the costs of input
production for the upstream firm and marketing ability for the downstream firm.
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Firms simultaneously announce whether they are willing to merge.11 The

decision of firm i is summarized in a variable si such that si = 1 if it consents

to an agreement and si = 0 if it rejects it. If no merger occurs, each firm earns

its stand-alone oligopoly profit πi (zi, zj). This function is defined on some set

Z ⊃ [z1, z1]×[z2, z2] . The properties of πi reflect more primitive assumptions
on the nature of product market interaction and the interpretation of the type

variable. At this stage, we do not want to constrain the shape of πi (zi, zj)

too much. However, throughout the paper, we shall require the following

assumption to be satisfied.

Assumption 1 πi is non-decreasing in zi.

Thus, by definition, the higher a firm’s type, the higher its stand-alone

profits. With respect to the relation between zj and πi, j 6= i, we make no

assumption at this stage to allow for various forms of firm interaction. For

instance, if firms are competitors and the type variable reflects efficiency,

greater efficiency of firm j translates into lower profits of firm i in most

applications. However, if firms i and j are in a vertical relation, the opposite

relation is more plausible.

If a merger occurs, the merged entity earns total profit πM (zi, zj). This

profit is shared between the owners of each of the formerly separate firms.

The owners of firm i earn profits πMi (zi, zj), i, j = 1, 2, j 6= i, such that

πM1 (z1, z2) + πM2 (z2, z1) = πM (z1, z2) .

Like πi, the functions πMi and πM reflect assumptions on product market

interaction and the interpretation of the type variable. In addition, πMi de-

pends on the way profits are shared if a merger takes place. There is no

commonly accepted theory of how profits of a merged entity are split be-

tween the owners of formerly separate firms. We shall therefore not impose

much structure on the general model. It is natural to suppose that the split

11Sequentiality of decisions does not lead to substantial changes of the results (see Borek
et al. 2003).
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of profits reflected in πMi is the outcome of a bargaining process that precedes

the merger decision summarized in si. In this bargaining process, firms typ-

ically reveal information about their types and they are thus able to update

their beliefs about the potential partner’s type. That is, the distribution

functions Fi, i = 1, 2, describing the probability of zi should be regarded

as being conditional on any information revealed in the bargaining process.

For our analysis to be interesting, we require that, whatever the bargaining

process, firms do not fully reveal their types before final acceptance decisions

are made.

We maintain the following assumption on πM .

Assumption 2 πM is non-decreasing in zi and zj.

This assumption is natural: The more efficient the constituent parts,

the more efficient should the merged firm be. Note that we do not make

any assumptions on the effect of the type variable on πMi , thereby avoiding

assumptions on the bargaining process. Instead, we shall show how different

ways of splitting the pie will translate into different predictions on the merger

pattern. We shall consider the following three profit sharing rules.

Fixed Profit Shares Firm i obtains a predetermined share αi ∈ [0, 1] of
the merged entity’s total profit πM (zi, zj) , i.e.

πMi (zi, zj) = αiπ
M (zi, zj) .

The Fixed Profit Shares rule imposes that firms ex ante commit to a

particular split of profits, even if one firm turns out to be very inefficient ex

post. This is essentially the way profits are shared if the owners of a merging

firm are compensated for bringing in assets by shares in the new firm.

Joint Surplus Sharing Firm i obtains its stand-alone profit plus a prede-

termined share βi(zi, zj) ∈ [0, 1] of the total change in profits, i.e.

πMi (zi, zj) = πi (zi, zj) + βi(zi, zj)
£
πM (zi, zj)− πi (zi, zj)− πj (zj, zi)

¤
.
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According to the Joint Surplus Sharing rule, the owners agree on a con-

tract such that both win if total profits increase and both lose if total profits

fall. We do not claim that the joint surplus rule corresponds to a common

real-world case. However, such a procedure is conceivable when types are

revealed (and verifiable) after the merger takes place, so that contracts can

be conditioned on types.

Cash Payment The owners of one firm, say firm 2, are compensated by

the cash payment p > 0 for the takeover by the other firm, i.e.

πM1 (z1, z2) = πM (z1, z2)− p;

πM2 (z2, z1) = p.

The Cash Payment rule brings the setting closer to one-sided asymmetric

information. Even though neither firm knows the competitor’s type, the

post-merger profit for firm 2’s owners is independent of firm 1’s type: They

are compensated with a fixed cash payment. Nevertheless, the asymmetric

information remains relevant for firm 2’s merger decision, as the type of firm

1 influences firm 2’s stand-alone profits and thus its merger returns.

Henceforth, we shall use the following formal definition of merger returns:

Definition 1 Firm i’s returns from the merger are given by

gi (zi, zj) ≡ πMi (zi, zj)− πi (zi, zj) .

The form of the function gi will determine our main results. Note that

Assumptions 1 and 2 impose little structure on gi. In fact, it is not even clear

that merger returns are decreasing in own type, that is, higher types are less

likely to enter merger agreements. By Assumption 1, better types would earn

higher stand-alone profits. By Assumption 2, however, they would also earn

higher profits in a merged firm. The net effect is unclear.

8



3 Results

In this section, we characterize the Bayesian equilibrium of the class of merger

games under consideration in general terms.12 The results in this section are

chosen because they are straightforward to apply to particular examples (see

section 4). Section 5 contains more general results, which, however, are not

as simple.

The following notation is useful: For i = 1, 2, if firm i plays a strategy

si (zi) , we define Bi ≡ Bi (si) ≡ {zi |si (zi) = 1}, i.e., Bi denotes the set of

types zi for which firm i consents to a merger. Further, let

Gi (zi;Bj, fj) ≡
Z
Bj

gi (zi, zj) fj (zj) dzj

denote the expected merger returns for firm i with type zi when players j

are distributed as fj, and only players in Bj consent to a merger.

3.1 Cut-Off Equilibria

First, we give conditions under which low types are more likely to merge

in equilibrium, that is, there is a cut-off equilibrium where only low types

consent to a merger. Therefore, for cut-off equilibria there is a monotone

relation between types zi and strategies si. Such equilibria are common in

Bayesian games: Examples include first-price auctions where the type is the

bidder’s valuation and the strategy is the bid, double auctions where the

types of buyers and seller are valuations and costs, and the strategies are

bids and asks (Chatterjee and Samuelson 1983), wars of attrition where the

type is the valuation for the prize and the strategy is the quitting period,

and games of public good provision where types correspond to the costs of

providing a public good and actions correspond to the provision decision.13

Athey (2001) analyzes more generally under which such monotone equilibria

arise.
12We shall apply our general analysis in a linear Cournot setting in Section 4.
13See Fudenberg and Tirole (1991) for a discussion of these games.
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We shall use the following terminology.

Definition 2 The function Gi : [zi, zi] → R satisfies strong downward
single crossing (SSC−) if, for all zHi , z

L
i ∈ [zi, zi] such that zHi > zLi , Gi

¡
zHi
¢ ≥

0 implies Gi

¡
zLi
¢ ≥ 0 and Gi

¡
zHi
¢
> 0 implies Gi

¡
zLi
¢
> 0.

This definition is closely related to the familiar single-crossing property

of incremental returns (Milgrom and Shannon 1994).14 We first give a cut-

off condition in terms of expected merger returns, and then consider more

primitive conditions on actual merger returns gi.15

Lemma 1 Suppose Gi (zi;Bj, fj) satisfies SSC− in zi for all Bj ⊂ Zj and

all fj. Then every Bayesian Equilibrium (s∗1, s
∗
2) in pure strategies with

P [Bi (s
∗
i )] > 0 satisfies the cut-off-property, that is, there are cut-off values

z∗i ∈ Zi such that

s∗i (zi) =

(
1, if zi ≤ z∗i ;
0, if zi > z∗i ;

i = 1, 2.

Proof. See Appendix.
The intuition is straightforward. SSC− states that, for any distribution

of zj, if some type zi consents to a merger, so will any lower type z0i < zi, no

matter what the distribution of zj is. The result applies this property to the

distribution of zj corresponding to the equilibrium behavior of zj.

Lemma 1 immediately implies the following result.

Proposition 1 If gi (zi, zj) is monotone decreasing in zi, then every Bayesian
Equilibrium satisfies the cut-off property.

14Let Πi (si, zi;Bj , fj) define the expected payoff from strategy si for a firm with type
zi, facing a competitor characterized by Bj and fj . Then Πi (si, zi;Bj , fj) satisfies the
Milgrom-Shannon Single-Crossing Property in (−si, zi) if and only if Gi satisfies SSC−.
15Using the equivalence between SSC− and the Milgrom-Shannon condition, Lemma 1

is a special case of Theorem 1 in Athey (2001).
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The intuition for this result is simple: If higher types have less to gain

from a merger for arbitrary realizations of types, then clearly they must gain

less in expectation.

Proposition 1 does not exclude degenerate cut-off equilibria where all

or no types are willing to merge. The following result provides a simple

condition under which such non-degenerate equilibria exist.16

Corollary 1 If gi is monotone decreasing in zi, i = 1, 2, and if for all i, j =

1, 2, i 6= j, there exist zei ∈ (zi, zi) such thatZ zej

zj

gi (z
e
i , zj) fj (zj) dzj = 0, (1)

then there is a Bayesian Equilibrium (s∗1, s
∗
2) of the simultaneous merger game

in pure strategies such that the cut-off values satisfy z∗i = zei .

The result is straightforward to prove. Intuitively, Corollary 1 states that,

in equilibrium, firm i with the cut-off type zei = z∗i is just indifferent between
consenting to the merger and rejecting it, since the expected returns from

merging with types below the cut-off level zej equal zero. That is, since gi is

decreasing in zi by assumption, all types below zei will consent to the merger,

whereas all types above zei will reject it.

Together, Proposition 1 and Corollary 1 say that the lemons logic carries

over to our setting with two-sided asymmetric information, provided that

merger returns are monotone decreasing in own type. Our linear Cournot

example in section 4 will illustrate, however, that the monotonicity condi-

tion is surprisingly restrictive. We shall therefore provide a generalization

of the monotonicity condition to a wider class of functions, including many

single-peaked functions, in section 5. Yet, even this generalized monotonicity

condition turns out to be violated quite often.

16It is possible to derive a uniqueness condition, which makes sure that one reaction
function is always steeper than the other. As this condition is not particularly illuminating,
we refrained from stating it.
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The cut-off nature of the equilibrium suggests that low types are more

likely to merge than high types if the relevant conditions hold. This conclu-

sion has an interesting implication that is relevant to a better understand-

ing of the “Merger Puzzle” (Scherer 2002), that, in spite of their ubiquity,

mergers often turn out to be failures: If firm types are drawn from identi-

cal distributions, merged entities perform badly simply because of adverse

selection.

However, this conclusion needs to be interpreted carefully. For suppose

there is ex ante heterogeneity, i.e., firms’ types are drawn from different

distributions. Assume for simplicity that firm 2 is chosen from a distribution

that is generated by a shift of firm 1’s distribution to the right. Then a

low-type firm 2 with state z̃2 consenting to a merger might have a higher

type than a high-type firm 1 with state z̃1 that does not consent to a merger.

Figure 1 illustrates this argument.

<Figure 1 around here>

Another simple property of the cut-off equilibrium is that there typically

is a non-degenerate measure of types for which mergers are not profitable ex

post: Types that are just below the cut-off level break even in expectation,

but make losses if the partner is drawn from the lower tail of the distribution

(“ex post regret”). That is, mutual uncertainty about the potential partner’s

type may help explain why mergers often turn out to be non-profitable ex

post.

This feature of the model contrasts with familiar results on two-sided

asymmetric information, for instance, in the context of double auctions,

where the valuations of buyers and the costs of sellers are private informa-

tion (Chatterjee and Samuelson 1983). While inefficient no-trade outcomes

loom large in this literature, ex post regret about trade is not an equilibrium

phenomenon. This follows from the fact that knowledge of the other type

matters only for how much can be extracted from the other party. In the

context of mergers, however, it is also relevant for one’s own valuation of

12



the transaction. More generally, the fact that valuations are endogenous–

influenced by both players’ types via their market interaction–rather than

exogenous (and equivalent to one player’s type) complicates our analysis.17

3.2 No-Merger Equilibrium

We first derive a simple no-merger result: For arbitrary distributions of types,

there is always a degenerate cut-off equilibrium where no type merges.

Proposition 2 (no-merger) Each strategy pair (s1, s2) with

P [Bi (si)] ≡
Z
Bi

fi (zi) dzi = 0, i = 1, 2,

is a Bayesian Equilibrium of the merger game.

Proof. See Appendix.
The result is very intuitive: If both firms believe that the other firm will

not consent to a merger–no matter what its type is–it is a (weakly) best

response not to consent, and beliefs are correct in equilibrium. Thus, there

always is an equilibrium where firms merge with probability zero. Note,

however, that the no-merger equilibrium is Pareto-dominated in terms of

expected profits whenever a cut-off equilibrium exists where firms consent to

a merger with strictly positive probability.

The next proposition gives conditions on the expected merger returns

guaranteeing that there is no other equilibrium.

Proposition 3 Suppose Zi = Zj = Z. Further assume that, for i, j =

1, 2, j 6= i, gi is non-increasing in zi and non-decreasing in zj.

(i) If, for all i ∈ {1, 2}, there is no bzi such that gi (bzi, bzi) ≥ 0, then there
is no Bayesian Equilibrium with P [Bi (s

∗
i )] > 0.

17A parallel arises in the auctions literature: Jehiel and Moldovanu (2000) have recently
considered second-price, sealed-bid auctions where the valuation for the object is also
determined endogenously through the market interaction of players.
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(ii) If, for at least one i ∈ {1, 2}, there is no bzi such that gi (bzi, bzi) ≥ 0,
then there is no symmetric Bayesian Equilibrium with identical cut-off

values where P [Bi (s
∗
i )] > 0.

Proof. See Appendix.
Thus, even though the Assumptions of Proposition 3 are consistent with

Proposition 1, so that every equilibrium must be of the cut-off type, only the

degenerate cut-off equilibrium with P [Bi (s
∗
i )] = 0 can exist.

The result is useful in applications such as the linear Cournot model

with n ≥ 3 firms where, for homogeneous firms, joint profits decrease with
a merger (see section 4). Then, gi (bzi, bzi) < 0 must hold for at least one

firm. It follows immediately that there cannot be a symmetric equilibrium.

If, in addition, profits are shared such that gi (bzi, bzi) < 0 for both firms and
arbitrary bzi, then at least one firm must have negative merger returns for

every conceivable combination of types, and thus negative expected merger

returns. As a result, there is no equilibrium where firms merge with strictly

positive probability.

4 Example: Horizontal Cournot Model

We now apply our results to horizontal mergers in a linear Cournot setting,

where we think of the type as the negative of marginal costs. We shall

show how predictions on the merger pattern depend on (i) the effect of the

merger on the new entity’s marginal costs, (ii) the sharing rule adopted by

the merging firms, and (iii) the extent of asymmetric information.

As a background, recall the following results familiar from the literature

on mergers in the Cournot model without asymmetric information. Salant

et al. (1983) have shown that bilateral mergers of homogeneous firms are

never profitable (except for mergers to monopoly) if they do not reduce mar-

ginal costs. Barros (1998) notes that bilateral mergers may be profitable

when firms are heterogenous: If the merged entity inherits the technology

14



of the more efficient firm, and the marginal costs of the merging firms differ

sufficiently, a rationalization effect will render the merger profitable.

Now consider a setting with two-sided asymmetric information. Suppose

there are three firms with marginal costs ci, i = 1, 2, 3, and inverse demand is

given by P (Q) = a− bQ, where Q =
P

i qi is aggregate output and a, b > 0.

We consider a merger game between firm 1 and 2. The firms’ types are defined

as zi ≡ −ci, i.e. the negative of marginal costs. Suppose that z1 and z2 are

uniformly distributed with compact support Z = Z1 = Z2 = [z, z]. As in

Barros (1998), we first suppose that the merged firm inherits the technology

of the more efficient firm (rationalization mergers). The type of the merged

firm is thus given by zm = max(z1, z2). We then consider mergers that

reduce the level of marginal cost even below that of the more efficient firm,

i.e. mergers that give rise to synergies (synergy mergers). More precisely, in

the synergy case, we suppose that the merged firm produces with the lowest

marginal cost that any firm could conceivably have, i.e., zm = z. Thus, the

synergy case correspond to an extremely favorable view of the merger effects.

We shall use the following specific parameter values: a = 200, b = 1, c3 =

100. Furthermore, we use γ ∈ [0, 20] to define the support of the type distri-
bution as

Z = [− (100 + γ) ,− (100− γ)],

i.e., an increase in γ amounts to a mean-preserving spread (see e.g. Laffont

1983, pp. 24). We have chosen γ so that for all possible combinations of

types, all firms produce positive outputs. In Figure 2, the area where all

firms produce positive output is given by ABC. The shaded areas ABE

and BCD, respectively, indicate marginal cost combinations that generate

increases in total profits in case of a merger.18 The hatched area BDE gives

the cost combinations for which a merger reduces the total profits of the

merging firms.

<Figure 2 around here>
18For cost combinations in ABE, firm 1 rationalizes firm 2. For cost combinations in

BCD, the rationalization effect is reversed.
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Our analysis of the equilibrium behavior distinguishes:

(i) rationalization and synergy mergers,

(ii) three sharing rules (Fixed Profit Shares, Joint Surplus Sharing, and

Cash Payment),

(iii) three different distributions of types (γ = 2, 5 and 20, respectively).

In the following, we emphasize the most interesting results that emerge

from the Cournot model, and we sketch why these results hold.19

4.1 Rationalization Mergers

Table 1 gives a brief description of the equilibrium structure for the case of

rationalization mergers, indicating which of the following cases arises:

1) Only the no-merger equilibrium exists (∅ or ∅∗).

2) There is an equilibrium where all firms consent to the merger.

3) There is a non-degenerate cut-off equilibrium.

In case 1), the starred entries have to be taken with a grain of salt: In

those cases, we only considered “simple” equilibria where the set of players

that consent to a merger is an interval. We have not excluded the possibility

that more complicated equilibria could arise.

<Table 1 around here>
19Details of calculations are available on request from the authors.
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4.1.1 Fixed Profit Shares

Recall from section 2 that under the Fixed Profits Shares rule, firm i = 1, 2

gets a predetermined share of the merged entity’s total profits. In this case,

we obtain the result that uncertainty does not matter: As for homogeneous

firms under certainty, there are no mergers under asymmetric information

and firms that are ex-ante homogeneous.

Observation 1 For rationalization mergers with fixed profit shares αi ∈
[5/32, 27/32] and arbitrary γ ∈ [0, 20] , there is no symmetric Bayesian equi-
librium where firms 1 and 2 merge with positive probability.

This observation follows from Proposition 3(ii). To see this, suppose

that firms commit to profit shares α1, α2 ∈ [5/32, 27/32] and α1 + α2 = 1.

For these profit shares, firm i’s merger returns are monotone decreasing in

own type (∂gi/∂zi < 0) and monotone increasing in the competitor’s type

(∂gi/∂zj > 0): Intuitively, as long as one firm does not obtain a very high

profit share, the effects of types on merger returns are influenced more by

the effects on stand-alone profits than by the effects on post-merger profits.

Furthermore, by Salant et al. (1983), there must be at least one i ∈ {1, 2} such
that gi (bz, bz) < 0 for any bz ∈ Z. Proposition 3(ii) implies that under these
conditions there cannot be a symmetric Bayesian equilibrium, irrespective of

the amount of uncertainty.20

It is important to note that the absence of mergers is not necessarily

inefficient: As mergers reduce joint profits for sufficiently homogeneous firms,

mergers are never efficient for γ = 2. For larger values of γ, the absence of

mergers may well be inefficient, as potential rationalization effects will not

materialize. We will now show that other sharing rules might allow for the

exploitation of such rationalization effects.

20Furthermore, if profit shares are not too asymmetric, such that gi (bz, bz) < 0 for all
i ∈ {1, 2}, it follows from Proposition 3(i) that an asymmetric equilibrium where firms 1
and 2 merge with posititve probability cannot exist either.
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4.1.2 Joint Surplus Sharing

Under the Joint Surplus Sharing rule, firm i = 1, 2 gets its former profit plus

a predetermined and constant share βi of the total change in profits. Our

results are summarized in the following observation.

Observation 2 For rationalization mergers with joint surplus sharing and
low uncertainty (γ = 2) , only the no-merger equilibrium exists. As the un-

certainty γ increases, non-trivial equilibria also exist where firms consent

with strictly positive probability. For high uncertainty (γ = 20), there is an

equilibrium where all types consent to a merger.

The intuition reflects familiar results from the case without uncertainty:

When the uncertainty about the competitor is small, firms know they will

turn out to be fairly similar ex post–too similar for a sufficient rationaliza-

tion effect to materialize (as in the Salant et al. case). When uncertainty is

large, there is a chance that firms turn out to be so heterogenous that the

rationalization effect is sufficient to make the merger profitable (as in the

Barros case).

Importantly, in the joint surplus case, merger returns are not monotone

in a firm’s type. This is best seen from Figure 2: For homogeneous firms,

merger returns are negative. Both to the right and to the left of the diagonal,

merger returns are eventually positive, as the shaded area is reached. Again,

this reflects the intuition that merger returns are positive when substantial

rationalization is possible, that is, when differences between firms are large

enough. Because of this non-monotonicity of merger returns, cut-off equilib-

ria are not guaranteed by Proposition 1 in this case.

4.1.3 Cash Payment

Under the Cash Payment rule, the owners of firm 2 are compensated by a

cash payment p > 0 by the owners of firm 1. Again, we consider different

amounts of uncertainty. Our results are summarized as follows.
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Observation 3 For rationalization mergers with cash payment, low or medium
uncertainty (γ = 2 or γ = 5) and arbitrary price levels, only the no-merger

equilibrium exists. For high uncertainty (γ = 20), a non-trivial cut-off equi-

librium exists for suitable prices.

The intuition for the cases γ = 2 and γ = 5 is similar as in the joint

surplus case. A necessary condition for prices to exist such that some firms

consent to a merger is that expected post-merger profits are higher than the

sum of expected stand-alone profits. When uncertainty is small, firms are too

similar for this to happen. For γ = 20, there exists a set of types (z∗S, z
∗
B) for

sellers and buyers, such that the expected post-merger profits are higher than

the sum of expected stand-alone profits before the merger. On the boundary

of this set, total expected stand-alone and post-merger profits are identical

and there must therefore exist a price such that both the seller and the buyer

are indifferent towards the merger. Thus, the boundary of this set contains

combinations of types that are cut-off values for suitable prices.

Again, merger returns are generally non-monotone in this case, so that

Proposition 1 does not apply. Nevertheless, we see that a non-degenerate

cut-off equilibrium may exist for suitable values of prices and uncertainty.

4.2 Synergy Mergers

Suppose now that the merger gives rise to synergies. More specifically, as-

sume that the merged firm is of the highest conceivable type, i.e. zm = z.

We confine ourselves to a discussion of the case with fixed profit shares. Our

main result is the following.

Observation 4 For synergy mergers with fixed profit shares, a cut-off equi-
librium arises for γ = {2, 5, 20}.

Intuitively, for synergy mergers with fixed profit shares, the post-merger

profit is independent of firm types. Under these conditions, the merger return

function must be monotone decreasing in own type by Assumption 2. Thus,
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high types always gain less from a merger than low types, which leads to

cut-off equilibria. Unlike the case of rationalization mergers, transactions

come about even for low uncertainty.21 This follows from the fact that even

symmetric firms may gain from mergers when there are synergies.

5 Generalizations

In this section, we consider two modifications of our analysis in section 3.

First, we show how to apply our theory when the return functions gi are

monotone increasing rather than decreasing in own type. Such a setting is

conceivable when the positive effects of own type on the merged entity are

greater than the positive effects on stand-alone firms. As we will sketch

below, a natural example arises when the type variable is relation-specific,

that is, corresponds to a firm characteristic which is valuable only if the

firms join forces. Second, we introduce the concept of “essentially monotone

decreasing” functions and show that Proposition 1 generalizes to the case

where the return functions gi satisfy this property.

5.1 Increasing Returns Functions

Consider the merger game outlined in section 2, where firms know their own

zi, but not their competitor’s type zj, j 6= i. However, suppose that firm types

are relation-specific in the sense that they do not affect the firms’ profits in

the absence of the transaction, implying that πi, i = 1, 2, is independent

of (zi, zj) . However, if the transaction occurs, the joint profit πM (zi, zj)

is monotone increasing in both zi and zj. A plausible example of such a

setting arises when the two firms are providers of complementary assets that

are essential to carry out particular projects, but not valuable outside the

relationship. Then, provided that each party receives a positive share of each

21More specifically, for α = 0.5, there is a non-trivial cut-off equilibrium for high uncer-

tainty (γ = 20). For small and medium uncertainty (γ = 2, 5), all types consent to the
merger.
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increase in πM , the returns from the transaction, gi(zi, zj) = πMi (zi, zj)− πi,

are monotone increasing rather than decreasing in own state.

Intuition suggests that in such a setting, only high types consent to the

transaction. Contrary to the assumptions of Proposition 1, gi is monotone

increasing in own type, so that high types gain more than low types in

expectation, and the equilibria will be of the opposite cut-off type, i.e. only

good firms will consent to the merger.

5.2 Non-Monotone Returns Functions

As mentioned above, demanding that merger returns are monotone decreas-

ing in own type is more restrictive than necessary to derive a cut-off equi-

librium: By Lemma 1, it is sufficient that expected merger returns satisfy

SSC−. In the following, we show that a large class of functions satisfies this
condition.

To apply Proposition 1, we need to understand under which conditions

the merger return function satisfies downward single-crossing in expectation.

To this end, we define the class of essentially monotone decreasing functions

as follows. Suppose h : X ×Y −→ R is an arbitrary function on X ×Y ⊂ R2,
and let µ denote the standard Lebesgue measure on R. We use the following
notation:

Notation 1

• A (x) ≡ {y ∈ Y | h (x, y) ≥ 0}
• D (x) ≡ {y ∈ Y | h (x, y) ≤ 0}
• C ≡ {x ∈ X | µ (A (x)) > 0 ∧ µ (D (x)) > 0} .

Our merger model (where x = zi, y = zj and h = gi) serves to motivate the

notation. A (zi) corresponds to the set of types zj for which firm i with state

zi accepts an agreement under complete information, and D (zi) corresponds

to the set of types zj for which it declines.22 C is the “critical” set of types

22In both cases, the types zj for which firm i with state zi is indifferent are also included.
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zi who accept an agreement with some types zj, but decline it with others.

The following definition is useful.

Definition 3 (a) h is essentially monotone decreasing (EMD) in x

if the following properties are satisfied:

(EMD1) ∀x2 ≥ x1 : µ (A (x1)) = 0 =⇒ µ (A (x2)) = 0.

(EMD2) ∀x1 ≤ x2 : µ (D (x2)) = 0 =⇒ µ (D (x1)) = 0.

(EMD3) ∀x1, x2 ∈ C, x1 < x2 :

h (x1, y) > h (x2, y) for µ-almost all y ∈ A (x1) or A (x2) , or

h (x1, y) > h (x2, y) for µ-almost all y ∈ D (x1) or D (x2) .

(EMD4) The restriction of h to the subset C ⊂ X , h |C (x, y) , is non-
increasing in x for µ-almost all y ∈ Y.
h is essentially monotone decreasing in x in the weak sense
(WEMD) if (EMD1)—(EMD3) hold.

(b) h is essentially monotone increasing (EMI) in x if −h is EMD in
x. h is essentially monotone increasing in x in the weak sense
(WEMI) if −h is WEMD in x.

Consider properties (EMD1)-(EMD4). In the model of section 2, the

interpretation of (EMD1) is that, when some low type zi does not gain from

mergers with a positive measure of other types, then neither does any higher

type z0i > zi. The interpretation of (EMD2) is similar: When some high type

z0i will enter an agreement with almost every type zj, then any lower type
zi < z0i will do so, too. (EMD3) and (EMD4) are additional monotonicity
requirements on the critical set of types who consent for some types, but not

for others.

To understand which functions satisfy EMD, it is useful to summarize

results on the relation between EMD and more familiar concepts.

Lemma 2 (i) h (x, y) is EMD in x if it satisfies one of the following prop-

erties (i.1)-(i.4):
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(i.1) h (x, y) is monotone decreasing in x for µ-almost all y ∈ Y.
(i.2) h (x, y) > 0 for all x ∈ X and µ-almost all y ∈ Y.
(i.3) h (x, y) < 0 for all x ∈ X and µ-almost all y ∈ Y.
(i.4) x = minX exists; h (x, y) is single-peaked in x with peak x∗ (y)

and bx = supy∈Y x∗ (y) such that bx ≤ ex ≡ inf C.
(ii) If h is EMD in x, then h (x, y) satisfies SSC− in x for µ-almost all

y ∈ Y , i.e., for all xH , xL ∈ X such that xH > xL, h
¡
xH
¢ ≥ 0 implies

h
¡
xL
¢ ≥ 0 and h ¡xH¢ > 0 implies h ¡xL¢ > 0

Proof. See Appendix.
Part (i) of Lemma 2 states that EMD contains monotone decreasing func-

tions (1), functions that have the same sign independent of x ((2) and (3)),

and a large class of functions that are single-peaked in x (4). Figure 3 gives

an example for the latter case: Beyond single-peakedness, EMD requires that

the peaks of the function are to the left of the critical set [c, c].

Part (ii) states that EMD implies strong downward single crossing. As

Figure 4 shows, the converse statement does not hold, because EMD includes

monotonicity properties for the critical set C ≡ [c, c], whereas SSC− does
not. Even WEMD does not hold in this particular example.

<Figures 3 and 4 around here>

The next result is crucial to show that EMD is sufficient for the cut-off

result that low types are more likely to engage in mergers than high types.

Proposition 4 If h satisfies (EMD), then it also satisfies downward single-
crossing in expectation (ESC−), i.e.

R
B
h (x, y) f (y) dy satisfies SSC− in

x for every pair (B, f) where B is a subset of R and f : B → R+ is a function
with

R
B
f (y) dy > 0.

Proof. See Appendix.
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Together with Lemma 1, Proposition 4 implies that a cut-off equilib-

rium exists where only low types consent to the merger, provided that gi is

EMD.23 ,24

Finally, note that EMD is not necessary for ESC−. Nevertheless, we can
provide a partial converse of Proposition 4.

Proposition 5 If ESC− holds, h satisfies WEMD.

Proof. See Appendix

6 Conclusions

Mergers under asymmetric information differ from familiar lemons problems

in two ways. First, the informational asymmetry is two-sided. Second, high

types earn more both before and after a transaction takes place. Thus, it is

not obvious that merger returns are monotone decreasing in own type and

that low types are more likely to consent to transactions than high types.

In spite of this ambiguity, we show that, in a Cournot setting with linear

demand, there are cases where merger returns are monotone decreasing in

own type, so that standard lemons results hold. Beyond that, we give a more

general condition on merger returns–that they are “essentially monotone

decreasing”–guaranteeing that low types are more likely to merge than high

types.

We also show that our merger game always has a no-merger equilibrium,

and we give conditions for this equilibrium to be unique.

Applying the general findings in the Cournot setting yields several in-

teresting results. For instance, when uncertainty is large, equilibria where

23An alternative sufficient condition for ESC− could have been obtained by applying
the same logic as in Athey (2000, Theorem 5). See Borek et al. (2003) for further details.
24If h satisfies EMI (rather than EMD), the result is reversed: h then satisfies upwards

single-crossing in expectation, so that in the Bayesian equilibrium only high types consent
to the merger.
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mergers occur may exist, whereas no such equilibrium would exist under

symmetric information. Intuitively, when there is considerable uncertainty

about firm types, the potential partners to a merger can hope that they will

turn out to be sufficiently asymmetric ex post for substantial rationaliza-

tion effects to materialize. However, it depends on the profit sharing rule

whether this is possible: When firms commit to a fixed share of profits ex

ante, mergers will never occur in the absence of synergies, whereas they may

occur when firms commit to a fixed price.

Appendix

Proof of Lemma 1

Firm i’s expected merger return, facing firm j with strategy sj, is

Gi (zi;Bj, fj) = P [Bj]Ezj
£
πMi (zi, zj) |zj ∈ Bj (sj)

¤
+

(1− P [Bj])Ezj [πi (zi, zj) |zj /∈ Bj (sj)]− Ezj [πi (zi, zj)]
=

Z
Bj

gi (zi, zj) fj (zj) dzj.

If Gi (zi;Bj, fj) is positive, firm i will consent to the merger, otherwise it will

reject the merger. By assumption,
R
Bj

gi (zi, zj) fj (zj) dzj satisfies SSC− in
zi. Denote the single crossing points required by Definition 2 as z◦i (sj) . Now
define

R̃i (sj) =

(
z◦i (sj) , if z◦i (sj) ≤ zi;

zi, if z◦i (sj) ≥ zi or if z◦i (sj) does not exist.

Then firm i’s optimal reaction is

Ri (zi, sj) =

(
1, if zi ≤ R̃i (sj) ;

0, if zi > R̃i (sj) .

In particular, for an equilibrium strategy sj, the best reply has the required

cut-off structure.
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Proof of Proposition 2

Suppose firm i plays strategy si (zi) with P [Bi (si)] = 0. Then the probability

that a merger takes place is zero and therefore firm j 6= i is indifferent

between any strategies it can play; in particular, every strategy sj (zj) with

P [Bj (sj)] = 0 is a best response.

Proof of Proposition 3

(i) Assume that, for all i ∈ {1, 2}, there is no bz such that gi (bzi, bzi) ≥ 0.
Suppose w.l.o.g. that there is a non-trivial cut-off equilibrium (z∗1 , z

∗
2)

with z∗1 ≥ z∗2. As g1(z
∗
1 , z

∗
1) < 0 and g1 is monotone increasing in z2,

g1(z
∗
1 , z2) < 0 for all z2 ≤ z∗2 . Therefore, expected equilibrium profits

for firm 1 are
R z∗2
z2

g1 (z
∗
1 , z2) f2 (z2) dz2 < 0, contradicting the condition

that
R z∗2
z2

g1 (z
∗
1, z2) f2 (z2) dz2 = 0 for the cut-off values (z

∗
1 , z

∗
2).

(ii) Suppose z∗1 = z∗2 ≡ z∗ and assume w.l.o.g. that g1(z∗, z∗) < 0. Then

g1(z
∗, z2) < 0 for all z2 < z∗. Thus expected equilibrium profits for firm

1 are
R z∗
z2

g1 (z
∗, z2) f2 (z2) dz2 < 0, contradicting the condition thatR z∗

z2
g1 (z

∗, z2) f2 (z2) dz2 = 0 for the cut-off values (z∗, z∗).

Proof of Lemma 2

(i.1) To show (EMD1) let x1 ∈ X such that µ (A (x1)) = 0. Then h (x1, y) <

0 for µ-almost all y ∈ Y. Since h (x, y) is monotone decreasing in x for

µ-almost all y ∈ Y it follows that h (x2, y) < h (x1, y) < 0 for all x2 > x1

and µ-almost all y ∈ Y. Therefore µ (A (x2)) = 0 for all x2 ≥ x1. The

proof of (EMD2) is analogous, (EMD3) and (EMD4) are obvious.

(i.2) If h (x, y) > 0 for all x ∈ X and µ-almost all y ∈ Y, then µ (A (x)) > 0,
µ (D (x)) = 0 for all x ∈ X , and C = ∅. Therefore (EMD1)—(EMD4)
are trivially satisfied.

(i.3) An analogous argument holds for h (x, y) < 0.
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(i.4) (EMD1) Let x1 ∈ X such that µ (A (x1)) = 0. Then h (x1, y) < 0 for µ-

almost all y ∈ Y. Since h(y) > 0 > h (x1, y) and h (x, y) is single-peaked

in x for µ-almost all y ∈ Y, it follows that h (x2, y) < h (x1, y) < 0 for

all x2 > x1 and µ-almost all y ∈ Y. Therefore µ (A (x2)) = 0 for all

x2 ≥ x1.

(EMD2) Let x2 ∈ X such that µ (D (x2)) = 0. Then h (x2, y) > 0 for

µ-almost all y ∈ Y. Since h(y) > 0 and h (x, y) is single-peaked in x

for µ-almost all y ∈ Y, it follows that h (x1, y) > 0 for all x1 ≤ x2 and

µ-almost all y ∈ Y. Therefore µ (D (x1)) = 0 for all x1 ≤ x2.

(EMD3) Let x1, x2 ∈ C, x1 < x2, and y ∈ D (x1) . Since h(y) > 0 ≥
h (x1, y) and h (x, y) is single-peaked in x for µ-almost all y ∈ Y, it
follows that h (x1, y) > h (x2, y) for µ-almost all y ∈ D (x1) .

(EMD4) As h (x, y) is single-peaked in x, it is non-increasing in x for

x ≥ bx and µ-almost all y ∈ Y. As ex ≥ bx, h (x, y) is non-increasing in x

for x ∈ C and µ-almost all y ∈ Y.

(ii) Suppose h (x, y) does not satisfy SSC− in x for µ-almost all y ∈ Y.
Then there exists x1 < x2 and M ⊂ Y with µ (M) > 0 such that

h (x1, y) ≤ 0 ≤ h (x2, y) for all y ∈ M. This implies µ (A (x2)) > 0

as M ⊂ A (x2) . Since x1 < x2 we get µ (A (x1)) > 0 by (EMD1).

Thus x1 ∈ C. An analogous argument shows that x2 ∈ C. Now if

h (x1, y) < h (x2, y) for µ-almost all y ∈M, we have a contradiction to

(EMD4), and if h (x1, y) = 0 = h (x2, y) for µ-almost all y ∈ M, we

have a contradiction to (EMD3).

Proof of Proposition 4

(a) Let x ∈ X such that µ (D (x)) = 0. Then h (x, y) > 0 for µ-almost all

y. Therefore
R
B
h (x, y) f (y) dy > 0 for all (B, f) with

R
B
f (y) dy > 0.

(b) For x ∈ X with µ (A (x)) = 0 an analogous argument shows thatR
B
h (x, y) f (y) dy < 0 for all (B, f) with

R
B
f (y) dy > 0.
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(c) Let x1, x2 ∈ C such that x1 < x2. From (EMD4) we know thatR
B
h (x1, y) f (y) dy ≥ R

B
h (x2, y) f (y) dy for all (B, f)with

R
B
f (y) dy >

0. Now suppose that there exists (B0, f0) with
R
B0

f0 (y) dy > 0 such

that Z
B0

h
¡
x1, y

¢
f0 (y) dy = 0 =

Z
B0

h
¡
x2, y

¢
f0 (y) dy. (2)

This implies µ (A (xi) ∩B0) > 0 and µ (D (xi) ∩B0) > 0 for i = 1, 2.

Together with (EMD3) and (EMD4) we get
R
B0

h (x1, y) f0 (y) dy >R
B0

h (x2, y) f0 (y) dy, which is a contradiction to (2). Thus, for h re-

stricted to C,
R
B0

h (x, y) f (y) dy satisfies single crossing.

(d) (EMD1) and (EMD2) guarantee that sup {x ∈ X | µ (D (x)) = 0} =
inf C and supC = inf {x ∈ X | µ (A (x)) = 0} , and so (a)—(c) establish
SSC− for

R
B
h (x, y) f (y) dy for all (B, f) with

R
B
f (y) dy > 0.

Proof of Proposition 5

(a) Suppose that (EMD1) is not satisfied. Then there exists x1 < x2 such

that µ (A (x1)) = 0 and µ (A (x2)) > 0. Therefore we can find B ⊂
A (x2) and f such that

R
B
f (y) dy > 0. We thus get

R
B
h (x1, y) f (y) dy <

0 ≤ R
B
h (x2, y) f (y) dy, which is a contradiction to SSC−.

(b) The necessity of (EMD2) is proven analogously.

(c) Suppose (EMD3) is not satisfied. Then there exists x1, x2 ∈ C, x1 < x2

and M1 ⊂ A (x1) ,M2 ⊂ D (x1) with µ (Mi) > 0, i = 1, 2, such

that h (x1, y) ≤ h (x2, y) for all y ∈ M1 ∪M2. Therefore we can find

(B ⊂M1 ∪M2, f)with
R
B
f (y) dy > 0 and such that 0 =

R
B
h (x1, y) f (y) dy ≤R

B
h (x2, y) f (y) dy, which contradicts SSC−. This completes the proof.
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Table 1: Merger Pattern in the Cournot model

Rationalization Merger
zm = max(z1, z2)

Profit Sharing Uncertainty

High Medium Low

(γ = 20) (γ = 5) (γ = 2)

Fixed Share ∅ ∅ ∅

Joint Surplus all types ∅∗ ∅

Cash Payment low types ∅ ∅
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